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Abstract
The detection of polyps is helpful to the diagnosis of early colorectal cancer. With the rapid development of deep learning,
more and more researchers apply detection and segmentation technology to assist polyp detection. This work is our solution
to the polyp segmentation subtask in the EndoCV2022 challenge. We come up with the idea from the semi-supervised video
object segmentation and build on STCN [1] for this challenge. STCN is built for the task when the correct segmentation
mask of the first frame of the video is given as input, then the model just tracks the target, no matter what it is. We modify
STCN into a sequence polyp segmentation network named improved-STCN, which can not only segment the polyps but also
track the polyps. As EndoCV2022 challenge [2] [3] is a sequence challenge, the images in the same sequence are very similar,
which will lead to bad performance. Thus, we adopt semi-supervised learning to get more abundant data for training. We
also carry out experiments on how to make the segmentation results more credible, that single frame detection and reverse
sequence information will help in this part. Finally, on the round-II test, our system achieves a segmentation score of 0.7654
and ranked the second.
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1. Introduction
Colorectal cancer (CRC) is a common malignant tumor in
the gastrointestinal tract. Its incidence rate and mortality
rate are the second most important in digestive system
cancer, followed by gastric cancer, esophageal cancer
and primary liver cancer. Polyp is considered a sign of
precancerous lesions, thus, finding it at any time during
precancerous lesions and blocking it not only reduce the
mortality of colorectal cancer, but also reduce the inci-
dence rate. Colorectal lesions are usually diagnosed by
colonoscopy, but unfortunately, it is estimated that about
6-27% of pathological missed diagnosis in colonoscopy
[4]. Colonoscopy image analysis and decision support
system have shown great potential in improving examina-
tion efficiency and reducing the number of missed lesions
[5]. Deep learning is more and more widely used in the
field of medical images. Since MICCAI 2015 Automatic
Polyp.

Detection in Colonoscopy Videos challenge, more and
more datasets and challenges have been launched, which
further promote the application of deep learning-based
endoscopic vision [6]. Among them, the most widely
used deep learning model is Unet [7] and its variants.
The Unet consists of two paths. The first path is a com-
pression path (also known as an encoder) that captures
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Figure 1: Example of EndoCV2022 challenge sequence data

the context in the image. The encoder is just a tradi-
tional convolution and maximum pool layer stack. The
second path is the symmetric spread path (also known
as the decoder), which is used for precise positioning
using transpose convolution. This structure has been
proved to be able to segment medical images effectively.
However, for sequence data in real scenes, this kind of
method can not effectively model timing information.
In the field of video object segmentation, the model is
trained to extract the relationship between video frames
to improve the performance of segmentation. Masktrack
[8] is a typical network of video object segmentation.
Taking the mask of the previous frame and the current
frame as the model input, the trained model will outputs
the mask of the current frame with high segmentation
accuracy. However, the performance of this method often
depends on the accuracy of the output of the previous
frame, which has the risk of cumulative error. This work
is our solution to the polyp segmentation subtask in the
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Figure 2: Overview of the improved-STCN

EndoCV2022 challenge. The proposed approach is built
on STCN, a semi-supervised video object segmentation
network. In particular, we modify STCN into a sequence
polyp segmentation network ,which can not only seg-
ment the polyps but also track the polyps. In short, our
main contribution for this work are as follows:

• We modify STCN into a sequence polyp seg-
mentation network, which will no need the first
frame’s mask to predict like it used to be. And we
also practice the experiment on training strategy
to find a stronger model.

• We learn from semi-supervised learning to gener-
ate more training data, as the image of the same
sequence have great similarity, which is not con-
ducive to the improvement of network general-
ization and feature extraction ability.

• We propose an enhanced scheme to make the
segmentations results more credible. Overall,
our method is proved to be effective in the En-
doCV2022 challenge round-I and round-II.

2. Method

2.1. Overview of the framework
Figure 2 shows the overall process of the improved-STCN.
The network use ResNet50 and ResNet18 to build a key

encoder and a value encoder respectively. The key en-
coder encodes the images into the key feature space and
the value encoder encode both the images and mask into
the value feature space. The key correspond with value
one by one will be stored in the memory bank. Then,
when a new frame in the video sequence is collected, the
frame will be encoded into the key feature space firstly,
and then calculate the similarity with the key features
of the previous frame stored in the memory bank. The
most similar features will be combined into the feature
space of the current frame for model outputs. Here, the
negative square Euclidean distance is used as similarity
functions, which is defined as follows:

𝑆 = −||𝐾𝑃 −𝐾𝐶 ||22 (1)

where 𝐾𝑃 represents the previous frames’ key fea-
tures, 𝐾𝐶 represents the current frames’ key feature.
Then the aggregated readout feature 𝑉 𝐶 for the current
frame can be computed as a weighted sum of the memory
features with an efficient matrix multiplication:

𝑉 𝐶 = 𝐶𝑃 .𝑆 (2)

which is then passed to the decoder for mask generation
[1].

STCN is used to meet the semi-supervised video object
segmentation task where the first frame of the video is
needed. We have specially improved the STCN’s struc-
ture named improved-STCN for EndoCV2022 challenge.



Figure 3: Overview of the enhanced scheme

In particular, we firstly hidden memory bank and affin-
ity compute module, then add a convolution module to
get the single frame segmentations network (SFSN), as
shown in the red dashed box in the figure 2. In the train-
ing phase, we train the SFSN only to make the encoder
and decoder strong. Then the parameter of SFSN will be
the pre-training parameters for STCN’s training. In the
inference phase, for the first frame, SFSN will outputs
the result firstly, then STCN will track the mask and com-
plete the predictions of all subsequent sequences. In this
way, improved-STCN build the ability of single frames’
segmentation without the help of other frames. Finally,
the improved-STCN can not only segment the polyps but
also track the polyps that appear in the previous frame.

2.2. Semi-supervised learning
Due to the small field of vision of the endoscope and
the slow movement during endoscopy, the sequence data
collected over a period of time are highly approximate,
as figure 1 shows. These approximate data are not con-
ducive to the improvement of network generalization
ability and feature extraction ability. We learn from semi-
supervised learning to generate more training data. In
practice, firstly, we use all the EndoCV2022 challenge
Dataset and STCN to train the polyp tracking model.
Then we manually annotate the first frame of the Hyper-
Kvasir videos [9], and the polyp tracking model will gen-
erate the pseudo labels. In this way, we get more abun-
dant sequence data with labels, which is helpful for our
model’s learning.

2.3. Enhanced scheme
Although the model mentioned in the Subsection 2.1
has the ability to segment and track the polyps, we find
that train two models to segment and track polyps sepa-
rately will get better results. As figure 3 shows, SFSN that
change from STCN is used to segment the polyps in the
first few frames of the sequence data. Meanwhile, STCN
will also outputs the segmentation results. The results of
the two models will use the same calculation method to
obtain confidence, which is defined as the average value

Figure 4: EndoCV2022 challenge Dataset statistical

of the network output response in the segmentation tar-
get area. Then the key encoder and value encoder of
STCN will encode the segmentation results with higher
confidence and store the coding results in the memory
bank. The prediction of all subsequent sequences will be
completed next.

Sequence information is helpful for model segmen-
tation. Usually, we use forward sequence information.
As for offline diagnosis, such as capsule endoscopy di-
agnosis, we can take advantage of backward sequence
information. Thus, we reverse the input sequence data
and make the model to predict. Then, fuse the forward
sequence data results and the backward sequence data
results as the final output of the network. Here, fuse
method is the same as the above, that is comparing the
confidence in the segmentation result and select the one
with higher confidence as the final result.

3. EXPERIMENTAL RESULTS
The experimental part is mainly composed of two part-
snamed baseline experiments and experiments used for
the challenge. In part one, the baseline experiments were
used to find the suitable hyper-parameters and data aug-
mentation strategy for the training of improved-STCN.
Besides, we carried out the semi-supervised learning men-
tioned in the Subsection 2.2. We also explored the effects
of illumination and size on model’s performance. In part
two, we used the same train strategy as the part one to
train model with all the dataset we have, and tested model
with the Endocv2022 challenge unseen dataset. The en-
hanced scheme was adopted to get the more credible
segmentation results.



3.1. Dataset
The EndoCV2022’s organizing committee provided a to-
tal of 46 sequence data for all participants. According to
the statistics, the EndoCV2022 challenge Dataset consists
3348 frames sampled in the real-world clinical scenario.
As figure 4 shows, most polyps are around 400 in size
while a few polyps are larger than 800. Due to the differ-
ent sizes of polyps and images, we need to pay attention
to using some strategies to reduce the sensitivity of the
network to resolution, such as Multi-scale training. Al-
though polyps have different shapes and sizes, the image
of the same sequence data have great similarity, which is
not conducive to the improvement of network’s general-
ization and feature extraction ability. Thus, in baseline
experiments, we split the EndoCV2022 challenge Dataset
into 80% for training and 20% for validation in sequence.
To enhance the generalization and feature extraction abil-
ity of our model, we also utilized three well-known pub-
licly endoscopy sequence datasets, ETIS-Larib Polyp [10],
CVC-Clinic [11], and Hyper-Kvasir dataset. ETIS-Larib
Polyp DB were used directly as a training set. CVC-Clinic
were used as validation set as more data can better eval-
uate the generalization of the model. As HyperKvasir
dataset has only video data and no labels, we adopted
the method mentioned in the subsection 2.2 to generate
labels. Then, these sequence data with pseudo labels
were also used as a training set. In the experiments for
challenge, we used the same train strategy as the baseline
experiments, and trained model with all the dataset we
have

3.2. Evaluation Metrics
The EndoCV2022’s organizing committee provided par-
ticipants a toolbox to calculate the scores between the
predicted mask and the ground truth mask at github
[12, 13]. There are seven metrics in the toolbox: Jaccard
(Jac), Dice, F2-score, Precision (Positive Predictive Value,
PPV), Recall (Rec), Accuracy (Acc), and Hausdorff dis-
tance (Hdf). As these metrics are similar, and to make
experiments more efficient, we chose the most commonly
used metrics for the medical image segmentation, the Jac-
card and the Dice coefficient. The Jaccard is defined as
follows:

𝐽𝑎𝑐 =
𝑇𝑃

2 * 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(3)

Where TP represents true positive "polyp", while FP
and FN represents false positive and false negative re-
spectively. Similarly, the Dice coefficient is calculated as
follows:

𝐷𝑖𝑐𝑒 =
2 * 𝑇𝑃

2 * 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4)

EndoCV2022 leaderboard also chosen the Dice coefficient
as the scores to evaluate the performance of the model.

3.3. Training Details
We chose PyTorch to train our model, and both the train
and inference were run on the NVIDIA TESLA V100
GPU. Here, we minimized the cross-entropy loss using
Adam optimizer with default momentum 𝛽1 = 0.9, 𝛽2
= 0.999. The learning rate lr=0.0001 and the batch size
was set to 16. The input image size of the model was
384 × 384 pixels As it was an sequential learning task,
the maximum temporal distance between frames was
set to be [5,10,15,20,25,5] at the corresponding iterations
of [0%,10%,20%,30%,40%,90%] of the total 20000 training
iterations We also adopted the strategy to make the model
pay more attention to the learning of difficult pixels. After
15000 iterations, only the top-20% pixels that had the
highest loss would be selected to compute gradients. As
we describes in the subsection 3.1, we added multi-scale
training strategy to train model. The initial input image
size of the model was 384 × 384 pixels, the model would
be trained with multi-scale training parameters 0.75, 1,
1.25.

3.4. Experimental Results
Table 1 shows the Ablation study result of Endocv2022
validation and CVC-Clinic datasets. Firstly, we see that
when we use semi-supervised learning, the dice coeffi-
cient of the model in the Validation Set (EndoCV2022
validation + CVC-Clinic) has increased by 3%. It proves
that adding more sequence data for model to learn does
help .Secondly, colonoscopy is a product of a combined
light source, thus, the collected images are either very
bright or very dark. We set color jitter of (brightness=0.5,
contrast=0.03, saturation=0.03) to simulated light change.
In this way, the dice coefficient improves to 0.7694. Fig-
ure 5 shows that images cases which the base model can
not segment benefit from this approach. Lastly, we see
that the scale of images will affect the performance of
the model. The multi-scale training strategy reduces the
sensitivity of the model to image resolution, as the dice
coefficient of the model improves to 0.7800.

Table 2 provides our model’s segmentation results on
EndoCV2022 challenge segmentation task. Firstly, the
improved-STCN model we have trained for polyp seg-
mentation have an excellent performance on the unseen
dataset while the dice coefficient is up to 0.7423.This re-
sult already make us ranked the top5 on the leaderboards.
When we adopt the two methods mentioned in the sub-
section 2.3, the dice coefficient has increased by 2% and
by 3% respectively. From the results, we see that our en-
hance scheme mentioned above does help. Unfortunately,



Table 1
Ablation study result of Endocv2022 validation combined with
CVC-Clinic datasets

Method Dice IOU

base 0.7338 0.6701
semi-supervised learning 0.7613 0.6894
semi-supervised learning

+ Light Change
0.7694 0.7058

semi-supervised learning
+ Light Change + Multi-scale training

0.7800 0.7237

Figure 5: Comparison of model segmentation under strong
light and low light (a) shows model trained with light change
strategy has better performance, as (b) can not distinguish
the target.

Table 2
Results on EndoCV2022 segmentation task round II test set

Method Dice std

STCN 0.7423 0.3756
STCN + SFSN 0.7613 0.3571

STCN + Reverse Sequence 0.7694 0.3543

Figure 6: Example of model segmentation results on EndoCV
2022 round-II.(a) shows the easy case for model and (b) shows
the hard case in complex scenarios.

as figure 6 shows, our model does not recognize objects
in complex scenarios, such as dim and dark scenes.

4. Conclusion
In this work, we have detailed our solution for the polyp
segmentation subtask in the EndoCV2022 challenge. We
have proposed improved-STCN network with a semi-
supervised learning method to improve model’s general-
ization and an enhanced scheme to make model output
more credible results. Limited experimental results show
that our method achieves consistently high Dice scores
at very low standard deviations, suggesting its suitability
for polyp segmentation on endoscopic sequence data.
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