
UFOme: A User Friendly Ontology Mapping 
Environment 

Giuseppe Pirrò1, Domenico Talia1 

 
1D.E.I.S, University of Calabria 

87036 Rende, Italy 
{gpirro,talia}@deis.unical.it 

Abstract. Recently the Ontology Mapping Problem (OMP) has been identified 
as a key factor towards the success of the Semantic Web and related 
applications. This problem arises since it is possible for different people to give, 
through ontologies, different conceptualizations of the same (or overlapping) 
knowledge domain. In order to tackle the OMP several algorithms have been 
designed. They aim at discovering correspondences (aka mappings) between 
ontology entities. However, these algorithms mostly suffer from the following 
shortcomings: (i) do not allow to quickly combine and/or compare different 
mapping strategies; (ii) do not offer support for evaluating mapping strategies in 
terms of quality of results and performance. In this paper we present a plugin-
based system called UFOme along with its current implementation. We 
illustrate how it can be exploited to graphically design mapping tasks by 
connecting different types of modules. UFOme provides three categories of 
modules. The first one (i.e., visualization) allows to explore the ontologies to be 
mapped. The second one (i.e., matching) provides different types of individual 
matchers, exploited to discover mappings between ontologies, and a module for 
combining them. The third one (i.e., evaluation) enables to evaluate each 
module of the mapping task, a sub mapping task, or the mapping task in the 
whole w.r.t performance and quality of results. 

Keywords: ontology mapping environment, ontology mapping evaluation 

1   Introduction 
A central factor towards the success of the Semantic Web (SW) and related 
applications are ontologies. Ontologies can be exploited to give conceptualizations of 
knowledge domains and to make explicit and machine understandable the meaning of 
the adopted terminology. The SW aims at exploiting ontologies for providing 
resources with semantically meaningful information. However, in distributed 
environments (e.g., the Web), it is not feasible having a single (and universally 
accepted) ontology describing a knowledge domain. There will be different ontologies 
each of which created w.r.t “the point of view” of its designer. That’s because people 
see the world differently and these viewpoints inevitably get encoded into data 
structures. Therefore, in order to enable reciprocal understanding, such different 
representations (i.e., ontologies) have to be brought into “mutual agreement”. This 
problem in literature is referred to as the ontology mapping problem (OMP). In order 
to overcome the OMP, several ontology mapping algorithms, aimed at discovering 



correspondences (aka mappings) between ontology entities (e.g., classes, properties), 
have been proposed [1,4,11,14,15,17,18]. However, as also pointed out in [7], these 
algorithms are often not endowed with adequate cognitive supports for helping users 
in the various steps of a mapping task. Often they do not allow to quickly design, 
combine and compare different mapping strategies and do not offer support for 
evaluating mapping strategies in terms of quality of results and performance. Since, as 
pointed out by several evaluation initiatives [16], ontology mapping is not yet a fully-
automated task, it is necessary to enable users to interact with the mapping system in 
the different phases of a mapping task, as for example: to suggest initial mapping 
candidates as in [15], to accept/reject mapping candidates and to evaluate results. In 
particular, we identified three main phases in a mapping task execution: 

1. Designing: a user design the mapping task by choosing the different 
modules, some of which can require configuration parameters (e.g., 
threshold), to be included in the task. In this phase s/he can also suggest 
initial mapping candidates. 

2. Running: the mapping task is executed according to the strategy defined in 
the Designing phase and values of parameters. 

3. Evaluation: results of the mapping task are presented to the user which can 
validate them, perform several types of evaluation and possibly restart the 
running for discovering additional mapping candidates. 

We argue that towards a comprehensive tool for ontology mapping, adequate supports 
(e.g., GUIs) in all the abovementioned phases have to be provided. 

In order to cope with these requirements, we delevoped the UFOme (User Friendly 
Ontology mapping environment) system based on the concept of pluggable module. 
UFOme provides three different categories of modules each of which supports the 
user in one or more phases of the mapping task. The first category (i.e., visualization) 
includes a module that enables exploring the ontologies to be mapped. The second 
one (i.e., matching) provides different types of individual matchers, exploited to 
discover mappings between ontologies, and a module for combining individual 
matchers. The third one (i.e., evaluation) allows to evaluate each module of the 
mapping task, a sub mapping task, or the mapping task in the whole w.r.t performance 
and quality of results. UFOme also allows to implement both new modules and 
categories to be included into the system as plugins. Therefore, it paves the way 
towards a user-friendly, effective and extensible ontology mapping environment. 

The remainder of this paper is organized as follows. Section 2 describes the 
UFOme architecture. Section 3 presents a working example. Section 4 reviews related 
work and compares UFOme with similar systems and in particular with the OLA [5] 
system. Section 5 concludes the paper. 

2   The UFOme architecture 
This section describes the UFOme architecture designed taking into account two 
important requirements: extensibility and usability. The first requirement is fulfilled 
by the concept of module. A module is a generic pluggable component designed to 
support one or more phases of a mapping task. The second requirement is fulfilled by 
exploiting several GUIs covering specific aspects of the mapping process. 



2.1   The UFOme two-layer architecture 
The UFOme architecture, depicted in Fig. 1, is built upon two layers: logical layer 
and graphical layer. The latter represents the layer of interaction with the user 
through the mapping task composer. A user can choose the set of modules to be 
included in the mapping task and connect them according to the mapping strategy s/he 
wants to implement. In this phase (i.e., designing) both incoming and outcoming 
module connections are checked in order to verify that modules receive the correct 
data to process (e.g., a matching module should receive two ontologies whereas an 
evaluation module a set of mappings). If the mapping task has been correctly 
composed then it can be executed. 

 
MAPPING TASK ENGINE 
(TOPOLOGICAL SORT) 

MODULE 1 MODULE 2 MODULE 3 MODULE N ……… 

LOGICAL MAPPING TASK 

GRAPHICAL 
MODULE 1 

………. 
GRAPHICAL 
MODULE 2 

GRAPHICAL 
MODULE 3 

GRAPHICAL 
MODULE N 

GRAPHICAL MAPPING TASK 

MAPPING TASK COMPOSER 

LOGICAL LAYER 

GRAPHICAL LAYER 

 
Fig. 1. The UFOme architecture. 

A mapping task composed at the graphical layer, in order to be executed (execution 
phase), is converted into a mapping task at logical layer. Here the different modules 
composing the task process data they received as input. Results are both passed on to 
the connected modules and stored within the module for possible subsequent analysis 
(UFOme allows to individually evaluate each module). In order to guarantee the 
correct execution order, UFOme relies on the topological sort algorithm [2]. The 
topological sort of a mapping task, which can be viewed as a Directed Acyclic Graph, 
is a linear ordering of its modules. In particular, each node is executed before all 
nodes to which it has connections. 

2.2   UFOme modules 
UFOme modules are the building blocks of the system. A module can be represented 
by the architecture depicted in Fig. 2. It has a set of incoming connections that 
represent the input, and a set of outcoming connections exploited to collect results. A 
module also includes a set of configuration parameters. 

 

GENERIC 
MODULE 

Incoming 
connections 

Outcoming 
connections 

Configuration parameters 

 
Fig. 2. A generic UFOme module. 

Currently UFOme includes three categories of modules (i.e., visualization, 
matching and evaluation) that will be briefly described in the following. We want to 
point out that the aim of this paper is not to describe the modules but to underline the 
usefulness and effectiveness of the UFOme system. 



2.2.1   Visualization 
This category of modules includes the OntoLoader module. It, by exploiting the Jena 
API [9], allows to visualize an ontology and to obtain useful information such as the 
list of classes, properties and instances. The ontology is represented as a graph with 
edges representing the relationships between classes. The user can navigate the 
ontology and choose different types of visualizations and layouts (see Fig. 4). It is 
also possible to visualize in the same GUI both the ontologies to be mapped. 

2.2.2   Matching 
This is the most important category of modules, since through its modules the 
effective ontology mapping is performed. Currently, UFOme includes three individual 
matchers: Lucene, String and Wordnet and a module for combing them (i.e., the 
Combiner module). Here we provide an overall description of these modules. 

Lucene 
The Lucene [13] matcher implements the Lucene Ontology Matcher (LOM) 
algorithm [18]. The aim of the LOM ontology matcher is to exploit all the sources of 
linguistic information (e.g., local name, comments, and labels) present in the 
ontologies to be mapped. The LOM matcher aims at discovering mapping between 
entities (i.e., concepts, relationships and instances) of a source and target ontologies. 
In particular, each source ontology entity is transformed into a virtual document by 
exploiting the concept of Lucene Document. Virtual documents are stored into a 
Lucene index maintained in the main memory. Mappings are derived by using entities 
of the target ontology as search arguments against the index created from the source 
ontology. Similarity between virtual documents is computed by the scoring schema 
implemented in Lucene. 

WordNet Matcher 
The WordNet [21] matcher allows comparing ontology entities by considering their 
semantic meaning. In particular, for assessing similarities between entities, we adopt 
an adaptation of the Jiang and Conrath Metric (J&C) [10]. This metric along with 
several others are included in the Java WordNet Similarity Library (JWSL) [8], an 
ongoing project which aims at providing a Java API for accessing WordNet. 

String Matcher 
The string matcher implements three algorithms for comparing strings, that is, I-Sub 
[19], Jaro Winkler [20] and Edit Distance [12]. The user when choosing to include 
this module in a mapping task can configure the module to use one of the three 
implemented strategies. 
The Combiner module 
This module allows to combine/filter results from different matchers according to 
several strategies (e.g., weighting results of the matchers, introducing a threshold). 

It is worthwhile pointing out that UFOme allows designing and implementing new 
matchers that can be included into the system as plugins. This way UFOme becomes a 
comprehensive mapping environment in which developers can implement and plug in 
new modules according to their needs. 



2.2.3   Evaluation 
This category of modules includes the Evaluator, Comparer and Performance 
Evaluator modules. The Evaluator module allows evaluating the suitability of a 
matching strategy in terms of quality of results. In particular, it computes measures of 
Precision, Recall and F-measure [3] that are classical Information Retrieval metrics. 
These metrics are based on the comparison of an expected result and the result 
returned by the system. In the context of ontology mapping, we compare a set of 
mappings obtained by a mapping task w.r.t a reference alignment. 

The Comparer module allows the comparison of two matching strategies in terms 
of Precision, Recall and F-measure. This way the user avoids coding new programs, 
but just picking up graphical modules (see Fig. 3) can have an immediate background 
on which of these two strategies is the most appropriate. 

The Performance Evaluator module allows to evaluate performance (in terms of 
time elapsed) of the different modules, of a sub mapping task (by considering a subset 
of modules) or of the mapping task in the whole. 

3   UFOme : make easy ontology mapping 

This section aims at showing the suitability of UFOme in a real ontology mapping 
problem. We chose two ontologies (the 101 and the 205) belonging to the OAEI 2006 
[16] benchmark test suite. We examine in detail the different phases of the mapping 
task execution, and show how UFOme can be profitably exploited. 

3.1   Phase 1: Designing 
In this phase the user can choose the various modules to be included in the mapping 
task (see Fig. 3).  

 
Fig. 3 The UFOme GUI. 

An UFOme user can pick up the modules shown in the left hand side of the UFOme 
interface (1) and put them into the mapping task composer (2). Parameters of each 
module are assigned by exploiting the table (3). Therefore, the modules must be 

2

1 

3 

4



connected according to the strategy that the user wants to implement. For instance in 
Fig. 3, the results produced by the two OntoLoader modules are passed on to the three 
matchers. Notice that the direction of the connections will be exploited by the logical 
layer of the UFOme architecture for running the topological sort algorithm (see 
Section 2.1). Moreover, the log area (4) provides information about mapping 
activities and possible errors. 

After composing the mapping task, that can also be saved, the user can choose to 
visualize the ontologies to be mapped. That can be done by right-clicking on the 
OntoLoader modules and choosing the Load Ontology option (see Fig. 3). The loaded 
ontology appears as depicted in Fig. 4. The central part (1) shows a graph 
representation of the ontology while the right column (2) the ontology taxonomy. The 
dialog (3) allows changing the visualization layout. The toolbar (4) shows other 
information such as: instances, other types of relationships (i.e., not isa), domain and 
range of properties, and so forth. It is also possible to show the two ontologies to be 
mapped in the same JTab thus the user can discover and suggest initial mapping 
candidates. 

 
Fig. 4 The UFOme ontology perspective. 

3.2   Phase 2: Running 
In this phase the mapping task is executed according to the order determined by the 
topological sort algorithm. Results produced by each module are both stored in the 
module, for allowing individual analysis of the results, and passed on to the modules 
to which it is connected. Once executed a mapping task can be evaluated. 

3.3   Phase 3: Evaluation 
In this phase of the mapping task the user can check results of the task and improve 
them by choosing a different mapping strategy (i.e., a different combination of 
modules). In particular, while in current ontology mapping systems, designing 
different techniques means coding ad-hoc programs, in UFOme it corresponds to 
graphically (re)connect a set of modules. 

1 

2 

3
4 



A user, by right-clicking on a module, can find interesting information related to the 
execution. For instance, in Fig. 5, by right-clicking on the Evaluator module, the user 
can choose to see the correct, lost or wrong mappings discovered by the (sub) 
mapping task identified by the dotted area. 

 
Fig. 5. UFOme evaluation options. 

In Fig. 6 the correct mappings are compared to wrong mappings on the basis of a 
reference alignment. 

 
Fig. 6. Comparison between correct and wrong mappings. 

Notice that the Evaluator module (Fig. 5) takes as input the result of the combination 
(obtained by the Combiner module) of the mappings discovered by both the Lucene 
and WordNet matcher. It is important pointing out that the strategies implemented by 
the Combiner module can be several (e.g., weighted sum of the mappings provided by 
each individual matcher, simple merging of results). The user can also choose to 
evaluate a mapping task in terms of Precision, Recall and F-Measure. By choosing the 
Evaluator Graph option (see Fig. 5) a new GUI will appear (see Fig. 7). 

Correct mappings 

Wrong mappings 



 
Fig. 7. Evaluation of the results of a mapping task in terms of Precision, Recall and F-Measure. 

The Comparer module allows the comparison of two matching strategies w.r.t quality 
of results produced by each of them. Fig. 8 shows the comparison between the Lucene 
matcher and the String matcher on the considered ontologies. 

 
Fig. 8. Comparison between two mapping strategies. 

UFOme, differently from other ontology mapping tools that underestimate the 
importance of performance evaluation, through the Performance Evaluator allows to 
analyze performance (in terms of time elapsed) of a mapping strategy (see Fig. 9). 

 
Fig. 9. Performance evaluation of the modules included in the mapping task and of the overall 
mapping process. Times (y axis) are expressed in msec. 



Fig. 9 shows the times elapsed (on a Pentium IV 3.0 GHz with 2GB memory) by the 
different matchers as well as the overall mapping task execution time.  

4   Related Work 
To the best of our knowledge there are no system that entirely covers all the phases of 
a mapping task identified in the Section 1. In Table 1 we compare the main 
characteristics of UFOme with those of similar tools. 

Table 1. Comparision of UFOme with similar tools. 

Designing Evaluation  
Ontology 

navigation 
Graphical 
Mapping 

Composition 

Candidates 
Suggestion 

Modular 
Architecture 

Graphic 
Evaluation 

Support  

Graphic 
Performance 
Evaluation 

 

UFOme Yes Yes Yes Yes Yes Yes 
OLA [5] Yes No No No Yes No 

Prompt [15] Yes No Yes Yes No No 
Alignment 

API [6] 
No No No Yes No No 

 

As can be noticed, some of the features of UFOme are supported by other tools. For 
instance, ontology navigation is supported by both OLA and Prompt which is 
implemented as a plugin of Protégé (http://protege.stanford.edu). However, UFOme is 
the only tool that provides a support for graphically composing mapping tasks. The 
tool closer to UFOme is OLA (Owl Lite Alignment). OLA [5] is a system for 
ontology mapping endowed with a GUI. It is built upon the API described in [6]. Both 
UFOme and OLA are endowed with a GUI. However, UFOme provides the mapping 
task composer that allows to: (i) quickly composing mapping tasks; (ii) combine and 
evaluate different alignments strategies. This latter aspect is often underestimated by 
mapping algorithms/tools in which designing new strategies correspond to implement 
new code. OLA does not support the evaluation of the combination of different 
mapping strategies, and in order to evaluate different strategies, batch programs in 
Java based on the API [6] need to be implemented. OLA features a tool for alignment 
comparison which computes different metrics (e.g. Precision, Recall). UFOme offers 
the same functionality but also features a performance evaluation module. In 
particular, the time elapsed for each module and the overall time of the entire 
mapping process are shown. Finally, UFOme also implements the saving of mapping 
tasks along with related results for future reuse. 

5   Conclusions and Future Work 
This paper described the UFOme system that features a graphical environment for 
supporting users in all the phases of a mapping task. To the best of our knowledge 
UFOme is the only system provided with a mapping composing interface based on 
graphical modules that allows a user to quickly design, combine and compare 
different mapping strategies. UFOme gives an effective support in choosing the 
correct mapping strategy and avoids users the burden to explicitly code new programs 
when changing mapping strategy. We described the architecture of the system and, 
through a working example, showed how it can be easily exploited by users. 



Moreover, we compared it with similar systems. As future work we aim at including 
in the system new matching components and performing a more detailed evaluation. 

References 
1. Choi, N., Song, I., Han, H.: A survey on Ontology Mapping. SIGMOD Record 35(3) 

(2006) pp. 34--41 
2. Cormen, T., Leiserson, C. E., Rivest, R. L., Stein C.: Introduction to Algorithms. 

MIT Press and McGraw-Hill. 
3. Do, H., Melnik, S., Rahm E.: Comparison of schema matching evaluations. In Proc. 

of GI-Workshop Web and Databases, Erfurt, Germany, (2002) 
4. Ehrig, M., Staab, S.: QOM-quick ontology mapping. In Proc. of ISWC 2004, 

Hiroshima, Japan, (2004) pp. 683--697 
5. Euzenat, J., Loup D., Touzani D., Valtchev D.: Ontology Alignment with OLA. In 

Proc. of EON 2004, Hiroshima, Japan, (2004) 
6. Euzenat, J.: An API for ontology alignment. In Proc. of ISWC 2004, Hiroshima, 

Japan , (2004) pp. 698--712 
7. Falconer, S., Noy, NF, Storey, M.: Towards the need of cognitive support for 

ontology mapping. In Proc. of OM-2006, Athens, Georgia, USA (2006) pp. 25--37 
8. Java WordNet Similarity Library (JWSL) and the Similarity Experiment. 

http://grid.deis.unical.it/similarity 
9. Jena - The Jena Project. http://jena.sourceforce.net 
10. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical 

taxonomy. In Proc. of ROCLING X, Taiwan (1997) 
11. Kotis K, Vouros GA The HCONE Approach to Ontology Merging. In proc. of ESWS 

2004, Heraklion, Greece, (2004) pp. 137-- 151 
12. Levenshtein, I.V. Binary Codes Capable of Correcting Deletions, Insertion and 

Reversals. Soviet Physics-Doklady 10(8) (1966) pp. 707--710 
13. Lucene- The Apache Lucene project. http://lucene.apache.org 
14. Mitra, P., Noy, N. F., Jaiswal, A. R.: OMEN: A Probabilistic Ontology Mapping 

Tool. In proc. of ISWC 2004, Hiroshima, Japan (2004) pp. 71--83 
15. Noy, N.F., Musen, M.A.: The PROMPT Suite: Interactive Tools for Ontology 

Merging and Mapping. Int. J. of Human-Computer Studies 59 (2003) 983-1024 
16. Ontology Alignment Evaluation Initiative. http://oaei. ontologymatching.org 
17. Pan, R., Ding Z., Yu, Y., Peng., Y.: A Bayesian Network Approach to Ontology 

Mapping. In Proc. of ISWC 2005, Galway, Ireland (2005) pp. 563--577 
18. Pirrò, G., Talia, D.: An approach to Ontology Mapping based on the Lucene search 

engine library. In proc. of SWAE ’07, Regensburg, Germany (2007) pp. 407--412 
19. Stoilos, G., Stamou, G., and Kollias, S. A String Metric for Ontology Alignment. In 

proc. of ISWC 2005,Galway, Ireland, (2005) pp. 623--637 
20. Winkler, W. E. The state of record linkage and current research problems. Statistics 

of Income Division, Internal Revenue Service Publication (4) (1999) 
21. WordNet - WordNet online. http://wordnet.princeton.edu/online 


