
Links and Cycles of Web Databases

Masao Mori1, Tetsuya Nakatoh2, and Sachio Hirokawa2

1 Office for Information of University Evaluation, Kyushu Univ., Fukuoka, Japan.
mori.uoc@mbox.nc.kyushu-u.ac.jp

2 Research Institute for Information Technology, Kyushu Univ., Fukuoka Japan.
{nakatoh, hirokawa}@cc.kyushu-u.ac.jp

Abstract. This paper proposes a novel framework for composing web
databases. Web databases are assumed to have explicit descriptions of
I/O attributes and are considered as components of functional compo-
sitions. A user writes a script to connect output channels and input
channels of components. A script determines a directed graph that may
contain cycles which formalizes interactive and iterative behavior of a
user through a browser. The interaction and iteration are realised by
the notion of CGI-link. Auxiliary filters are introduced as components
for universal manipulating tools. (Keywords: web service composition,
mashups)

1 Introduction

This paper proposes a novel framework for composing web databases. Under the
framework we implemented a system which is open to public3.

Web databases, sometimes called deep webs[1], hidden webs or invisible webs,
have been paid attention since around 1996 because of their huge amount of in-
formation. Recently many web databases have been newly reconstructed into
web services, like Amazon.com, Google, and so on. Web services provide access
methods (API) for their hidden databases. On the other hand, for the purpose
of accessing web databases there are many researches of web wrappers. A web
wrapper collects information by analyzing HTML codes output from the hu-
man interface of a web database, e.g. [7],[8],and [9]. By virtue of web wrappers
and APIs web developers are motivated to create a web service composition and
the new style of web contents – mashup. While BPEL[10] is one of outcome
from research of web service composition, mashup is a new style of combina-
tion of web services. Many mashup sites are implemented using visualization of
AJAX techniques and communications of the REST style. Sabbouh et al.[11] pro-
posed the Web Mashup Scripting Language which provides a set of procedures
of JavaScript in order to integrate web services. Yokoyama et al.[15] studied a
framework of AJAX for lightweight implementations. Importance of componeti-
zation of web services and web databases has been pointed out in [14] and [13],
before mashups obtained much attention as we see now.

3 Available at http://hyoka-inf.ofc.kyushu-u.ac.jp/%7Emori/research/PSM/



Mashups have two types of processing; server side processing and client
side processing. As for client side processing AJAX become popular to real-
ize mashups because mashups with AJAX are supposed to process light-weight
data. In this paper we focus on server side processing because of heavy-weight
data processing. Currently our system adopt REST style communications as for
web services, and web crawling as for web databases.

It seems that most of mashups provide integration of data rather than inte-
gration of process flows. In fact most of mashup web sites use only two or three
web services. They do not need complex descriptions of process flows. Focusing
on integrating web service feeds, Tatemura et al.[12] proposed “Mashup Feeds”
which retrieves multiple feeds from many sites and provides users with a set of
tools to manipulate the collection.

Mori et al.[5] proposed a novel approach and its system that generates
mashup CGIs by giving a simple description of web databases compositions
and stores the mashup CGIs in order to reuse them. The problem left in the
researches [5] and is the actual interface using web browsers. In this paper we
propose graphical primitives for mashup and give solutions for the following
questions:

1. What is an easier script style to combine web services and web databases?
2. How does the system manage to layout and display data from multiple web

services?
3. What is a better way to carry out next mashup execution and search?

We will introduce the notion of “user interface component”which is a key prim-
itive to layout and display data, and carrying out the next execution step of
mashups.

The structure of the paper is organized as Fig.1. New proposals are marked
with asterisks(*). Section 2 explains a standard architecture for implementing
mashup which requires basic components and their composition. In section 3,

Fig. 1. The programming paradigm of PSM



we analyze how users use web databases with browsers. As a result, we intro-
duce “user interface components” as new auxiliary components. In section 4,
“filter components” and graphical components are introduced. In section 5, we
introduce the notion of links and cycles as new methods of composition. These
methods capture the repeated interaction of between a user and web databases.

2 PSM Architecture

Our system consists of three parts: interface server, CGI generator and mashup
server. When a user accesses the interface server, the server provides a web inter-
face for the user to describe mashups. A description of mashup is called a mashup
script. Once the interface server passes a mashup script to the CGI generator,
the generator forms a mashup CGI which is stored in the mashup server. The
mashup CGI is executed in the mashup server and performs administration of
communication and data processing so that the user can reuse the mashup CGI.
The architecture of our system is named as the Personally Scripting Meta-CGI
architecture, PSM for short. The overview of the architecture is shown in Fig 2.

2.1 I/O Attributes and I/O Composition

We call the subjects that input and output in PSM, as component. A mashup
script is essentially a graph over components: paths of the graph shows data
flow amongst components and each edge shows correspondence of attributes in
components. The syntax of mashup scripts will be introduced in the rest of this
section.

Most of web services provide complex queries in their search functions. A
complex query is composed of a tuple of keywords for which web services return

Fig. 2. An overview of PSM



Rhapsody(www.rhapsody.com) Amazon(www.amazon.com)

attribute description attribute description

input artist name of artists ItemSearch keyword search
album names of CD titles ProductSearch product id search

output artist names of artists artist names of artists
album names of CD titles album names of CD titles
track url of the web page URL url of the web page

Fig. 3. API description of Rhapsody and Amazon

collections of tuples as search result. Search functions of web services are provided
with a URL of API and variables of API. In this paper we call names of variables
attributes. We introduce two web services for example in Fig.2.1. The first one is
Rhapsody which is an online music web service. The second example is Amazon
Web Service whose API is for database of music products in Amazon.com. Note
that these examples are excerpts from original web service API.

We define attributes of complex queries as input channels and attributes of
tuples in search results from web services as output channels. We call both of
them I/O channels of web services. In PSM data on I/O channels are collections
of tuples.

2.2 Functional Composition

Functional composition of web services is data passing from output channels
on one web service to input channels on another. A mashup script consists of
descriptions of functional compositions. For example, in order to pass data from
the output channel artist of Rhapsody to the channel ItemSearch of Amazon,
the mashup script should have:

Rhapsody.artist -> Amazon.ItemSearch,

We call a pair of components as a functional composition expression, fc-expression
for short.

The mashup CGI starts to work when the initial query is given, so that
the mashup script must include at least one description about the initial query.
Let us consider a special component Start to output the initial query to web
components.

Start.x -> Amazon.ItemSearch,

The initial query might be complex, like

Start.k1:k2 -> Rhapsody.artist:album,

Keywords from the output channels k1 and k2 of Start are passed to the in-
put channels artist and album of Rhapsody, respectively. A fc-expression with
complex data passing is written with tuples of channels separated by colon.



2.3 The Syntax of Scripts

Now we define the mashup script with BNF. Note that 〈fce〉 denotes fc-expressions.

〈MashupScript〉 ::= 〈wslist〉 ”|” 〈exps〉
〈wslist〉 ::= 〈wsname〉 {”, ”〈wsname〉} ∗
〈exps〉 ::= 〈fce〉 {”, ”〈fce〉} ∗
〈fce〉 ::= 〈ws〉”->”〈ws〉
〈ws〉 ::= 〈wsname〉”.”〈chan〉

〈chan〉 ::= 〈attr〉 {” : ”〈attr〉} ∗
〈attr〉 ::= 〈attrname〉 | 〈attrname〉” ∗ ”

〈wsname〉 ::= ”names of web services”

〈attrname〉 ::= ”names of attributes”

Asterisks ”∗” added to 〈attr〉 is a word separator which will be introduced in
the next section. Like Rhapsody and Amazon, web services and web databases
with structured I/O channels are called by web components.

3 User Interface Component and CGI link

Now we consider roles of web browsers in PSM. Web browsers display data
from web components on client PCs. Since we suppose that data in PSM are

Fig. 4. Interface server(left) and a generated CGI “SWAP2007 example.cgi”(right)



Fig. 5. The mashup script and its graph for SWAP2007 example.cgi

sent through structured I/O channels from some web component, web browsers
obtain not as text but collections of tuples. We define user interface components,
UIC for short, that receive collections of tuples into input channels and display
them in appropriate forms (e.g., HTML tables <table>...</table>) on client
PCs. We denote it by Output. If distinct UICs are required, we can distinguish
them by indexing, like Output1, Output2 and so on.

As input channels of a UIC can be known by output channels of the web
component, channels of UIC can be omitted. For example, the functional com-
positions to a UIC Output like;

Rhapsody.album:track -> Output.album:track,

but we can write

Rhapsody.album:track -> Output,

We note three things about channels of UICs. Firstly we set that all of UICs
must have the same names of output channels as names of input channels while
names of input channels are determined by web components. Secondly we note
variability of input channels of UIC. In the case that a UIC is on the right hand
side of fc-expression, input channels of the UIC depend on the web component
on the left hand side of fc-expression. Thus input channels of UIC are variable.
Thirdly, output channels of a UIC can be regarded as output from users. This
idea is very important. We will study this idea in the rest of this section.



How and what do we find keywords to continue web search? In many cases
keywords might be chosen from the previous results. Let us consider the mashup
script that generates SWAP2007 example.cgi4. The UIC Output1 appears both
in the right hand side of the second line and in the left hand side of the third line.
While Output1 of the second line displays a collection of tuples (album,track)
from the web component Rhaspody, functional composition of the third line
means to set hyperlinks on all words which appears at the “album” column
in the table Output1. Those hyperlinks call SWAP2007 example.cgi that send
those words as queries to ItemSearch of Amazon web service API. Seeing Fig.4
search results of SWAP2007 example.cgi with hyperlinks on “Return Of The
Champion” are shown in the front window. We call hyperlinks generated by
output channels of UICs, CGI links. Note that a loop appears in the 4th and
the 7th lines of the script, and a component named as Histogram appears in the
8th and 9th lines. These notions are introduced in section 4 and 5.

Sometimes data in one column of a UIC forms series of keywords. For exam-
ple, let us observe the search result from Amazon web service arisen by a CGI
link of Output2 in Fig.6. Series of names of artists can be seen at the artist
column. They are marked off one phrase (or word) with comma. In order to
make a CGI link for each keyword, the word separator, asterisk ∗, is put after
the concerned output channel of UICs, like the forth line of the script in Fig.5.

The right window of Fig.6 (c) is the result by clicking the CGI link of “Queen”
(in the 6th row, “artist” column) which arise the search API of YouTube with
keyword “Queen”.

Now we discuss the three questions posed in the first section. By giving
graphs of components we resolve the first question. We introduce user interface
components for data layout management(question 2). Finally we prepare the
CGI link machinery in order to set triggers for next search(question 3).

4 Filters and Graphical Components

As we have seen, mashup scripts are essentially graphs over components. A path
on the graphs can be regarded as a pipeline for collections of tuples. So that we
have implemented filter components, like UNIX pipeline processing.

SortL, SortN To sort data with respect to the first input channel of a web
component. SortL for lexicographic order and SortN for numbers. Input
channels of the sort component can be omitted.

Rhapsody.track:artist:album -> SortL,
SortL.album:track:artist -> Output,

The result of this example would be ordered data with respect to music title
(track) from Rhapsody.

4 The sample script is available at
http://hyoka-inf.ofc.kyushu-u.ac.jp/%7Emori/research/PSM/Generated

SWAP2007 example.cgi

and the description of YouTube API can be found in www.youtube.com.



(a) Search result for the query “Queen” (b) Invocation of the query “Return Of The

Champions” from Output1

(c) Invocation of the query “Queen” in the
6th row, a rtist column from Output2

(d) Invocation of Histogram component from
Output1

Fig. 6. Executions of SWAP2007 example.cgi



Uniq To remove duplication of records.
Rhapsody.track:artist:album -> Uniq,
Uniq.artist:album -> Output,

Colvec Extract a column from the collection of tuples.
Rhapsody.artist -> Colvec,
Colvec.id:value -> Output,

Colvec extract the column artist of data from Rhapsody component.
Transpose Regarding the collection of tuples as a matrix, this filter transpose

data.

I/O channels of sort and uniq filter components are variable as well as UICs,
and input channels of filters in the right hand side of fc-expression can be omit-
ted. Now graphical components are introduced.

Histogram To count the appearance of a specified attribute at the input chan-
nel item of this component and make histograms. Output channels are who
for appeared keywords and num for numbers of appearance. See the 8th and
9th line of SWAP2007 example.cgi and the result in Fig.6 (d).

BarGraph, LineGraph, PointGraph Those components receive vectors and
plot graphs.

We can generalize about the component in terms of the standard output from
user interface components and graphical components. Those components involve
CGI links not only on text, but also multimedia objects.

5 Links and Cycles

Mashup feeds[12] is designed to make programs to collect feeds periodically.
It iterates procedures by time-based scheduling. This method is suitable for
feeds processing. On the other hand WMSL[11] utilized the control structure of
JavaScript for iteration.

Since mashup scripts are written in simple descriptions of graphs over com-
ponents, they might include cycles in the graphs of components. Note that cycles
play a role of iteration in PSM. If the cycle consists of only web components, its
execution would result in an infinite loop. If the cycle includes at least one UIC,
it is possible to stop the iteration at the UIC. Thus links and cycles in PSM can
control loops.

See the mashup script SWAP2007 example.cgi again and note the 4th and
7th lines where a loop can be found. It is easy to presume that the mashup script
would stop at each loop step by the CGI links in Output2.

6 Conclusion and Future Works

We proposed the mashup scripting system PSM which resolve the three proper
questions for mashups introduced in the first section. The idea of functional
composition of components leads us to a simple format (graphs) of mashup



scripts. Moreover we proposed the new mashup programming style like UNIX
pipeline processing. In this style loops can be realized by cycles of components,
and can be controlled by CGI links.

PSM is implemented in Perl, independent of WSDL[2]. Data from web ser-
vices and web databases are transformed into lists of hash in perl codes. All of
data processing are done in single server, so that we need to improve the system
to reduce overhead.

References

[1] BrightPlanet. Deep web. White Paper, 2000.
[2] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services

description language (wsdl) 1.1. Technical report, World Wide Web Consortium,
March 2001. http://www.w3.org/TR/wsdl.

[3] K. Hemenway and T. Calishain. Spidering Hacks. O’Reilly & Associates Inc.,
Mar. 2003. ISBN-13 978-0596005771.

[4] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999.

[5] M. Mori, T. Nakatoh, and S. Hirokawa. Functional composition of web databases.
In Proceedings of International Conference Asian Digital Libraries 2006, Lecture
note in Computer Science 4312. Springer Verlag, 2006.

[6] M. Mori, T. Nakatoh, and S. Hirokawa. A light-weight implementation of mash-
ups (in japanese). In Proceedings of Data Engineering Workshop 2007, C7-152.
IEICE, 2007.

[7] T. Nakatoh, K. Ohmori, and S. Hirokawa. A report on metadata for web
databases. In IPSJ SIG Technical Reports, 2004-ICS-138(17), pages 95–98, 2004.

[8] T. Nakatoh, K. Ohmori, Y. Yamada, and S. Hirokawa. Complex query and meta-
data. In Proceedings of ISEE2003, pages 291–294, 2003.

[9] T. Nakatoh, Y. Yamada, and S. Hirokawa. Automatic generation of deep web
wrappers based on discovery of repetition. In Proceedings of the First Asia Infor-
mation Retrieval Symposium (AIRS 2004), pages 269–272, 2004.

[10] OASIS. Web Services Business Process Execution Language Version 2.0, April
2007. OASIS Standard.

[11] M. Sabbouh, J. Higginson, S. Semy, and D. Gagne. Web mashup scripting lan-
guage. In Proceedings of the 16th international conference on World Wide Web
2007, pages 1305 – 1306. ACM Press, May 2007.

[12] J. Tatemura, A. Sawires, O. Po, S. Chen, K. S. Candan, D. Agrawal, and M. Gov-
eas. Mashup feeds: Continuous queries over web services. In Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pages 1128
– 1130. ACM Press, June 2007.

[13] J. Yang. Web service componentization. Communications of the ACM, 46(10):35–
40, 2003.

[14] J. Yang and M. P. Papazoglou. Web component: A substrate for web service reuse
and composition. In Advanced Information Systems Engineering: 14th Interna-
tional Conference, CAiSE 2002 Toronto, Canada, May 27-31, 2002. Proceedings,
pages 21–36. Springer Verlag, May 2002.

[15] S. Yokoyama, A. Matono, S. M. Pahlevi, and I. Kojima. A framework for modu-
larization and mashup of javascript codes on web2.0 (in japanese). DBSJ Letters,
5(3), December 2006.


