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Abstract
Regular colonoscopy screening substantially contributes to the prevention of colon cancer, as a polyp found in early stages
can safely be removed. Assisting physicians during screening with automated detection systems can potentially increase
the sensitivity of polyp detection. In this work, we present our polyp detection and tracking approach, submitted to the
EndoCV2022 challenge. The core of our method is a heterogeneous ensemble of YOLOv5 models, each trained with a different
strategy based on external data and varying data augmentation concepts. The output of the ensemble members is merged
with the weighted boxes fusion algorithm, and the final output bounding boxes are reduced in size. Our method yields a
mean Average Precision (mAP) of 0.44 on our validation test set.
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1. Introduction
Colorectal cancer is one of the most commonly found can-
cer types, ranking second in females and third in males
[1]. By detecting and subsequently resecting polyps dur-
ing colonoscopy screenings, the risk of developing the
disease can be reduced significantly. With the advance of
machine learning in the medical domain, deep learning-
based methods have the potential to assist in detecting
these polyps with high accuracy. Generalizability across
diverse and heterogeneous populations, devices and hos-
pitals is a major issue regarding these methods that needs
to be addressed to allow for realistic clinical translation.
The method presented in this paper tackles this issue
by ensembling heterogeneous, complementary training
strategies (see Figure 1). The remaining part of this pa-
per is structured as follows: Sec. 2 first introduces the
data we use and goes on to describe all steps of training
and post-processing the outputs of the models in the en-
semble. Cross-validation results, including ablations, are
reported in sec. 3, which is followed by a brief discussion
in sec. 4.
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2. Methods
Our strategy for algorithm design comprised the follow-
ing steps:

1. Data preparation: Identification and curation (sec.
2.1) as well as splitting (sec. 2.2) of relevant
datasets.

2. Ensemble training: Development of a heteroge-
neous model ensemble for per-frame polyp detec-
tion (sec. 2.3).

3. Tracking: Development of a strategy for leverag-
ing the temporal information in endoscopic video
sequences (sec. 2.4).

4. Post-processing: Development of a post-
processing step to avoid systematic over-
segmentation (sec. 2.5).

2.1. Datasets
The dataset provided by the EndoCV2022 polyp segmen-
tation sub-challenge [2, 3, 4] consists of 46 sequences
of varied length, totalling 3290 image frames and their
corresponding polyp segmentation masks. Furthermore,
we identified four public polyp datasets, namely CVC-
ColonDB [5] (segmentation), CVC-ClinicDB [6] (seg-
mentation), ETIS-Larib [7] (segmentation) and CVC-
ClinicVideoDB [8, 9] (detection). We converted segmen-
tation challenge datasets to detection datasets by comput-
ing the tightest possible bounding box for the provided
segmentation masks.
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Figure 1: Method overview: A heterogeneous model ensemble comprises three YOLOv5 models, each trained with a different
strategy based on external data and data augmentation. The output of the ensemble members is merged with the weighted
boxes fusion algorithm and passed on to a Norfair tracking-based algorithm. The final output bounding boxes are reduced in
size.

2.2. Validation strategy
We split the 46 EndoCV2022 sequences into four folds
using the GroupK-Fold algorithm from the sklearn library
[10]. The split was based on the sequence ID in order to
prevent leakage, and we stratified based on the sequence
length to have a balanced number of frames per fold. We
used the validation performance on the left out fold for
selecting our model checkpoints in the ensemble. For
a faster training and inference time, we used two out
of the four folds for both training and validation. As a
validation metric we used the mean average Precision
(mAP) over the Intersection Over Union (IoU) threshold
range between 0.5 and 0.95 (mAP@[.5 : .95]) as proposed
by the organizers of the EndoCV2022 challenge.

2.3. Heterogenous model ensemble
We based our method upon YOLOv5x6 and YOLOv5l6
[11] as our detection models as we identified them as
being a good compromise between accuracy and speed.
To build our heterogeneous model ensemble, we tested
different augmentation strategies aimed to improve the
model generalization. We group our trained models in
three categories, based upon model architecture and the
training data. Each category comprises models trained
upon two of the folds.

1. Model M_H-AUGMENT: YOLOv5x6 trained with
images of size 768x768 with heavy image augmen-

tations. The augmentations applied on the first
fold comprise mosaic and mixup augmentations
with a probability of 1.0 and 0.5, respectively, Hue-
Saturation-Value (HSV) channel enhancements
with a maximal magnitude of 0.2 each, horizontal
flip, vertical flip and Copy-Paste augmentation
with a probability of 0.5 each as well as a final
rotation of up to 25 degrees. We will refer to
this combination of augmentations as the "default
augmentation pipeline". The augmentations on
the second fold are almost identical, setting the
HSV enhancement to more deliberate magnitudes
0.015, 0.7 and 0.4. In addition, the Copy-Paste aug-
mentation was omitted.

2. Model M_L-AUGMENT: YOLOv5l6 trained with
images of size 768x768 with light image aug-
mentations. On the first fold, we drastically re-
duced the default augmentation pipeline: Omit-
ting mixup, vertical flipping, rotation as well as
Copy-Paste transform. Furthermore, we used the
deliberate HSV magnitudes again. The augmenta-
tions on the second fold are closer to the default
augmentation pipeline in terms of augmentations
used. The single difference is to drastically re-
duce the magnitude of mosaic from 1.0 to 0.2. We
aimed to bring diversity to the ensemble by in-
cluding both models trained with light and heavy
augmentations.

3. Model M_E-DATA: YOLOv5l6 trained with the



resized external data described in sec. 2.1. The
first fold was trained with images of size 768x768
while the second fold with images of size 512x512.
With the enriched training data, comprising addi-
tional 13,251 frames from additional data sources,
this model specifically targeted generalizability
to new settings.

All models were initiated with the standard-pretrained
weights on the COCO dataset [12] and trained for 20
epochs. In cases of slow convergence, the training pe-
riod was extended up to 40 epochs using a Stochastic
Gradient Descent optimizer with momentum set to 0.937,
a learning rate of 0.01 and complete intersection over
union (CIoU) loss [13] as the loss function. We saved the
weights on the epoch with the best mAP score based on
the validation data for the current fold. The predicted
bounding boxes of each model were post-processed using
the Non-Maximum-Suppression (NMS) algorithm with
an IoU threshold of 0.5, to pick one bounding box out of
many overlapping entities. To ensemble the bounding
box predictions of multiple models, we used the weighted
boxes fusion (WBF) algorithm [14] with an IoU threshold
of 0.5 and the skip box threshold of 0.02. All models were
weighted equally.

2.4. Tracking
In order to leverage the temporal information in the video
sequences, we added a second stage tracker on top of the
detection model to track the bounding boxes. We used
Norfair [15], a multiple-object tracker, to track the polyps
by calculating the Euclidean distance between the already
tracked polyp and the prediction provided by the detec-
tion model. The tracker only considers bounding boxes
within a distance of a set threshold to each other. On a
1080x1920 image, we experimented with several distance
thresholds in the range 50px-250px, minimum hit inertia
values in the range of 3-30, maximum hit inertia values
in the range 6-50, and initialization delay values in the
range of 1-20. The best results were obtained with a dis-
tance threshold of 50px, minimum hit inertia value of 10,
maximum inertia value of 25 and an initialization delay
of 10.

2.5. Post-processing
While bounding boxes are generated from the segmen-
tation masks and are calculated to fit tightly around the
polyp, the predictions by object detection models tend
to cover more surface than the reference labels, which
results in the inclusion of false-positive pixels inside
the bounding box. To avoid this over-segmentation, we
shrink the bounding boxes with a confidence score higher
than 0.4 by 2% of their size.

3. Results
In the interest of a shorter inference time, we only con-
sidered the models M_L-AUGMENT, M_H-AUGMENT
and M_E-DATA trained over two folds out of the original
four folds for evaluation and inference. Table 1 compares
the results of the three models averaged over two folds
and validated on their respective validation fold. We in-
ferred the models with the following hyperparameters
configuration: a confidence threshold of 0.01 and im-
age size of 768x768 for the models without external data
and image size of 512x512 for the models with external
data. Our best single model M_L-AUGMENT obtained
an mAP@[.5 : .95] score of 0.42 on the validation set.
With the ensemble of three different models trained with
post-processing, we obtained the best performance of
0.44 mAP@[.5 : .95] on the validation split thanks to
the variation in model architectures and augmentations.
Adding the bounding box tracking to the pipeline did
not improve performance with respect to the entire area
under the precision-recall curve, as measured by mAP.
However, we observed improved F2 scores at relevant
working points of the curve and leave an in-depth analy-
sis of potential benefits to future research.

Table 1
Mean Average Precision (mAP) scores of the selected
models and the ensemble with tracking and post-
processing.

Model AP AP50 AP75

M-L_AUGMENT 0.42 0.55 0.46
M-H_AUGMENT 0.37 0.56 0.45
M-E_DATA 0.33 0.49 0.37
Ensemble 0.43 0.59 0.49
Ensemble + tracking 0.42 0.59 0.49
Ensemble+ post-processing 0.44 0.60 0.50

4. Conclusion
We presented a new approach to polyp detection in en-
doscopic video sequences that leverages a heterogeneous
ensemble of YOLOv5 models to achieve generalization.
According to our analyses, the biggest performance gains
were obtained from application-specific augmentation
strategies and the ensemble of different architectures.
Future work should aim for generating substantial per-
formance gains by incorporating temporal information.
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