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Abstract 
The results of the study of the graph of states of a linear congruential generator (LCG) are 
considered and theoretically substantiated. A model of a generalized graph of LCG states has 
been developed. It represents each connected component of the graph in the form of cycles 
equipped with tree products, allows classifying the types of connectivity components of the 
graph of LCG states and investigating the influence of parameters on its topology. A method 
for generating a pseudorandom sequence (PRS) of numbers based on the linear congruential 
method is presented. This method allows generating uniformly distributed numbers 
regardless of the topology of the graph of LCG states and, consequently, minimizing the time 
spent on choosing its parameters, and increasing the size of the space of their allowable 
values to achieve the maximum period. Computer implementation of the algorithm for 
generating PRS of permutations based on LCG with any type of graph of its states has 
allowed increasing the speed of the generator compared to the permutation generator using 
the modern Fisher-Yates algorithm. 
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1. Introduction 

Pseudorandom sequences (PRSs) [1-2] are widely used to solve a wide class of problems. In 
particular, they are used to protect information from unauthorized access [3-5], to control the integrity 
of information [6], to form signals that provide covert data transmission and implement the modeling 
of complex systems and objects [7-9], to form permutations for factorial coding of information [10-
12]. 

The linear congruential generator, the linear-feedback shift register (LFSR), and the additive 
generator are the simplest ones in design, high performance and ones of the most commonly used 
generators. Their design is often the basis of high-quality pseudorandom number generators (PRNGs) 
with a long repetition period. 

Linear congruential generator (LCG) is proposed by D. H. Lehmer in 1949 [13]. It implements a 
recurrent relation ( :f S S  transition function) of the form: 

1i i M
s K s C   ,  (1) 

where K  is the multiplier; 
C  is the growth; 
M  is the module, 0, , MK C s Z . 
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Obviously,  0; 1is M  , and the power of the space of LCG states S M . 

Congruential sequence always forms repeating cycles [1]. 
LCGs are very sensitive to changes in parameters. Numerous works on the theory and application 

of congruential generators are aimed at choosing their parameters and assessing the quality of the 
obtained PRSs. Among them are both classical [1, 14-17] and modern works [18-22]. 

At the same time, despite the large number of studies on the choice of LCG parameters and 
experimental evaluation of its properties, most of them are aimed at improving the "randomness" of 
the formed sequence and do not take into account the structure of space of LCG states S . 

Among the works devoted to the analysis of the structure of the space of LCG states, one of the 
main ones is the thorough scientific work of G. Marsaglia [23]. In addition, the work [24] is devoted 
to the development of the theory of PRS construction based on the LCG and LFSR.  

The analysis of the simplest PRNGs, LCG and LFSR, shows their limitations due to the need to 
select parameters in order to ensure necessary PRS statistical properties. In particular, the allowable 
values of the generator parameters to ensure the maximum PRS period are shown in Table 1. 

 
Table 1 
PRNG parameters to achieve the maximum PRS period 

Method  Period 
Valid values of PRNG 

parameters  
Size of space of permissible 
values of PRNG parameters  

Linear congruential 
method [13] 

T M  

1)   , 1Gcd С М  ; 

2)  1 0
p

K    for   simple 

: 0
p

p M  ; 

3) if 
4 4

0 1 0M K     

 

 M P  , 

where  P  is the number of 
K  values that satisfy 
conditions 2 and 3  

Method based on LFSR 
[25‐27]  2 1nT    

Generator polynomial   nG x  

is primitive one 

Corresponds to the number 
of primitive polynomials  

of  n  degree 
Method for PRS 

generating based on 
concatenation of LCG 

cycles [24] 
 

T M    , 1Gcd K M     M M   

Method for PRS 
generating based on 
concatenation of LFSR 

cycles [24] 

2nT   

Generator polynomial   nG x  

generates a cyclic structure  
of the graph of LFSR states 

Corresponds to the number 
of polynomials of  n  degree 
that generate the cyclic 
structure of the graph of 

LFSR states 

 
The purpose of the work is to generate PRS of permutations with high performance and necessary 

statistical properties without the need to select LCG parameters. 
For the further study and analysis of PRNG construction based on sequential traversal of all 

vertices of the graph of LCG states, it is necessary to perform an in-depth study of the structure of the 
graph of LCG states, extended analysis of the influence of LCG parameters on the structure of its 
graph, and, consequently, to develop the method for generating PRS based on linear congruential 
method by sequentially traversing the contour of the graph of states of the generator. 

2. Review of the literature 

To study and generalize the structure of the graph of LCG states, we shall explore the main 
approaches to forming graphs of states of PRS generating devices. 



2.1. Cycle graphs 

A cycle graph [28], also known as a simply n -cycle [29], is a graph containing n  nodes and 
consisting of a single cycle that passes through all its nodes. The cycle graph is denoted by nC . The 

number of vertices in nC  is equal to the number of edges, each vertex has a power of 2, any vertex is 
incidental to two edges. 

Cycle graphs are used, for example, to illustrate the structure of multiplicative groups nM  

(Figure 1). Such graphs are formed by creating numbered nodes, one for each   element of the 
surplus class, and constructing cycles obtained by calculating i  for 1,2,i  . Each edge of such a 
graph has a bidirectional character [28]. 

 
 

 
Figure 1: Graphs for some small‐order multiplicative groups (from [30]) 

 
In all graphs of Figure 1 the node with 1   is highlighted because it is a zero cycle: 

1j
j M

      for any j . Next, we shall use the same notation to represent zero cycles in the 

graph of LCG states. 
Note that in Figure 1 not all represented graphs are cycle graphs. This follows from the fact that 

multiplicative group by M  module can be isomorphic to the product of several cyclic groups (for 
example, 8 2 2M C C  , and 15 2 4M C C  ). In this case, the graph is a combination of several 
cycle graphs. 

To visually represent the structure of the graph of LCG states, it is necessary to use an oriented 
cycle graph, an oriented version of the cycle graph, in which all arcs are directed in the same 
direction. 

2.2. Algebra of monads and topology of monad graphs 

This paragraph, as well as its name, is based on the V. I. Arnold works [31-32]. 
According to [31], a monad is a representation of a finite set in itself. The monad graph has all 

elements of this finite set as vertices, and oriented edges connect each element with its image. 
In other words, a monad graph is an arbitrary finite oriented graph, from each vertex of which 

exactly one edge emerges. Iterations of the monad lead any vertex to a cycle attractor. 



According to [31], each connected component of the monad graph is a forest of root-oriented root 
trees, the roots of which are connected by an oriented cycle (topologically circular) from the edges 
connecting the tree roots. 

In other words, connected components of any monad are cycle attractors, which are equipped with 
root trees attached by their roots to each vertex of the cycle attractor [32]. The number of vertices of 
the cycle can be equal to 1. In this case, the whole component is one root tree. 

Each connectivity component of the graph of any representation of a finite set contains one and 
only one cycle. 

Let S  be a finite group, and :f S S  representation transforms each of its elements s S  

according to the expression:   M
f s K s C   , where K is the multiplier; C  is the growth; M  is 

the module, 0, , MK C s  . 

In this paper, :f S S  representation will be called the monad of S  group.  

According to [31], the symbols nO , nA , mT , nE  will denote the following oriented graphs: 

 nO  = oriented cycle of n  vertices; 

 nA  = connected graph of 2n  vertices, which is a cycle of n  length, equipped with n  single-

edge trees, which are included one in each of n  vertices; 
 

2nT  = root tree with 2n  vertices and n  floors except the root, which branches binarially on 

1, , 1n   floors; the root is considered to be the zero floor, and it also includes two edges: one is 
from itself and one is from a single vertex of the first floor; 
 nE  = root tree with n  vertices, from each of which the edge leads directly to the root (so that 

2 1 2E A T  ); 

 nD  = 4n -vertex graph, consisting of nO  cycle of n  length, equipped in each of its vertices 
with three input edges (form together with this corresponding to the cycle vertex the root tree 

1 4D E ). 

For example, graphs of monads for additive cyclic groups in the field n  have the form shown in 

Figure 2. 
 
 

 
Figure 2: Graphs of monads for some simple cyclic additive groups (from [31]) 
 

According to [31], a monad that acts on the direct product X Y  component by component: 

    ,A B x y Ax By    is called the A B  product of A  and B  monads that act on X  and Y , 

respectively. The number of elements of a monad product is equal to the product of the number of 
elements of monad coefficients.  



In [31] it is also shown that the graph of the monad product is the product of graph coefficients: 

       graph grapA hB A Bgraph               / 1n nA A O  , 1n nD D O  . 

Multiplying any root tree T  by nO  equips n -cycle nO  with root trees of T  type with roots at all 
points in the cycle. 

3. Materials and methods 

In this section, we shall investigate the LCG topology and generalize the graph of its states to 
develop a method for generating permutation sequences. 

3.1. Graphs of linear congruential generator 

Examples of graphs of monads of S  group for some LCG parameters are shown in Table 2. 
 
Table 2 
Oriented graphs of LCG states for some of its parameters 

LCG parameters  LCG parameters 

M   K   C  
Graph of states 

M   K   C  
Graph of states 

6  4  3 
513

20 4
 

7  2  3 
2

0

3

4

6

1

5
 

7  6  1 

3

5

4

0

1

2

6

 

7  4  6 
2

0

6

5

4

1

3
 

7  3  2 

5

4

0

2

1

6

3

 

8  4  2  6

2

3

0

1

4

5 7

 

8  5  1  2

0

3 1

6

5
4

7

 

8  7  3 
0

3

1

2

4

7

5

6

 

8  3  1  5 1

4

0

3 7

6

2

 

8  7  2 

4

6

1 5

0

2

3

7

 

8  1  6  2 6

4

0

3 7

5

1

 

8  6  4 
13

0

4

26

57

 
 
Let us analyze the structures of graphs of monads of LCG S  group. We shall summarize the 

analyzed structures and present in Table 3 some graphs typical to LCG. 
Extending the regularities given in [24], we give some graphs of LCG states and parameters for 

which these graphs are typical: 
1. MO  – for: 



a) 2M  , 1K  , 1C  ; 
b) 2pM  , 4 1K l  , 2 1C m  , , 0l m  ; 
c) M  is simple, 1K  , 1C  ; 

Table 3 
Generalized graphs of LCG states 

1. Generalized graph of cycles 

Groups of cycles of  it  length 

1, 1,i i i
i

i t d t M
 
   

 
  

 

ii t
i

d O  

2. Generalized graph of trees 

Group of  na  ‐ vertex trees with  n  
floors  

 2 , na da M   

 

na
dT  

3. Combinations of cycles and trees 

A group of cycles of  t  length, 
equipped in each of its vertices 

with input edges   1n  , and a 

group of root trees with  n  
vertices, from each of which the 
edge leads directly to the root 

  n dt k M     

 n t nd E O kE   

  1 1tn n
d T O kT   

A group of zero cycles with single‐
edge trees included in them, 
equipped in each of their vertices 
with root trees with  n  vertices, 
from each of which the edge 
leads directly to the root 

 2dn M  

 

 1nd E A  

  1 12n
d T T  

A group of cycles of  t  length, 
equipped with  t na ‐vertex trees 

with  n  floors, and  na  group of 
na  ‐ vertex trees with  n  floors 

  2, nn a dt k M    

 

 

 n nta a
d T O kT   



2. tdO  – for 2pM  , 4 1K l  , 1l  , and 2 1C m  , 0m  . Under these conditions: 

a) for 22kl    2 1kK   , 2k  ,  2 1t M K  , and  1 2d K   (or 12 p lt   , 12ld  ) 

take place; 
b) for 2 1l k    8 5K k  , 1k  , 2t M , and 2d   take place; 

c) for 2l k , 1k  , 2 1rK   , 3r   (that is 32rk  :  42 2 1ik j  , and  32 2 1il j   

  12 2 1 1iK j    for 1;2 1p ij     ,  4; 1i p  ), 22it M  , 22id   take place; 

3. 1tdO O  – for simple M , 2K  , C ; 

4. a tree with a root, zero cycle, for 2pМ  ,  12 : ,0 2 pK l l l     ,  0,1, ,2 1pC  , 

p  

3.2. Generalized graph of states of linear congruential generator 

Analysis of possible graphs of LCG states shows that they can all be reduced to a single 
configuration containing a set of d  cycles of the same or different length, including zero cycles, and 
a set of 'd  precycles (trees) leading to cycles. Under these conditions  

'
'

1 1

d d

i j
i j

M t t
 

   ,  (2) 

where it  is the length of the i th cycle; 
'
jt  is the number of vertices in the j th tree except for the root. 

The generalized LCG graph can be represented as follows: 

 ,LCG LCG LCGG V A , 

where LCGV  is the set of vertices of the graph; 

 LCGA  is the set of arcs of the graph. 
In its turn, 

   'kLCG lvV v  , 

where  kv  is the set of vertices belonging to the cycles, 
1

1,2, ,
d

i
i

k t


  ; 

  'lv  is the set of vertices belonging to the trees, except for their roots, 
'

'

1

1,2, ,
d

j
j

l t


  ; 

   'LCG k lA a a  , 

where  ka  is the set of arcs belonging to the cycles, 
1

1,2, ,
d

i
i

k t


  ; 

  'la  is the set of arcs belonging to the trees, 
'

'

1

1,2, ,
d

j
j

l t


  . 

According to [33], for a simple M , the expressions ' 0d  , it t  for  1, 1i d   and 1dt   are 

fair, and expression (2) takes the form: 
1

1

1
d

i

M t




  . 

We present a generalized graph of LCG states in terms of the theory of algebra of monads and the 
topology of monad graphs. 

The analysis of typical oriented graphs of LCG states shows that no more complex patterns, except 
for the products of trees and cycles, are found in the graphs of monads of :f S S  representation. 

LCG graph is an inconnected combination of cycles equipped with tree products. Since 1 1n n
E T O  , 

12t tA T O  , 14t tD T O  , each connected component of LCG graph can be represented as 



 n m ta b
T T O  . For example,  0 0t ta b

O T T O   , and    0 1 1 02 2t t ta b
A T T O T T O      , 

   0 1 1 01 1n a n n b
E T T O T T O      . 

Then the generalized graph of LCG states has the form: 

  
1

n mi i ii i

d

LCG i ta b
i

G d T T O


   ,  (3) 

where d  is the number of different types of connectivity components of the graph of LCG states; 
 id  is the number of connectivity components of the graph of LCG states of the B th type; 

 ia , in , ib , im , it  are parameters of connectivity components of the graph of LCG states of 
the i th type. 

In this case 
1

i i

d
n m

i i i i
i

d a b t M


 . 

Determining the rules for calculating the number of graph components 
1

d

i
i

d

 , their types d  and 

values of numbers ia , in , ib , im , it  through LCG parameters is beyond the scope of this work and 
requires further research. 

3.3. Method  for  generating  sequences  of  permutations  based  on  linear 
congruential method 

The method for generating LCG-based PRS is as follows. 
1. If necessary (for example, to increase the speed of PRS generating or meet the requirements 
for the spatial complexity of the algorithm that implements the proposed method), the type of 
graph of LCG states, as well as the conditions to be met by K , C  and M  LCG parameters to 
obtain a given type of structure are determined. Determining the type of the graph of LCG states 
can be performed in accordance with typical graphs presented in Table 3. M  parameter 
determines the area of determination of pseudorandom variable. If the choice of the type of the 
graph of states is not made, LCG parameters are determined arbitrarily, taking into account the 
restrictions imposed on them. 
2. If necessary (for example, for non-consecutive cycles of the graph of LCG states without 
precycles (trees) to increase the speed of PRS generating), the representatives of each cycle of the 
generator (boot vectors (BVs)) are determined and stored in memory. 
3. The current LCG BV is determined by (random or deterministic) choosing from the set of 
stored BVs, if this set is specified, or from the set of integers in the range  0, 1M  . 

4. A PRS is formed by the LCG with given parameters until the generator forms unique 
numbers. In the case of reappearance of any element (not necessarily equal to BV (for a graph 
containing continuous cycles without precycles (trees), equal to BV)) the generation of the current 
segment of the sequence is stopped.  
5. A new current BV of LCG is determined by its (random or deterministic) choosing: 
 from the set of still unused BVs, if this set is specified; 
 from the set of integers of the range  0, 1M   except for the numbers present in the formed 

part of the PRS. 
6. PRS is formed for a given BV until the reappearance of the element in the formed sequence 

(for a graph containing continuous cycles without precycles (trees), equal to the current BV). 
7. Transition to item five until the shuffle of all BVs. 
8. Transition to item three until the shuffle of all combinations consistently used in items three 

and five of BV (if they are set and stored in memory). 
9. Transition to item two until the shuffle of all BV combinations (if they are set and stored in 

memory). 



Thus, the proposed method allows performing concatenation not only of separate and disjoint 
cycles in LCG graph, but also of precycles (trees), if they are contained therein. 

In addition, the proposed approaches can be used to form PRS based on LFSR with an arbitrary 
generator polynomial. This is because the use of a reducible polynomial as a generator one for LFSR 
leads to an increase in the number and the change in the structure of connected components in the 
generator graph of states. 

4. Experiments and results 

The proposed approaches to constructing devices for PRS generating based on LCG are used to 
create software implementations of generators. 

The size of the space of allowable values of LCG parameters for the above method is equal to 
2M . The comparison with the corresponding indicators of the analogues in table 1 shows that this 

method allows increasing the size of the space of allowable values of LCG parameters to achieve the 
PRS period T M  in  M M  times. 

Let us study the speed of software implementation of the permutation generator based on the 
developed method and compare it with the speed of the generator that implements the modern Fisher-
Yates algorithm [34]. For the sake of objectivity, the generators were implemented on one platform 
and tested on one computer with fixed performance indicators. The results are presented in Figure 3. 

 
 

 
Figure 3: Graphs of dependence of speed of permutation generators on M  value 

 
The speed of the developed generator exceeds the speed of the permutation generator using the 

Fisher-Yates algorithm for 125M  , which expands the results obtained in [35]. 
It should be noted that PRS formed according to the proposed method is not cryptographically 

stable and can not be used in "pure" form in cryptographic transformations, for example, as a gamma 
for stream ciphers. However, the proposed approaches to PRS generating can be used to implement a 
multi-stage encryption procedure. 

5. Conclusions 

The scientific novelty of the study is as follows. It is developed the model for generalized graph of 
states of linear congruential generator, which allows to carry out the classification of types of 
connectivity components of the graph of its states and to investigate the influence of parameters on its 
topology. The developed model has allowed to improve the method for PRS generating based on 
linear congruential method, which allows to form PRS of uniformly distributed numbers regardless of 
the topology of the graph of states of linear congruential generator and, as a result, to minimize the 



time spent on choosing its parameters and increase the size of the space of their allowable values to 
achieve the PRS period T M  in  M М  times. 

Implementation of the algorithm for generating PRS of permutations based on LCG with any type 
of the graph of its states has allowed to increase the speed of the generator compared to the 
permutation generator based on PRNG LFIB78 using the Fisher-Yates algorithm for the permutation 
order 125M  : in particular, for 20M   – in 2.1 times; 50M   – 1.6 times; 100M   – 1.2 times. 
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