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Abstract
In this work we perform preliminary identification by formulations of resource-aware problems across
various disciplines considered in scientific literature. Formulations considered are: integer linear pro-
gramming (ILP), greedy algorithms, dynamic programming and genetic algorithms (GA). We outline
scientific disciplines (associated with profiles of journals the works appear in) and practical applica-
tions. We were able to identify selected more universal resources considered in many problems, such as
financial cost, time, energy, ecological value, security, apart from problem specific resources. We also
identified to what degree certain resources appear in various problem formulations, as well as which
problem formulations are prevalent in various disciplines.
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1. Introduction

In computer science, resources typically considered include: execution time (performance),
energy, memory/storage, ease of programming/development time. Problem formulations in
these cases are typically associated with trade-offs, for example: performance vs energy [1,
2], performance vs security of a system [3], performance vs storage [4], performance/time
vs memory [5, 6], performance vs ease of programming/development effort [7], as well as
optimization/portability.

Problem domains considered in this analysis include, among others: allocating resources for
fighting forest fires [8], emission minimization, fossil resource usage minimization, employ-
ment maximization [9], allocation of health care resources [10], reconfiguration and resource
optimization in power distribution networks [11], site selection of a wind power plant [12],
operation of a hospital emergency department, studying the impact staffing policies have on
such key quality measures as patient length of stay (LoS), number of handoffs, staff utilization
levels, and cost [13], decision-CPM network in order to obtain an overall optimum including
time, cost, quality and safety in a road building project [14], resource allocation in communi-
cation [15, 16], clouds [17, 18], high performance computing systems [19, 1], management of
natural resources [20], education [21] etc.
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In terms of resources considered in this cross-discipline preliminary review, these can be
divided into two groups:

problem specific resources – we consider resources specific to the given domain, e.g. water in
water research, natural resources in environmental protection, computing resources in
cloud computing etc.

general resources applicable to many domains and applications, specifically optimization
i.e. mainly: time (determined by system/process performance) – execution time, cost –
monetary, energy (used within an optimization process), ecological/environmental value
(respected by a society which it concerns), security – prevention of a crime, break-in.

Outcome of this analysis allows to further outline problem formulations from the identified
works and link analogous synthetic formulations and approaches used to solve the latter
from the algorithmic point of view. This potentially allows to reuse approaches to take up
problems already used in other disciplines and correspondingly identify base algorithms that
form algorithmic foundations for resource-aware computing.

2. Resource-aware problems across disciplines by formulations

Works considered in this analysis include selection (scientific papers) out of approximately
100 results returned by the Google search engine for queries involving particular problem
formulations and resource, resource-aware problems. The search had been extended by selected
results obtained from the Bing search engine, queried about resource aware computing an
resource aware computing problems. Classification of these is included in Tables 1,2,3,4, versus:

resources: both problem specific as well as more general ones like time, financial cost, security,

formulation: ILP, dynamic programming, greedy approach, GA as an example of evolutionary
approaches,

discipline – a broader category of applications considered in the given work.

Table 1: Selected resource-aware problems from various disciplines by resources and discipline,
using ILP formulation

problem description resources formulation discipline bib
allocating resources for
fighting forest fires

human resources;
time; financial cost

ILP wildfire sup-
pression,
simulation

[8]

Mixed-Integer Linear Pro-
gramming for Resource
Constrained Project
Scheduling Problem

jobs belong-
ing to projects;
time; renewable,
non-renewable
resources for
executing jobs

ILP general cross
domain appli-
cable

[22]

Continued on next page



Table 1 – continued from previous page
problem description resources formulation discipline bib

total electricity cost min-
imization, CO2 emission
minimization, energy im-
port minimization, fossil
resource usage minimiza-
tion, employment max-
imization, social accep-
tance maximization

energy resources
(solar, wind, coal,
natural gas, hydro-
electric, nuclear
etc.)

multi-
objective
mixed
integer
linear pro-
gramming
(MOMILP)

energy sector [9]

allocation of health care
resources (treatments,
population, healthcare
programs)

health care re-
sources , financial
cost

ILP healthcare
domain, max-
imization of
benefit

[10]

finding the minimum
power loss configuration
of the network, definition
of the most efficient oper-
ating condition of voltage
control apparatus and
reactive power resources

power distribution
network resources

ILP reconfiguration
and resource
optimization
in power
distribution
networks,
losses opti-
mization

[11]

site selection of a wind
power plant single and
multiple-type wind tur-
bine models for a selected
site

energy ILP energy sector [12]

decision-CPM network in
order to obtain an overall
optimum including time,
cost, quality and safety in
a road building project

time; cost; quality;
safety

ILP road construc-
tion domain

[14]

operation of a hospital
emergency department,
studying the impact
staffing policies have on
such key quality measures
as patient length of stay
(LoS), number of handoffs,
staff utilization levels, and
cost

staff; time; re-
sources assigned
by staff

ILP, simula-
tion

hospital
resource
management

[13]

Continued on next page



Table 1 – continued from previous page
problem description resources formulation discipline bib

data assignment for par-
allel processing in a hy-
brid heterogeneous envi-
ronment considering com-
munication costs

time ILP high per-
formance
computing
using a cluster
with multi-
core/manycore
CPUs and
GPUs

[19]

cloudlet selection in
the multi-cloudlet en-
vironment, selection of
cloudlet(s), selection of
VMs for cloudlets

computing, stor-
age and network
resources

ILP cloud comput-
ing

[18]

Data-center power-aware
management, efficient uti-
lization of available re-
sources

data-center re-
sources, power,
time

ILP HPC [23]
[24]

scheduling of satellite ob-
servations

observation capa-
bilities of satellites,
mission time
constraints

ILP satellite Earth
observations

[25]

Table 2: Selected resource-aware problems from various disciplines by resources and discipline,
using greedy formulation

problem description resources formulation discipline bib
dynamic multi-user re-
source allocation in the
downlink of OFDMA sys-
tem, power consumption
minimization

communication
medium (channels);
power consump-
tion

greedy algo-
rithm

resource
allocation in
communica-
tion

[15]

scheduling of flows from
various applications in
overload states, downlink
scheduling

throughput; loss;
time (delay)

greedy
knapsack
algorithm

resource
allocation in
communica-
tion

[16]

preparation of educa-
tional schedule in the
higher education

school resources:
human; classes;
courses

greedy ap-
proach with
local optimal
steps

education [21]

Continued on next page



Table 2 – continued from previous page
problem description resources formulation discipline bib

allocating resources in
Virtual Sensor Networks,
maximizing revenue of
multiple concurrent appli-
cations’ schedule

shared physical re-
sources (processing
power, bandwidth,
storage); time; en-
ergy

greedy algo-
rithm

Virtual
Sensor
Networks

[26]

Set Covering Problem as
a template for resource
management, examples of
applications given for: op-
erational research, ma-
chine learning, planning,
data mining, information
retrieval

problem specific
resources; time
(algorithm running
time)

weighted
greedy
algorithm

resource
manage-
ment

[27]

Maximizing utility and
revenue of hardware re-
sources in virtual machine
allocation

problem specific re-
sources

greedy algo-
rithm

datacenter
provisioning

[28]
[29]

Reducing task duplication
in task scheduling on
heterogeneous distributed
systems

distributed compu-
tational resources

greedy algo-
rithm

distributed
computing

[30]

Task offloading and
resource allocation in
power network monitor-
ing (PIoT)

computational and
communication re-
sources

greedy algo-
rithm

power
network
monitoring

[31]

Flexible co-scheduling of
computational and com-
munication resources in
fluid dynamics calcula-
tions

problem specific re-
sources

greedy algo-
rithm

physics mod-
eling

[32]

task scheduling in a cloud
computing environment,
with time and energy con-
straints

energy consump-
tion, time

greedy algo-
rithm

cloud com-
puting

[33]



Table 3: Selected resource-aware problems from various disciplines by resources and discipline,
using dynamic formulation

problem description resources formulation discipline bib
agriculture and natural
resources management:
buffer stocks policy; farm
machinery replacement;
crop irrigation; fertilizer
and pest management;
livestock feeding and
marketing; mining; pollu-
tion control; irreversible
development; forestry
management and fisheries
management

natural resources dynamic pro-
gramming

agriculture,
manage-
ment of
natural
resources

[20]

dynamic programming
for scheduling water re-
sources; minimization of
expected cost of running
a hydroelectric system

water resources;
cost

dynamic pro-
gramming

power
systems

[34]

stochastic resource alloca-
tion

problem specific re-
sources; financial
cost; time

dynamic pro-
gramming

general
resource
allocation,
decision
making

[35]

stochastic resource alloca-
tion

problem specific
resources; time;
security (stem-
ming from the
application)

dynamic pro-
gramming

military
naval op-
erations
– setting
resources to
maximum
efficiency in
real-time on
a ship

[36]

Continued on next page



Table 3 – continued from previous page
problem description resources formulation discipline bib

HPC compute nodes allo-
cation

application specific
resources; accelera-
tors, storage

dynamic pro-
gramming

high per-
formance
computing,
dynamic
allocation of
resources,
X10 pro-
gramming
language

[37]

Dynamic code loading grid resources,
power consump-
tion

dynamic pro-
gramming

dynamic
reconfigu-
ration of
internet
servers,
agent sys-
tems

[38]

Balancing resources in
robotic vision

computational
power, bandwidth,
responsiveness

dynamic pro-
gramming

obtaining
balanced
utilization
of available
computing
resources
between
operating
tasks of
humanoid
robots

[39]

Edge computing, integra-
tion of low cost wearable
sensors, processing of sen-
sors’ data at the cloud
edge

energy, bandwidth,
processing power,
measurement qual-
ity

dynamic pro-
gramming

healthcare,
clinical-level
continuous
patient
monitoring

[40]

Seamless image manipula-
tion

still images dynamic pro-
gramming

image
processing

[41]

Task scheduling and allo-
cation of resources in dis-
tributed systems

distributed com-
puting resources,
incl. grids, cloud,
supercomputers,
cost credits

dynamic pro-
gramming

distributed
processing

[42]
[43]
[44]

Continued on next page



Table 3 – continued from previous page
problem description resources formulation discipline bib

planning water resources
management systems un-
der uncertainty

water resources dual inter-
val robust
stochastic
dynamic pro-
gramming
(DIRSDP)
method

water re-
sources
manage-
ment

[45]

hydraulics and water re-
sources simulating and op-
timizing water transfer
system

water resources dynamic
program-
ming and
integrated
solution
of water
resource and
hydraulic
models

agricultural
consump-
tion, envi-
ronmental
needs

[46]

stochastic dynamic pro-
gramming for military ap-
plications

military resources;
financial cost

dynamic pro-
gramming

military
applications,
determining
soldiers/
medical
support
location,
planning
policies vs
opponent’s
behavior

[47]

data center resource dy-
namic scheduling for en-
ergy optimization, emis-
sion reduction

energy; time;
computational
resources: servers,
storage, routers;
physical resources:
cooling equip-
ment, lighting
equipment, power
supply, distribution
facilities

dynamic pro-
gramming

data center
optimization

[48]



Table 4: Selected resource-aware problems from various disciplines by resources and discipline,
using genetic formulation

problem description resources formulation discipline bib
resource provisioning and
scheduling in uncertain
cloud environments

financial cost;
time (deadlines
imposed)

genetic algo-
rithm

cloud comput-
ing

[17]

solving resource-
constrained project
scheduling problem with
transfer times

problem specific re-
sources; time

genetic algo-
rithm, trans-
fer times for
activities at
various loca-
tions consid-
ered

cross disci-
pline applica-
ble problem
formulation

[49]

solving resource con-
strained multi-project
scheduling problem
(many projects, time de-
pendencies, constrained
resources)

problem specific re-
sources; time

genetic algo-
rithm

cross disci-
pline applica-
ble problem
formulation

[50]

solving resource con-
strained project schedul-
ing problem (RCPSP)

problem specific re-
sources; time

genetic
algorithm,
compari-
son of GA
algorithms

cross disci-
pline applica-
ble problem
formulation

[51]
[52]
[53]

GA parame-
ter tuning

[54]

decomposition
based GA

[55]

quantum in-
spired GA

[56]

Elitist GA [57]
construction schedul-
ing/resource scheduling
problem

problem specific re-
sources; time

genetic algo-
rithm

general prob-
lem formula-
tion, bridge
construction
example
considered

[58]

troops-to-tasks problem
(generalized RCPSP, addi-
tional constraints)

military resources,
time

genetic algo-
rithm

military field/
applications

[59,
60]

Continued on next page



Table 4 – continued from previous page
problem description resources formulation discipline bib

grid resource allocation grid resources:
computational
systems, stor-
age servers, and
network servers;
time

genetic algo-
rithm

grid comput-
ing

[61]

regional drinking water
supply

water resources; fi-
nancial cost (pump-
ing, purification,
transport); ecolog-
ical/environment
value (vs potential
damage, ground-
water drawdown);
energy

genetic algo-
rithm

water resource
research

[62]

groundwater manage-
ment

water resources;
financial cost; en-
vironmental value
(risk of drawdown);
time (pumping
rate)

genetic algo-
rithm

water resource
research

[63]

surgery scheduling, max-
imizing the use of operat-
ing rooms

hospital resources;
time (runtime of al-
gorithm and indi-
rectly because of re-
source usage)

genetic algo-
rithm

healthcare sec-
tor

[64]

scheduling problems on
flexible manufacturing
systems (FMS)

resource types:
machines (M), stor-
age buffers (SB),
material handling
devices (HD), tool-
changing devices
(TD), fixtures (FX)
and pallets (PL);
time

genetic
algorithm,
also other
approaches
like PSO,

manufacturing
system

[65]

protection of marine envi-
ronment and allocation of
response vessels to mini-
mize costs of oil spill at
sea

cost; time; environ-
mental burden

genetic algo-
rithm

environmental
protection

[66]

Continued on next page



Table 4 – continued from previous page
problem description resources formulation discipline bib

Power aware resource re-
configuration

resources, power
consumption

genetic algo-
rithm

cloud comput-
ing

[67]

processing of time-
constrained workflows in
mobile edge computing

resources, power
limitation

genetic algo-
rithm

mobile edge
computing

[68]

power-aware allocation
of virtual machines in a
cloud

energy, power con-
sumption

genetic algo-
rithm

cloud comput-
ing, virtualiza-
tion

[69]

Solving resource con-
straints in fog computing

problem specific re-
sources

genetic algo-
rithm

Fog-cloud
computing,
Internet of
Things

[70]

virtual network embed-
ding onto underlying
physical infrastructure

problem specific re-
sources

genetic algo-
rithm

network virtu-
alization

[71]

Additionally, during research we have encountered works that consider various formulations.
Selected examples of these are shown in Table 5, described in terms of the same features as
works in the previous tables.

Table 5: Selected resource-aware problems from various disciplines by resources, mixed formu-
lations

problem description resources formulation discipline bib
investigation of the qual-
ity and execution times
of several algorithms
for scheduling service
based workflow applica-
tions with changeable
service availability and
parameters

time; (financial)
cost

ILP, genetic
algorithm,
divide-and-
conquer,
heuris-
tic GAIN
approach

applicable
to scientific,
business
and mixed
workflow
applications

[72]

performance and energy
trade-off analysis for run-
ning parallel applications
on heterogeneous multi
processing systems

execution time; en-
ergy

(Halton
number)
sampling
of config-
uration
space for
Pareto front
generation

high perfor-
mance com-
puting

[1]

Continued on next page



Table 5 – continued from previous page
problem description resources formulation discipline bib

investigation of execution
time vs energy consump-
tion trade-offs for parallel
applications using power
capping, both using multi-
core CPUs and GPUs

time; energy (regular,
linear) con-
figuration
(stemming
from power
limits) space
exploration

high perfor-
mance com-
puting

[73,
74, 75]

tugboat allocation opti-
mization in container ter-
minals

vessels; tugboats;
time

combined
genetic al-
gorithm and
ant colony
optimization

marine
research

[76]

approximate dynamic
programming approach
to resource management
in multi-cloud envi-
ronments, multi-cloud
resource allocation
algorithm to manage
requests to the cloud with
maximization of a cloud
broker revenue

cloud resources;
time (mapping
pre-purchased and
online requests to
resources)

approximate
dynamic
program-
ming, rein-
forcement
learning

cloud re-
source
manage-
ment

[77]

3. Conclusions – problem formulations and resources vs
disciplines

Preliminary identification of resource-aware problems by querying of Google and Bing search
engines allows us to identify:

1. to what degree certain resources appear in various problem formulations,
2. which problem formulations are prevalent in various disciplines.

Resources typically considered in various domains can be domain specific or more universal,
such as time and financial cost. The aforementioned factors can be, based on the aforementioned
analysis, summarized as follows. Resources often considered in various problem formulations
are shown in Table 6.



Table 6: Resources identified in various problem formulations

resource IL
P

gr
ee

dy
al

go
ri

th
m

s

dy
na

m
ic

pr
og

ra
m

m
in

g

G
A

time X X X X
cost X X X
energy X X X
human resources X X
computing and storage X X X
natural resources X X
resources in general problem formulations X X

Furthermore, applications that are prevalent in various problem formulations are listed in
Table 7.

Table 7: Applications for which selected problem formulations are used

application IL
P

gr
ee

dy
al

go
ri

th
m

s

dy
na

m
ic

pr
og

ra
m

m
in

g

G
A

power/energy X X X
general/specific resource management X
HPC X
grid/cloud computing X X
resource allocation in communication X
education X
natural resources management X X
military applications X X



Additionally, we can identify common resources used in various applications/disciplines,
apart from problem specific resources. The former can be identified as shown in Table 8.

Table 8: General resources identified in various applications/disciplines

resource po
w

er
/e

ne
rg

y

H
PC

,g
ri

d/
cl

ou
d

he
al

th
ca

re

na
tr

es
m

gm
t

m
ili

ta
ry

time X X X
cost X X X X
energy X X
data quality X
ecological value X
security X

Finalizing this research, we can say that, apart from details shown in the aforementioned
tables, we can generalize links between resources and problem formulations, resources and
applications as well as applications and formulations among a relatively small number of these
entities, which hints that some applications/disciplines can be linked by selected problem
formulations. This, however, needs further analysis and identification of concrete variables and
formulation mappings between these disciplines. Additionally, we can see that formulations such
as dynamic programming and GA appear in research works in general problem formulations
that are abstracted from particular applications but can be potentially mapped onto several
application areas.

4. Future work

Future work, extending the results presented in this paper, will involve the following:

1. involving other problem formulations such as other evolutionary approaches etc.
2. extending research in-depth by querying scientific databases, including Web of Science,

Scopus and publisher’s like IEEE, Springer, Elsevier etc.,
3. identifying other possible papers giving a broader-scope generalized approach to the

subject,
4. finding actual links and generalizations between problem formulations that describe

particular use cases. Some of the works, as noted above, refer to generalized problem



formulations, while others have introduced problem specific constraints and specifics. It
is possible to build an inheritance tree of resource-aware problem formulations by prior
finding core problem descriptions.

Acknowledgements

This work is partially supported by CERCIRAS COST Action CA19135 funded by COST.

References

[1] A. M. Coutinho Demetrios, D. De Sensi, A. F. Lorenzon, K. Georgiou, J. Nunez-Yanez,
K. Eder, S. Xavier-de Souza, Performance and energy trade-offs for parallel applications
on heterogeneous multi-processing systems, Energies 13 (2020). URL: https://www.mdpi.
com/1996-1073/13/9/2409. doi:10.3390/en13092409.

[2] S. Diouani, H. Medromi, Trade-off between performance and energy management in
autonomic and green data centers, in: Proceedings of the 2nd International Confer-
ence on Networking, Information Systems & Security, NISS19, Association for Comput-
ing Machinery, New York, NY, USA, 2019. URL: https://doi.org/10.1145/3320326.3320332.
doi:10.1145/3320326.3320332.

[3] S. Müller, Security trade-offs in Cloud storage systems, Doctoral thesis, Technische Uni-
versität Berlin, Berlin, 2017. URL: http://dx.doi.org/10.14279/depositonce-6179. doi:10.
14279/depositonce-6179.

[4] H. Jo, Y. Kim, H. Lee, Y. Lee, H. Han, S. Kang, On the trade-off between performance
and storage efficiency of replication-based object storage, in: J. Chen, L. Yang (Eds.),
Proceedings - 11th IEEE International Conference on Cloud Computing Technology and
Science, CloudCom 2019, 19th IEEE International Conference on Computer and Infor-
mation Technology, CIT 2019, 2019 International Workshop on Resource Brokering with
Blockchain, RBchain 2019 and 2019 Asia-Pacific Services Computing Conference, AP-
SCC 2019, International Conference on Cloud Computing Technology and Science, In-
stitute of Electrical and Electronics Engineers (IEEE), United States, 2019, pp. 301–304.
doi:10.1109/CloudCom.2019.00051, 11th IEEE International Conference on Cloud
Computing Technology and Science, CloudCom 2019, 19th IEEE International Confer-
ence on Computer and Information Technology, CIT 2019, 2019 International Workshop
on Resource Brokering with Blockchain, RBchain 2019 and 2019 Asia-Pacific Services
Computing Conference, APSCC 2019 ; Conference date: 11-12-2019 Through 13-12-2019.

[5] J. M. Bermudo Mera, A. Karmakar, I. Verbauwhede, Time-memory trade-off in toom-cook
multiplication: an application to module-lattice based cryptography, IACR Transactions
on Cryptographic Hardware and Embedded Systems 2020 (2020) 222–244. URL: https:
//tches.iacr.org/index.php/TCHES/article/view/8550. doi:10.13154/tches.v2020.i2.
222-244.

[6] G. Avoine, P. Junod, P. Oechslin, Characterization and improvement of time-memory
trade-off based on perfect tables, ACM Trans. Inf. Syst. Secur. 11 (2008). URL: https:
//doi.org/10.1145/1380564.1380565. doi:10.1145/1380564.1380565.

https://www.mdpi.com/1996-1073/13/9/2409
https://www.mdpi.com/1996-1073/13/9/2409
http://dx.doi.org/10.3390/en13092409
https://doi.org/10.1145/3320326.3320332
http://dx.doi.org/10.1145/3320326.3320332
http://dx.doi.org/10.14279/depositonce-6179
http://dx.doi.org/10.14279/depositonce-6179
http://dx.doi.org/10.14279/depositonce-6179
http://dx.doi.org/10.1109/CloudCom.2019.00051
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://tches.iacr.org/index.php/TCHES/article/view/8550
http://dx.doi.org/10.13154/tches.v2020.i2.222-244
http://dx.doi.org/10.13154/tches.v2020.i2.222-244
https://doi.org/10.1145/1380564.1380565
https://doi.org/10.1145/1380564.1380565
http://dx.doi.org/10.1145/1380564.1380565


[7] K. Karimi, The feasibility of using opencl instead of openmp for parallel cpu programming,
2015. arXiv:1503.06532.

[8] J. Rodríguez-Veiga, M. J. Ginzo-Villamayor, B. Casas-Méndez, An integer linear program-
ming model to select and temporally allocate resources for fighting forest fires, Forests 9
(2018). URL: https://www.mdpi.com/1999-4907/9/10/583. doi:10.3390/f9100583.

[9] E. Özcan, S. Erol, A multi-objective mixed integer linear programming model for energy
resource allocation problem: The case of turkey, Gazi University Journal of Science 27
(2014) 1157 – 1168.

[10] D. Epstein, Z. Chalabi, K. Claxton, M. Sculpher, Mathematical programming for the optimal
allocation of health care resources, 2005.

[11] A. Borghetti, Mixed Integer Linear Programming Models for Network Reconfiguration
and Resource Optimization in Power Distribution Networks, John Wiley & Sons, Ltd, ????,
pp. 43–88. doi:https://doi.org/10.1002/9781119116080.ch2.

[12] E. S. Ari, C. Gencer, Proposal of a novel mixed integer linear programming
model for site selection of a wind power plant based on power maximization
with use of mixed type wind turbines, Energy & Environment 31 (2020) 825–
841. URL: https://doi.org/10.1177/0958305X19882394. doi:10.1177/0958305X19882394.
arXiv:https://doi.org/10.1177/0958305X19882394.

[13] S. Y. Shin, Y. Brun, H. Balasubramanian, P. L. Henneman, L. J. Osterweil, Discrete-event
simulation and integer linear programming for constraint-aware resource scheduling,
IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 (2018) 1578–1593.
doi:10.1109/TSMC.2017.2681623.

[14] J. R. San Cristóbal Mateo, An integer linear programming model including time, cost,
quality, and safety, IEEE Access 7 (2019) 168307–168315. doi:10.1109/ACCESS.2019.
2953185.

[15] S. Najeh, H. Besbes, A. Bouallegue, Greedy algorithm for dynamic resource allocation in
downlink of ofdma system, in: 2005 2nd International Symposium on Wireless Communi-
cation Systems, 2005, pp. 475–479. doi:10.1109/ISWCS.2005.1547746.

[16] N. Ferdosian, M. Othman, B. M. Ali, K. Y. Lun, Greedy–knapsack algorithm for optimal
downlink resource allocation in lte networks, Wireless Networks 22 (2015) 1427–1440.
URL: http://dx.doi.org/10.1007/s11276-015-1042-9. doi:10.1007/s11276-015-1042-9.

[17] M. C. Calzarossa, L. Massari, G. Nebbione, M. L. Della Vedova, D. Tessera, Tuning genetic
algorithms for resource provisioning and scheduling in uncertain cloud environments:
Challenges and findings, in: 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2019, pp. 174–180. doi:10.1109/EMPDP.
2019.8671564.

[18] L. Liu, Q. Fan, Resource allocation optimization based on mixed integer linear programming
in the multi-cloudlet environment, IEEE Access 6 (2018) 24533–24542. doi:10.1109/
ACCESS.2018.2830639.

[19] T. Boiński, P. Czarnul, Optimization of Data Assignment for Parallel Processing in a Hybrid
Heterogeneous Environment Using Integer Linear Programming, The Computer Journal
(2021). doi:10.1093/comjnl/bxaa187.

[20] J. O. Kennedy, Dynamic programming applications to agriculture and natural resources
(1986). URL: https://www.osti.gov/biblio/7151445.

http://arxiv.org/abs/1503.06532
https://www.mdpi.com/1999-4907/9/10/583
http://dx.doi.org/10.3390/f9100583
http://dx.doi.org/https://doi.org/10.1002/9781119116080.ch2
https://doi.org/10.1177/0958305X19882394
http://dx.doi.org/10.1177/0958305X19882394
http://arxiv.org/abs/https://doi.org/10.1177/0958305X19882394
http://dx.doi.org/10.1109/TSMC.2017.2681623
http://dx.doi.org/10.1109/ACCESS.2019.2953185
http://dx.doi.org/10.1109/ACCESS.2019.2953185
http://dx.doi.org/10.1109/ISWCS.2005.1547746
http://dx.doi.org/10.1007/s11276-015-1042-9
http://dx.doi.org/10.1007/s11276-015-1042-9
http://dx.doi.org/10.1109/EMPDP.2019.8671564
http://dx.doi.org/10.1109/EMPDP.2019.8671564
http://dx.doi.org/10.1109/ACCESS.2018.2830639
http://dx.doi.org/10.1109/ACCESS.2018.2830639
http://dx.doi.org/10.1093/comjnl/bxaa187
https://www.osti.gov/biblio/7151445


[21] A. A. Popov, O. N. Lopateeva, A. K. Ovsyankin, M. M. Satsuk, Application of greedy
algorithms for the formation of the educational schedule in the higher education, Journal
of Physics: Conference Series 1691 (2020) 012066. URL: https://doi.org/10.1088/1742-6596/
1691/1/012066. doi:10.1088/1742-6596/1691/1/012066.

[22] J. A. S. Araujo, Mixed-Integer Linear Programming Based Approaches for the Resource
Constrained Project Scheduling Problem, Ph.D. thesis, Universidade Federal de Ouro Preto,
2019.

[23] J. L. B. García, R. G. Mestre, J. T. Viñals, An integer linear programming representation for
data-center power-aware management, 2010.

[24] S. Shin, Y. Brun, H. Balasubramanian, P. Henneman, L. Osterweil, Discrete-event simu-
lation and integer linear programming for constraint-aware resource scheduling, IEEE
Transactions on Systems, Man, and Cybernetics: Systems PP (2017) 1–16. doi:10.1109/
TSMC.2017.2681623.

[25] X. Chen, G. Reinelt, G. Dai, A. Spitz, A mixed integer linear programming model for
multi-satellite scheduling, 2018. arXiv:1811.12114.

[26] S. Bousnina, M. Cesana, J. Ortín, C. Delgado, J. R. Gállego, M. Canales, A greedy approach
for resource allocation in virtual sensor networks, in: 2017 Wireless Days, 2017, pp. 15–20.
doi:10.1109/WD.2017.7918108.

[27] H. Singh, Performance Evaluation of Weighted Greedy Algorithm in Resource Man-
agement, Master’s thesis, University of Windsor, Windsor, Ontario, Canada, 2018.
Https://scholar.uwindsor.ca/etd/7397.

[28] S. Rampersaud, D. Grosu, A sharing-aware greedy algorithm for virtual machine max-
imization, in: 2014 IEEE 13th International Symposium on Network Computing and
Applications, NCA 2014, Cambridge, MA, USA, 21-23 August, 2014, 2014, pp. 113–120.
URL: https://doi.org/10.1109/NCA.2014.24. doi:10.1109/NCA.2014.24.

[29] S. Rampersaud, D. Grosu, An approximation algorithm for sharing-aware virtual machine
revenue maximization, IEEE Trans. Serv. Comput. 14 (2021) 1–15. URL: https://doi.org/10.
1109/TSC.2017.2786728. doi:10.1109/TSC.2017.2786728.

[30] A resource-aware scheduling algorithm with reduced task duplication on heterogeneous
computing systems, J Supercomput 68 (2014) 1347––1377.

[31] H. Liao, Z. Zhou, X. Zhao, Y. Wang, Learning-based queue-aware task offloading and
resource allocation for space–air–ground-integrated power iot, IEEE Internet of Things
Journal 8 (2021) 5250–5263. doi:10.1109/JIOT.2021.3058236.

[32] A. Yin, Y. Guo, D. Tang, Resource-aware fluid scheduling with time constraints for clus-
tered many-core architectures, Journal of Physics: Conference Series 1971 (2021) 012090.
URL: https://doi.org/10.1088/1742-6596/1971/1/012090. doi:10.1088/1742-6596/1971/
1/012090.

[33] P. Venuthurumilli, S. Mandapati, An energy and deadline aware scheduling using greedy
algorithm for cloud computing, Ingénierie des systèmes d information 24 (2019) 583–590.
doi:10.18280/isi.240604.

[34] A. Castellano, C. Martínez, P. Monzón, J. A. Bazerque, A. Ferragut, F. Paganini, Quadratic
approximate dynamic programming for scheduling water resources: a case study, 2020.
arXiv:2010.02122.

[35] A. Forootani, R. Iervolino, M. Tipaldi, J. Neilson, Approximate dynamic programming for

https://doi.org/10.1088/1742-6596/1691/1/012066
https://doi.org/10.1088/1742-6596/1691/1/012066
http://dx.doi.org/10.1088/1742-6596/1691/1/012066
http://dx.doi.org/10.1109/TSMC.2017.2681623
http://dx.doi.org/10.1109/TSMC.2017.2681623
http://arxiv.org/abs/1811.12114
http://dx.doi.org/10.1109/WD.2017.7918108
https://doi.org/10.1109/NCA.2014.24
http://dx.doi.org/10.1109/NCA.2014.24
https://doi.org/10.1109/TSC.2017.2786728
https://doi.org/10.1109/TSC.2017.2786728
http://dx.doi.org/10.1109/TSC.2017.2786728
http://dx.doi.org/10.1109/JIOT.2021.3058236
https://doi.org/10.1088/1742-6596/1971/1/012090
http://dx.doi.org/10.1088/1742-6596/1971/1/012090
http://dx.doi.org/10.1088/1742-6596/1971/1/012090
http://dx.doi.org/10.18280/isi.240604
http://arxiv.org/abs/2010.02122


stochastic resource allocation problems, IEEE/CAA Journal of Automatica Sinica 7 (2020)
975–990. doi:10.1109/JAS.2020.1003231.

[36] P. Plamondon, B. Chaib-draa, A. R. Benaskeur, A real-time dynamic programming decom-
position approach to resource allocation, in: 2007 Information, Decision and Control, 2007,
pp. 308–313. doi:10.1109/IDC.2007.374568.

[37] M. Braun, S. Buchwald, M. Mohr, A. Zwinkau, Dynamic X10: Resource-Aware Program-
ming for Higher Efficiency, Technical Report 8, Karlsruhe Institute of Technology, 2014.
URL: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000041061, x10 ’14.

[38] L. Moreau, C. Queinnec, Resource aware programming, ACM Trans. Program. Lang. Syst.
27 (2005) 441–476.

[39] J. Paul, W. Stechele, M. Kröhnert, T. Asfour, Resource-aware programming for robotic vi-
sion, CoRR abs/1405.2908 (2014). URL: http://arxiv.org/abs/1405.2908. arXiv:1405.2908.

[40] D. Amiri, A. Anzanpour, I. Azimi, M. Levorato, P. Liljeberg, N. Dutt, A. M. Rahmani,
Context-aware sensing via dynamic programming for edge-assisted wearable systems 1
(2020). doi:10.1145/3351286.

[41] S. Avidan, A. Shamir, Seam carving for content-aware image resizing, in: ACM Trans.
Graph, SIGGRAPH, 2007, p. 10.

[42] R. Gianni M., H. Soon-Wook, Cost-aware dynamic resource allocation in distributed
computing infrastructures, International Journal of Contents 2 (2011). URL: http://dx.doi.
org/10.5392/IJoC.2011.7.2.001. doi:10.5392/IJoC.2011.7.2.001.

[43] G. Ricciardi, S.-W. Hwang, Cost-aware dynamic resource allocation in distributed comput-
ing infrastructures, International Journal of Contents 7 (2011) 1–5. doi:10.5392/IJoC.
2011.7.2.001.

[44] J. G. D. S. M. Poladian, Vahe; Sousa, Dynamic configuration of resource-aware services.
carnegie mellon university. journal contribution (2018). doi:10.1184/R1/6622013.v1.

[45] Z. Liu, Y. Zhou, G. Huang, B. Luo, Risk aversion based inexact stochastic dynamic
programming approach for water resources management planning under uncertainty,
Sustainability 11 (2019). URL: https://www.mdpi.com/2071-1050/11/24/6926. doi:10.3390/
su11246926.

[46] R. Mansouri, H. T. Pudeh, H. A. Yonesi, A. H. Haghiabi, Dynamic programming model
for hydraulics and water resources simulating and optimizing water transfer system
(a case study in Iran), Journal of Water Supply: Research and Technology-Aqua 66
(2017) 684–700. URL: https://doi.org/10.2166/aqua.2017.110. doi:10.2166/aqua.2017.
110. arXiv:https://iwaponline.com/aqua/article-pdf/66/8/684/223306/
jws0660684.pdf.

[47] R. Johansson, C. Mårtenson, R. Suzić, P. Svenson, Stochastic dynamic programming for
resource allocation, Technical Report, FOI – Swedish Defence Research Agency FOI-R–
1666–SE, Command and Control Systems, 2005. FOI-R–1666–SE.

[48] X. Li, L. Nie, S. Chen, Approximate dynamic programming based data center resource
dynamic scheduling for energy optimization, in: 2014 IEEE International Conference
onÂ Internet of Things(iThings), and IEEEÂ Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing(CPSCom), IEEE Computer
Society, Los Alamitos, CA, USA, 2014, pp. 494–501. URL: https://doi.ieeecomputersociety.
org/10.1109/iThings.2014.87. doi:10.1109/iThings.2014.87.

http://dx.doi.org/10.1109/JAS.2020.1003231
http://dx.doi.org/10.1109/IDC.2007.374568
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000041061
http://arxiv.org/abs/1405.2908
http://arxiv.org/abs/1405.2908
http://dx.doi.org/10.1145/3351286
http://dx.doi.org/10.5392/IJoC.2011.7.2.001
http://dx.doi.org/10.5392/IJoC.2011.7.2.001
http://dx.doi.org/10.5392/IJoC.2011.7.2.001
http://dx.doi.org/10.5392/IJoC.2011.7.2.001
http://dx.doi.org/10.5392/IJoC.2011.7.2.001
http://dx.doi.org/10.1184/R1/6622013.v1
https://www.mdpi.com/2071-1050/11/24/6926
http://dx.doi.org/10.3390/su11246926
http://dx.doi.org/10.3390/su11246926
https://doi.org/10.2166/aqua.2017.110
http://dx.doi.org/10.2166/aqua.2017.110
http://dx.doi.org/10.2166/aqua.2017.110
http://arxiv.org/abs/https://iwaponline.com/aqua/article-pdf/66/8/684/223306/ jws0660684.pdf
http://arxiv.org/abs/https://iwaponline.com/aqua/article-pdf/66/8/684/223306/ jws0660684.pdf
https://doi.ieeecomputersociety.org/10.1109/iThings.2014.87
https://doi.ieeecomputersociety.org/10.1109/iThings.2014.87
http://dx.doi.org/10.1109/iThings.2014.87


[49] R. L. Kadri, F. F. Boctor, An efficient genetic algorithm to solve the resource-constrained
project scheduling problem with transfer times: The single mode case, European
Journal of Operational Research 265 (2018) 454–462. URL: https://www.sciencedirect.
com/science/article/pii/S0377221717306549. doi:https://doi.org/10.1016/j.ejor.
2017.07.027.

[50] J. Gonçalves, J. Mendes, M. Resende, A genetic algorithm for the resource constrained
multi-project scheduling problem, European Journal of Operational Research 189 (2008)
1171–1190. URL: https://www.sciencedirect.com/science/article/pii/S0377221707005929.
doi:https://doi.org/10.1016/j.ejor.2006.06.074.

[51] F. Gargiulo, D. Quagliarella, Genetic algorithms for the resource constrained project
scheduling problem, in: 2012 IEEE 13th International Symposium on Computational Intel-
ligence and Informatics (CINTI), 2012, pp. 39–47. doi:10.1109/CINTI.2012.6496807.

[52] J. Alcaraz, C. Maroto, A Robust Genetic Algorithm for Resource Allocation in Project
Scheduling, Annals of Operations Research 102 (2001) 83–109. URL: https://ideas.
repec.org/a/spr/annopr/v102y2001i1p83-10910.1023-a1010949931021.html. doi:10.1023/
A:1010949931021.

[53] J. Liu, Y. Liu, Y. Shi, J. Li, Solving resource-constrained project scheduling problem
via genetic algorithm, Journal of Computing in Civil Engineering 34 (2020) 04019055.
doi:10.1061/(ASCE)CP.1943-5487.0000874.

[54] X. Tiana, S. Yuanb, Genetic algorithm parameters tuning for resource-constrained
project scheduling problem, in: AIP Conference Proceedings, volume 1955, 2018.
Https://doi.org/10.1063/1.5033723.

[55] D. Debels, M. Vanhoucke, A decomposition-based genetic algorithm for the
resource-constrained project-scheduling problem, Operations Research 55 (2007)
457–469. URL: https://doi.org/10.1287/opre.1060.0358. doi:10.1287/opre.1060.0358.
arXiv:https://doi.org/10.1287/opre.1060.0358.

[56] H. M. H. Saad, R. K. Chakrabortty, S. Elsayed, M. J. Ryan, Quantum-inspired genetic
algorithm for resource-constrained project-scheduling, IEEE Access 9 (2021) 38488–38502.
doi:10.1109/ACCESS.2021.3062790.

[57] J. Lee, Efficient elitist genetic algorithm for resource-constrained project scheduling, Korea
Journal of Construction Engineering and Management 8 (2007) 235–245.

[58] Y. C. Toklu, Application of genetic algorithms to construction scheduling
with or without resource constraints, Canadian Journal of Civil Engineer-
ing 29 (2002) 421–429. URL: https://doi.org/10.1139/l02-034. doi:10.1139/l02-034.
arXiv:https://doi.org/10.1139/l02-034.

[59] M. F. Fauske, Using a genetic algorithm to solve the troops-to-tasks problem in military
operations planning, The Journal of Defense Modeling and Simulation 14 (2017) 439–
446. URL: https://doi.org/10.1177/1548512917711310. doi:10.1177/1548512917711310.
arXiv:https://doi.org/10.1177/1548512917711310.

[60] M. F. Fauske, Optimizing the troops-to-tasks problem in military operations planning,
Military Operations Research 20 (2015) 49–57. URL: http://www.jstor.org/stable/24838652.

[61] A. E. Ezugwu, N. A. Okoroafor, S. M. Buhari, M. E. Frincu, S. B. Junaidu, Grid re-
source allocation with genetic algorithm using population based on multisets:, Journal
of Intelligent Systems 26 (2017) 169–184. URL: https://doi.org/10.1515/jisys-2015-0089.

https://www.sciencedirect.com/science/article/pii/S0377221717306549
https://www.sciencedirect.com/science/article/pii/S0377221717306549
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2017.07.027
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2017.07.027
https://www.sciencedirect.com/science/article/pii/S0377221707005929
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2006.06.074
http://dx.doi.org/10.1109/CINTI.2012.6496807
https://ideas.repec.org/a/spr/annopr/v102y2001i1p83-10910.1023-a1010949931021.html
https://ideas.repec.org/a/spr/annopr/v102y2001i1p83-10910.1023-a1010949931021.html
http://dx.doi.org/10.1023/A:1010949931021
http://dx.doi.org/10.1023/A:1010949931021
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000874
https://doi.org/10.1287/opre.1060.0358
http://dx.doi.org/10.1287/opre.1060.0358
http://arxiv.org/abs/https://doi.org/10.1287/opre.1060.0358
http://dx.doi.org/10.1109/ACCESS.2021.3062790
https://doi.org/10.1139/l02-034
http://dx.doi.org/10.1139/l02-034
http://arxiv.org/abs/https://doi.org/10.1139/l02-034
https://doi.org/10.1177/1548512917711310
http://dx.doi.org/10.1177/1548512917711310
http://arxiv.org/abs/https://doi.org/10.1177/1548512917711310
http://www.jstor.org/stable/24838652
https://doi.org/10.1515/jisys-2015-0089


doi:doi:10.1515/jisys-2015-0089.
[62] K. Vink, P. Schot, Multiple-objective optimization of drinking water pro-

duction strategies using a genetic algorithm, Water Resources Research
38 (2002) 20–1–20–15. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/
10.1029/2000WR000034. doi:https://doi.org/10.1029/2000WR000034.
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/
2000WR000034.

[63] R. M. Khalaf, W. H. Hassan, Multi-objective groundwater management using genetic
algorithms in kerbala desert area, iraq, IOP Conference Series: Materials Science and
Engineering 1067 (2021) 012013. URL: https://doi.org/10.1088/1757-899x/1067/1/012013.
doi:10.1088/1757-899x/1067/1/012013.

[64] G. Rivera, L. Cisneros, P. Sánchez-Solís, N. Rangel-Valdez, J. Rodas-Osollo, Genetic
algorithm for scheduling optimization considering heterogeneous containers: A real-
world case study, Axioms 9 (2020). URL: https://www.mdpi.com/2075-1680/9/1/27.
doi:10.3390/axioms9010027.

[65] M. G. Filho, C. F. Barco, R. F. T. Neto, Using genetic algorithms to solve scheduling problems
on flexible manufacturing systems (fms): a literature survey, classification and analysis,
Flexible Services and Manufacturing Journal 26 (2014) 408–431.

[66] K. Łazuga, L. Gucma, Genetic algorithm method for solving the optimal allocation of
response resources problem on the example of polish zone of the baltic sea, Journal
of KONBiN 38 (2016) 291–310. URL: https://doi.org/10.1515/jok-2016-0028. doi:doi:10.
1515/jok-2016-0028.

[67] L. Deng, Y. Li, L. Yao, Y. Jin, J. Gu, Power-aware resource reconfiguration using genetic
algorithm in cloud computing, Mob. Inf. Syst. 2016 (2016) 4859862:1–4859862:9. URL:
https://doi.org/10.1155/2016/4859862. doi:10.1155/2016/4859862.

[68] S. X. Q. H. Kai Peng, Bohai Zhao, Energy- and resource-aware computation offloading for
complex tasks in edge environment (2020). doi:10.1155/2020/9548262.

[69] N. N. H. T. N. T. N. Quang-Hung N., Nien P.D., A genetic algorithm for power-aware
virtual machine allocation in private cloud (2013).

[70] F. Hoseiny, S. Azizi, M. Shojafar, F. Ahmadiazar, R. Tafazolli, Pga: A priority-aware genetic
algorithm for task scheduling in heterogeneous fog-cloud computing, in: IEEE INFOCOM
2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
2021, pp. 1–6. doi:10.1109/INFOCOMWKSHPS51825.2021.9484436.

[71] Z. Zhou, X. Chang, Y. Yang, L. Li, Resource-aware virtual network parallel embedding
based on genetic algorithm, 2016 17th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT) (2016) 81–86.

[72] P. Czarnul, Comparison of selected algorithms for scheduling workflow applications with
dynamically changing service availability, J. Zhejiang Univ. Sci. C 15 (2014) 401–422. URL:
https://doi.org/10.1631/jzus.C1300270. doi:10.1631/jzus.C1300270.

[73] A. Krzywaniak, P. Czarnul, J. Proficz, Extended investigation of performance-energy
trade-offs under power capping in hpc environments, in: 2019 International Conference
on High Performance Computing Simulation (HPCS), 2019, pp. 440–447. doi:10.1109/
HPCS48598.2019.9188149.

[74] A. Krzywaniak, P. Czarnul, Performance/energy aware optimization of parallel applications

http://dx.doi.org/doi:10.1515/jisys-2015-0089
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/ 2000WR000034
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/ 2000WR000034
http://dx.doi.org/https://doi.org/10.1029/2000WR000034
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/ 2000WR000034
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/ 2000WR000034
https://doi.org/10.1088/1757-899x/1067/1/012013
http://dx.doi.org/10.1088/1757-899x/1067/1/012013
https://www.mdpi.com/2075-1680/9/1/27
http://dx.doi.org/10.3390/axioms9010027
https://doi.org/10.1515/jok-2016-0028
http://dx.doi.org/doi:10.1515/jok-2016-0028
http://dx.doi.org/doi:10.1515/jok-2016-0028
https://doi.org/10.1155/2016/4859862
http://dx.doi.org/10.1155/2016/4859862
http://dx.doi.org/10.1155/2020/9548262
http://dx.doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484436
https://doi.org/10.1631/jzus.C1300270
http://dx.doi.org/10.1631/jzus.C1300270
http://dx.doi.org/10.1109/HPCS48598.2019.9188149
http://dx.doi.org/10.1109/HPCS48598.2019.9188149


on gpus under power capping, in: R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski
(Eds.), Parallel Processing and Applied Mathematics, Springer International Publishing,
Cham, 2020, pp. 123–133.

[75] A. Krzywaniak, J. Proficz, P. Czarnul, Analyzing energy/performance trade-offs with power
capping for parallel applications on modern multi and many core processors, in: M. Ganzha,
L. A. Maciaszek, M. Paprzycki (Eds.), Proceedings of the 2018 Federated Conference on
Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September
9-12, 2018, volume 15 of Annals of Computer Science and Information Systems, 2018, pp.
339–346. URL: https://doi.org/10.15439/2018F177. doi:10.15439/2018F177.

[76] S. Wang, B. Meng, Resource allocation and scheduling problem based on genetic algorithm
and ant colony optimization, in: Z.-H. Zhou, H. Li, Q. Yang (Eds.), Advances in Knowledge
Discovery and Data Mining, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp.
879–886.

[77] A. Pietrabissa, F. D. Priscoli, A. D. Giorgio, A. Giuseppi, M. Panfili, V. Suraci,
An approximate dynamic programming approach to resource management in
multi-cloud scenarios, International Journal of Control 90 (2017) 492–503.
URL: https://doi.org/10.1080/00207179.2016.1185802. doi:10.1080/00207179.2016.
1185802. arXiv:https://doi.org/10.1080/00207179.2016.1185802.

https://doi.org/10.15439/2018F177
http://dx.doi.org/10.15439/2018F177
https://doi.org/10.1080/00207179.2016.1185802
http://dx.doi.org/10.1080/00207179.2016.1185802
http://dx.doi.org/10.1080/00207179.2016.1185802
http://arxiv.org/abs/https://doi.org/10.1080/00207179.2016.1185802

	1 Introduction
	2 Resource-aware problems across disciplines by formulations
	3 Conclusions – problem formulations and resources vs disciplines
	4 Future work

