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Abstract  
Effective cooperation between humans and technologies powered by Artificial Intelligence (AI) 

is decisive to fully exploit AI’s economic and social potentials. However, the adoption of AI 

is often opposed by a lack of humans’ trust in AI systems and a dearth of interest in working 

with them. Turning to games for getting inspiration on how to optimize human-AI cooperation 

seems promising, since games engage humans almost effortlessly in interacting and cooperating 

with artificial non-player characters (NPCs). However, a structured overview on how game 

design can optimize human-AI cooperation is missing in existing gamification research. 

Therefore, this paper presents a systematic review of NPC design patterns and elaborates on 

what developers of AI systems can learn from game design. Guided by a thematic analysis, we 

present a structured overview of relevant design patterns clustered along six focus fields - 

namely I) NPC responsiveness, (II) appearance of NPCs, (III) NPC communication patterns, 

(IV) emotional aspects, (V) behavioral characteristics, and (VI) player-NPC and NPC-NPC 

team structures – which advance our understanding of designing and investigating cooperation 

between humans and NPCs. The insights of this paper can guide practitioners and future 

research regarding the design of more effective AI systems, the gamification of human-AI 

cooperation, and the development of innovative NPC approaches. 
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1. Introduction 

With the rise of Artificial Intelligence (AI) and 

increasingly autonomous machines, human-AI 

cooperation has received a surge in attention in 

industry and academia. In areas as diverse as 

human-robot interaction, autonomous driving, or 

the assistance of humans in complex decision-
making with expert systems, seamless 

cooperation between humans and AI technologies 

is decisive to enable society and businesses to 

fully exploit AI’s benefits and potentials. The 

growing interest is reflected by a rise of research 
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papers elaborating on this topic. Despite this 

interest, we lack a clear understanding of how 

specific design aspects of AI systems can 

optimize the human-AI cooperation and establish 

trust between humans and AI systems [1].  
One context where cooperation between 

humans and AI appears to emerge effortlessly is 

video games. Existing research demonstrated that 

specific game design features could engage 

players in developing strong emotional 

relationships [2] with non-player characters 

(NPCs), support the perceived closeness, and 

even build trust. Design knowledge and patterns 

from game design and, in particular, NPC design 
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can thus provide a hitherto scarcely explored 

treasure of knowledge for designing more 

effective human-AI collaboration outside of 

games. Lending elements from video games and 

utilizing them in other contexts, such as AI 

systems, has become popular in recent years. This 

trend is called gamification and refers to the use 

of design principles and features of games outside 

traditional video game environments with the 

intention to afford similar experiences as in games 

and to influence behaviors [3].  

While various studies indicate, that game 

design knowledge can help improve the design of 

AI systems, the bulk of the gamification research 

that has emerged over the past ten years missed to 

provide a structured overview of gamifying 
human-AI cooperation [4]. Therefore, this study 

aims at answering the research question:  

 

Which design patterns facilitate effective 

cooperation between NPCs and humans? 

 

This paper’s major contribution is conducting 

a systematic literature review and thematic 

synthesis as well as investigating which patterns 

game developers and designers exploit for 

building rich social interactions between NPCs 

and humans (i.e., player characters (PCs)). Our 

results are based on performing axial and selective 

coding to derive subcategories and linkages 

between the codes and summarize the current 

body of knowledge in a systematic way. Finally, 

we offer practical recommendations as to what AI 

software developers and experts in Human-

computer interaction can learn from the gaming 

industry. 

2. Non-player characters in video 
games 

The term NPC refers to any character found in 

a game not controlled by the players [5]. In many 

games, players play with or against NPCs. NPCs 

are used to increase the believability of games and 

a player’s immersion in the virtual game world 

[6–8]. Human players are keen to interact with 

realistic NPCs and research indicates that players 

can even establish strong relationships with NPCs 

[19]. 

In the last decades, game developers and 

designers have placed a primary focus on 

increasing NPC believability [11] and creating the 

illusion of playing with human-like fellows. NPCs 

traditionally follow a deterministic AI behavior 

and players can compete or cooperate with NPCs; 

however, humans can quickly become frustrated 

with NPCs that show deviating, non-human-like 

or predictable behaviors [12–16]. Recently 

emerging developments in the field of advanced 

AI pave the way towards more realistic NPCs and 

thus more immersive gameplay [17, 18].  

Even though NPCs are prevalent in games and 

interest in developing more robust NPCs [23] is 

high, game research missed studying NPC design 

patterns in greater detail [24]. One recent work 

investigates central design components of 

companions in video games [25], expanding a 

design space proposed in [26]. While these 

contributions are relevant for this paper, 

companions only resemble one category within 
the broader class of NPCs. Evidently, there is a 

gap of systematic review papers that deal with 

design patterns of NPCs. Current literature in 

NPC design remains fragmented and little is 

known on how to transfer the insights gained from 

NPCs to other non-game contexts. Different 

studies indicate, however, that game design 

knowledge could optimize future human-AI 

cooperation and improve AI systems [32, 35]. 

Gamification research has overlooked to provide 

structured knowledge on the gamification of 

human-AI cooperation thus far [4]. 

3. Research methodology 

In this paper, we present a systematic literature 

review on the topic guided by Webster and 

Watson [27]. The literature review has been 

conducted on the Scopus database. The choice of 

scientific database is justified by two reasons: 

First, Scopus aggregates several relevant 

databases such as ACM, IEEE, or Springer. 

Second, the focus on one single scientific research 

database allows a replicable process and thus 

supports the rigor and objectivity of the procedure 

[28]. 
We performed the literature search on August 

26th in 2021, querying the Scopus database in the 

following manner: TITLE-ABS-KEY(NON-

PLAYER CHARACTERS AND DESIGN*). The 

search yielded results focusing on non-player 

characters and any permutation of the term design. 

By carefully limiting the search to the metadata, 

this approach enabled us to scan literature only for 

publications concentrating on our intended search 

terms. The search resulted in 295 hits. Next, we 

performed several screening steps based on the 

following criteria to include only relevant papers: 
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1) Removal of duplicates and false hits (-22 

papers); 2) Abstract and title screening and 

subsequent removal of papers with a focus not in 

line with the research question at hand (-77 

papers); 3) Removal of papers not written in 

English (-4 papers); 4) Removal of papers that are 

not full papers (-17 papers) and 5) Papers that 

cannot be acquired (-1 paper). This screening 

process resulted in 174 full papers. Then, we 

coded the works by accumulating information on 

bibliometric and descriptive information. 

Subsequently, we applied thematic synthesis 

according to [29]. This approach was chosen as it 

allows to investigate phenomena in qualitative 

data, such as prototype descriptions, and aims at 

generating implications for practice. This is in line 
with our goal to encourage designers to draw 

inspiration from NPC design for improved 

human-AI cooperation. The synthesis comprises 

three stages: 

Free coding: A sample of ten articles was read 

and reviewed. Inductive line-by-line coding led to 

the identification of multiple design features. 

Based on the number of papers in the dataset, we 

applied an additional second round of open coding 

with five articles. Next we added codes to the 

fragments. The plausibility of this preliminary 

coding scheme was checked by carefully reading 

all papers in the dataset. As a result, six additional 

codes were added to prevent neglecting relevant 

design pattern subcategories.  

Construction of descriptive themes: The 

obtained codes were iteratively compared. The 

findings were synthesized and similarities as well 

as differences between the obtained codes, were 

identified. Descriptive themes were generated 

through axial coding.  

Development of analytical themes: We 

reviewed the entire body of knowledge and 

mapped the content on the defined themes. All 

data was classified along with the following 

overarching themes: design patterns on (I) NPC 

responsiveness, (II) appearance of NPCs, (III) 

NPC communication patterns, (IV) emotional 

aspects, (V) initiative of NPCs, and (VI) PC-NPC 

and NPC-NPC team structures. These analytical 

themes comprised several subcategories and thus 

resulted in a tree structure. 

In terms of the presentation of the results, we 

follow Paré’s assessment [30] and present the 

synthesized evidence mainly in tabular form.  

 

 

4. Results 
4.1. Descriptive information 

Out of the 174 reviewed full papers, 116 are 

empirical studies. 72 papers contain empirical 

results related to NPC design patterns and human-

AI cooperation. 26 papers are conceptual or 

present frameworks, methodologies, or models. 

22 papers are reviews, while 14 studies introduce 

preliminary results, describe systems, case studies 

or prototypes. 113 papers fall into the domain 

entertainment. The second largest category is 

education with 46 papers. Seven papers belong to 

the domain of culture/history/ethics, four papers 

deal with medicine and health, and two papers 

belong to the domain engineering. The domains 

sports and tourism each comprise one paper. 

4.2. Responsiveness of NPCs 

The structured review of previous research on 

NPC design reveals that the majority of the 

empirical studies employ design patterns related 

to the responsiveness of NPCs. In this field of 

research, the most popular design features can be 

clustered in features related to how NPCs provide 

feedback and are able to learn and respond. 

The design patterns in these categories aim 

directly at facilitating  more effective cooperation 

between NPCs and human players. 

A total of 38 studies investigates or employs 

NPC feedback mechanisms. Feedback has been 

shown to be powerful in influencing people’s 

decision making [31] and bringing about behavior 

change. The review indicates that NPC feedback 

can further be divided into four thematic groups 

(as visible in Table 1): Direct feedback (e.g., 

[32]), delayed feedback (e.g., [33]), NPC-PC co-

creation (e.g., [34, 35]), and persuasion of the 
player (e.g., [31, 36]).  

In appropriate contexts, specific NPC 

feedback seems to be able to serve as a stimulator 

of curiosity or even an augmenter of human 

creativity. For instance, Ali et al. [31] demonstrate 

that NPCs designed as artistic playmates 

providing creative feedback can increase kids’ 

creativity compared to similar playmates, which 

provide less creative feedback. This type of 

feedback is shown to significantly increase the 

participant’s creativity and consequently 

improves the quality of the human-AI 

cooperation.  
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29 studies indicate that especially three 

patterns related to feedback are highly relevant for 

achieving effective PC-NPC cooperation: 

assessment of player’s performance/progress (15 

studies), immediate feedback (11 studies) and 

unpredictability (13 studies). Embedding socio-

emotional elements and unexpected moral 

questioning prompts can help augment NPC 

believability and the level of player immersion, as 

called for in [12, 13]. The insights of [42] 

demonstrate that design features allowing players 

to observe an NPC’s vulnerability and experience 

its decision-making process first-hand can trigger 

reflection on the player’s side and increase the 

emotional investment in the game. This can be 

achieved through perspective switching exercises 
that serve to confront a player with several daily 

social dilemmas (such as stealing in a shop, being 

bullied by peers) that NPCs face and make him 

assess the NPC’s decision-making. 

 

Table 1 
Coverage of patterns related to NPC feedback 

Theme Reference 
Direct feedback and instant 

replies 

● Assessment of player’s 

performance/progress 

● Open-ended or free-flowing 

dialogue (PC-NPC | NPC-NPC) 

● Socio-moral decision making 

● Immediate feedback 

 

 
[32–46] 

 

[33, 49] 

 

[42, 50, 58–63] 
[2, 26, 37–41, 44, 54–56] 

Delayed feedback 

● Gradual revealing of 

information 

 

[33] 

Persuade player and bring 

about change 

● Evoking of strong emotional 

reactions 

● Embedding of elements of 

surprise (e.g., humor, off-topic 

remarks) 

● Increasing of unpredictability 

(e.g., unexpected actions, 

shocking of player) 

 

 

[48, 50, 57–59] 
 

[37, 59, 61, 62] 

 

 
[34, 43, 44, 46, 48, 50, 58, 

62–67] 

NPC-PC co-creation 

● Real-time corrections 

● Augmentation of human 

creativity 

● Triggering of curiosity 

 
[35] 

[31, 34, 59, 68] 

 

[31, 43, 64, 68–70] 

 

Moreover, this review indicates that the NPC’s 

ability to learn and respond is crucial for 

enhancing both the level of game immersion [51] 

and the interestingness [71] of the PC-NPC 

interaction. 38 papers are dealing with this theme, 

as depicted in Table 2. This category can be 

divided into three subcategories, differentiating 

between humans learning from AI/NPC (through 

social comparisons, switching perspectives, or 

triggering emotions), NPCs learning based on 

human gameplay (for example learning by 

demonstration, utilizing external hardware), and 

NPCs learning from fellow NPCs/AI (within or 

outside the current domain). 

The generated overview reveals that while a 

large diversity of approaches exists, several focus 

fields can be identified (cf. Table 2). For example, 

only three papers [68, 72, 73] deal with inter- and 

cross domain learning where NPCs can learn from 

fellow NPCs. This is probably because this 

approach is quite new and complex to realize. The 

results of [72] and [73] indicate, however, that 

minimizing the NPC’s learning and training times 

can lead to faster acceptance and the player can 

exploit the NPC’s skill sooner and interact more 

naturally. The empirical findings demonstrate the 
benefits of this approach compared to scenarios 

where a new NPC in a game cannot lend skills 

from a fellow NPC and needs to be trained based 

on human performance from scratch. For 

instance, inter-domain learning allows sharing of 

knowledge as well as prior experiences among 

fellow NPCs within one domain. The second sub-

category is cross-domain learning. Studies [68, 

73] demonstrate that this design pattern can 

facilitate the human-AI cooperation in the long 

term because it allows NPCs to transfer their skills 

from one domain onto new fields and enable 

NPCs with more general capabilities. This can 

positively influence trust of humans in NPC by 

simulating human learning processes and creating 

a sense of likeness in terms of cognitive 

capabilities. Inter-domain learning is particularly 

important in games that feature importing NPCs 

from one game to another. For instance,      agents 

that were trained on how to ride a bike could 

explicitly utilize that knowledge for riding a 

motorcycle in a new context. However, the bulk 

of the empirical studies apply features that allow 

humans to learn from an NPC or vice versa. In the 

empirical papers, NPCs training has been 

achieved through e.g., the usage of learning by 

demonstration [35], optimization algorithms 

(such as Reinforcement Learning [81–84]), or 

Supervised Learning (e.g., Artificial Neural 

Networks [78, 79]) approaches.  

Several studies apply design patterns that 

enable NPCs to learn from human gameplay. 

These approaches serve to create profiles of 

human players and train for imitation (used in 11 

papers), exploiting shared memories (used in 6 

papers), or utilizing external hardware (such as 

EEG-based BCI devices [48], webcams or Kinect 

systems [45], used in 4 papers) to capture 

movements and emotions in real time.  
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The review emphasizes that certain design 

approaches are particularly suitable for supporting 

humans to learn from their NPC counterparts. In 

7 studies, this is accomplished through either 

social comparison, confronting human players 

with NPC decision-making, or deliberately 

controlling the pace of the learning process (e.g., 

through inobtrusive buttons to deliberately call 

NPCs for help [69]). Three features, however, are 

especially prominent in the reviewed studies:  

perspective switching (7 studies), deliberately 

triggering emotions (6 studies), and monitoring 

and adapting difficulty levels (7 studies). 

 

Table 2  
Coverage of patterns related to the ability to 
learn and respond 

Theme Reference 
Humans learn from AI/NPC 

● Confronting human players with 

NPC decision-making 

● Application of social 

comparison 

● Control of the learning process 

● Perspective switching with AI 

● Reinforce learning by triggering 

of emotions 

● Monitoring of PC and adapting 

of difficulty level 

 

[39, 44] 

 

[31–33, 50] 
 

[69] 

[50, 65, 68, 69, 70, 82, 83] 

[36, 52, 59, 60, 71, 80] 

 
[32, 37, 43, 45, 48, 69, 81] 

NPCs learn based on human 

gameplay 

● Mimicking/Modeling of player 

and striving for imitation  

● Learning by demonstration 

● Taking advantage of external 

hardware 

● Exploitation of a (shared) 

memory 

 
 

[24, 32, 37, 65–67, 70, 74–

77] 

[31, 35] 

[37, 38, 45, 48] 
 

[2, 31, 56, 62, 81, 85] 

NPCs learn from fellow 

NPCs/AIs 

● Inter-domain learning 

● Cross-domain learning 

 

 

[72, 73] 

[68, 72] 

4.3. Other NPC design categories 

The review highlights the importance of 

responsiveness for facilitating effective NPC-PC 

cooperation, which was reflected in the amount of 

coverage across the studies. Nonetheless, this 

review identifies five further categories with 

design features that can improve the human-AI 

interaction.  

Appearance comprises features related to 

anthropomorphism, such as human likeness, 

customization, tone of voice, facial expression, 

and embodiment (cf. [38, 44]).  The patterns of 

this category can play a vital role in the 

cooperation because the player’s perception of the 

NPC highly affects the team dynamics [2]. 

Moreover, several different communication 

patterns are found: a) the applied modalities (such 

as text-based, natural language or BCI), b) 

verbal/non-verbal communication enriched by 

gestures, body language, levels of assertiveness, 

and c) the direction of communication (e.g., PC-
NPC, NPC-NPC, PC-PC, see [31] and [56]). The 

results indicate that lively conversations with 

references to real-world experiences [17] and 

situations are more effective in terms of 

engagement and player enjoyment than non-

interactive, pre-programmed NPC conversations.   

The category emotional aspects comprises 

patterns related to empathy, the power of narrative 

and backstories, embedding motivational 

elements such as points, scores and leaderboards, 
humor/satire, and love [6, 26, 70]. This is visible, 

for instance, in the study of Mallon and Lynch 

[62] that recommends integrating elements of 

romantic relationships with NPCs to add an 

additional dimension of human experience and 

creating more intriguing PC-NPC partnerships.  

Further, our data show that the NPC’s degree 

of autonomy and personality traits are relevant 

design patterns we summarize as behavioral 

characteristics. These contain the degree of 

involvement of an NPC in the PC’s game 

experience and an NPC’s own agenda (cf. e.g., 

[50, 52]). Creating unique NPCs and controlling 

when and how they intervene are demonstrated to 

be promising ways to increase the player’s 

curiosity and facilitate immersion [31, 44]. 

Lastly, the category PC-NPC and NPC-NPC 

team structures captures features related to the 

team dynamics and the role of each actor in 

sociotechnical systems. Our results indicate that 

NPCs that possess knowledge about previous 

incidents and preferences of the player can more 

easily create a personalized game atmosphere. 

Through design patterns that allow NPCs to build 

memories, a collection of relevant shared 

experiences with the player are created. By taking 

advantage of this wealth of shared experiences 

and proactively suggesting actions based on 

previous player preferences, the NPC comes 

across as a non-static and adaptable counterpart 

[72]. This, in turn, serves to strengthen and mature 

the relationship with the player [56]. Additionally, 

taking turns with the human can create a more 

captivating experience since the NPC’s reactions 

appear more natural and may remind the player of 

human-human conversations. This pattern is 

especially useful in dialogues [38] or when 

elaborating choices at decision points [44]. 
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5. Discussion 

This study investigates design patterns of 

NPCs that facilitate cooperation between NPCs 

and human players in existing research. This adds 

to previous research in the field of companion 

design [25, 26] through a broader consideration of 

this relevant phenomenon. The study’s main 

contribution is an explorative elaborated novel 

overview of categories and design patterns that 

advance our understanding of how specific design 

features facilitate human-AI cooperation.  

This research illustrates that reaching a high 

level of NPC believability is a difficult mission. It 

involves elements such as goals, proper reaction 

abilities, non-verbal communication [9], emotion 

and social-emotional cognition [10], dynamic 

dialogues [20], adapting to the player [21], and the 

quest for more meaningful interaction [22]. The 

study discovers that several clusters exist, such as 

feedback mechanisms that aim to influence player 

behavior or approaches of mutual learning.  

To the best of our knowledge, this research is 

the first work to holistically investigate NPC 

learning processes in video games. The systematic 

screening of the existing body of knowledge 

reveals that learning can occur on several levels: 

a) NPCs being either directly responsible for it by 

triggering emotions or allowing for perspective-

taking, stimulating, or teaching humans, b) NPCs 

learning based on human behaviors and 

gameplay, c) inter-domain and cross-domain 

learning with NPCs learning from fellow bots.  

Our study adds to previous research in several 

ways: Firstly, this study can offer new pathways 

for developing more compelling NPC characters 

in games and serious games. We recommend that 

designers actively embed NPC feedback 

elements, including direct/delayed feedback or 

NPC-PC co-creation. These features are shown to 

be powerful in influencing people’s decision-
making and behaviors [31]. Consequently, game 

designers should diversify and enrich their NPC-

PC interactions through timely feedback, 

emotional-triggering elements, and by increasing 

the unpredictability through unforeseen actions 

and plot twists. 

Secondly, the results reveal novel approaches 

to human-AI cooperation and can offer practical 

guidance for software developers of AI-based 

solutions. For instance, the review identified that 

certain aspects of NPC design have already been 

implemented in human-robot interaction with 

positive outcomes (cf. [31]). Furthermore, the 

presented design patterns can guide the design of 

future AI systems outside games. For instance, 

designers of AI systems could implement aspects 

of perspective switching with an AI system, as 

shown to be promising in NPC design by [51]. 

Further, design patterns such as the active design 

of perceivable vulnerable AI, reinforcing players’ 

learning processes through deliberately triggering 

emotions, or actively confronting users with the 

reasoning behind an AI’s decision-making could 

guide future AI design for supporting human-AI 

cooperation. 

Thirdly, we found that NPC design 

increasingly employs various patterns related to 

an AI’s learning from the player behavior. This 

trend is illustrated through 23 empirical papers in 
which NPC learning is triggered by human 

gameplay. The corresponding approaches can 

also be very valuable in gamification design. They 

could guide future research on further 

personalization of gamification which is required 

to prevent a one-size-fits-all approach [86]. 

Applying NPC learning approaches in 

gamification may support personalized need 

satisfaction and increase the effectiveness of 

gamification for various target groups. 

Further, our results reveal several 

shortcomings in the current body of knowledge 

that could guide further research in this field: 

1. Future studies should empirically 

investigate the effects of single design 

patterns. The isolated consideration is 

important to assess the applicability as well as 

the actual effectiveness of the identified 

patterns.  

2. Also, gamification research has largely 

overlooked applying NPC designs in non-

game contexts [87]. Future research should 

develop empirically evaluated frameworks 

that can guide scientists and practitioners in 

further leveraging the potentials of NPC 

design outside games. 
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