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Abstract

We introduce a mask classification model with a transformer decoder for polyps segmentation in endoscopy images. Our
novel approach combines custom data pre-processing, a modified mask classification network, test time augmentations, and
connected-component analysis. We show the successful performance for polyp semantic segmentation and detection tasks in

EndoCV 2022 challenge.

1. Introduction

Endoscopy is a widely used procedure for detecting and
diagnosing multiple diseases. Computer-aided endo-
scopic image analysis and decision support systems can
help doctors with diagnosis and increase its effectiveness.
Such systems are mainly used to detect, localize, and
segment cancer precursor lesions, also called “polyps.”
EndoCV challenge [1, 2, 3, 4] aims to tackle the gener-
alizability aspect of such methods. In 2022, it has two
sub-challenges (Endoscopy artefact detection) EAD 2.0
and (Polyp generalization) PolypGen 2.0. Both tracks set
detection and segmentation tasks on a diverse population
dataset. This work describes our solution to the EndoCV
2022 challenge on the polyp segmentation and detection
tracks.

The dataset of EndoCV 2022 challenge [1, 2, 3, 4]
is diverse and comprises images from various endo-
scope types. This presents an additional difficulty to any
computer-aided system. We decided to simplify the input
by cropping out the uninformative part and generalizing
the input image at pre-processing step.

Standardly, the semantic segmentation task is solved
as a per-pixel classification problem, applying a classifi-
cation loss to each output pixel. An alternative approach
is mask classification which, instead of classifying each
pixel, predicts a set of binary masks, each associated
with a single class prediction. Authors of MaskFormer
[5] proposed a modern approach last year by using mask
classification to solve both semantic- and instance-level
segmentation tasks in a unified manner. This model pre-
dicts a set of binary masks corresponding to a single
global class label. MaskFormer [5] outperforms per-pixel
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classification baselines on natural scenes.

We propose to use a mask classification-based method
for polyp segmentation in endoscopy data. We are the
first to test this model on endoscopic images to our best
knowledge. We also customize parts of MaskFormer [5]
architecture and show its successful performance for
polyp detection.

To increase the robustness of our solution, we add
test time augmentations (TTA) and perform connected-
component analysis (CCA).

Our contribution can be summed up as follows:

« Evaluated and showed the performance of mask
classification method - MaskFormer on en-
doscopy data. Added custom modifications that
improve results of MaskFormer for polyp segmen-
tation.

« Presented a step-by-step pre-processing mecha-
nism for training and inference

« Tested the impact of different loss functions

+ Added custom post-processing using test time
augmentations and connected-component analy-
sis

2. Data Pre-processing

The PolypGen2.0 subchallenge dataset consists of 46 se-
quences with 3348 images with polyp labels. Different
endoscopes produced these images with various sizes
and artifacts - black section located at the left part of the
image, blue rectangle with endoscope position, text arti-
facts, and others. Overall, we can distinguish 15 types of
images among these sequences. Statistics about different
types is shown on Fig 2.

For train and validation set, we divided sequences
into groups using mannually labeled endoscope im-
age types. For validation set we selected sequences
seql, seql_endocv22, seq2_endocv22, seq3, seq3_endocv22,
seq5_endocv22,
seq7_endocv22, seq10, seq13_endocv22, seq14_endocv22,
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Figure 1: Our Pipeline. The main stages include: pre-processing, MaskFormer with modified queries, post-processing via

test time augmentation and connected-component analysis
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Figure 2: Different endoscope image types

seql15, seq17, seq19_endocv22, seq21_endocv22, and
seq24_endocv22. Other sequences were used in training
set. Overall, our train set contains 3306 images and vali-
dation set contains 649 images, which is 19,63% of total
image number.

To bring all images to the same view and use the most
informative regions during training, we make simple pre-
processing and automatically crop images cutting black
areas on the left and right sides of the input. To do that,
we take the center row of the image, sum up values of
RGB channels in this row and use a threshold equal to
438. Continuous left and right parts under this threshold
are considered redundant and cut. Examples of cropped
images are shown in Fig 3. This cropping improves the
informativeness of images and model generalization.

3. Method

We chose MaskFormer [5] as the primary model for our
approach. MaskFormer approaches the problem of se-
mantic segmentation as a classification of masks. This
approach is an alternative to the per-pixel classification,
which predominates in semantic segmentation problems.
Instead of classifying each pixel separately, mask clas-
sification approaches disjoins the process of semantic
segmentation into a division of the image into regions
and classification of these regions. Such an approach
is general enough to solve semantic and instance seg-
mentation problems. MaskFormer is divided into three
modules: pixel-level, transformer, and segmentation.

3.1. Pixel-level module

This module is an encoder-decoder architecture typically
used for the semantic segmentation task. The encoder
part (a backbone) generates a high-level feature repre-
sentation of the image. Further, we obtain pixel-level
embeddings by iteratively upsampling feature represen-
tation from the encoder. Since this is a typical problem
setting for a per-pixel classification semantic segmenta-
tion task, any model of this type can be plugged into this
module.

3.2. Transformer module

Transformer module generates N learnable positional
embeddings (i.e., queries) as in DETR[6], which encodes
global information about each segment of MaskFormer
prediction. This module architecture is adapted from
transformers[7], popular for sequence data. In contrast
to the standard transformer architecture, each object is
decoded in parallel. In Transformer module each output
is predicted in an autoregressive manner. The attention
mechanism encodes information about the relation of



Figure 3: Examples of cropped images. First column - before,
second - after our pre-processing procedure

these segments and enhances them with the image con-
text.

3.3. Segmentation module

The segmentation module utilizes a linear classifier and a
softmax activation function to acquire class probabilities
from each query. Note that we have only two distinct cat-
egories of object and no object in the case of the EndoCV
PolypGen subtask. An MLP with two hidden dimensions
converts queries into mask embeddings for further con-
version. The dot product between mask embeddings and
per-pixel embeddings is used to calculate mask predic-
tions.

3.4. Model training

We need one-to-one correspondence between ground
truth labels and predictions to calculate losses. This prob-
lem is solved as in DETR via bipartite matching. Mask
and class predictions are used instead of bounding boxes
to calculate costs.

Model training given matching is performed by utiliz-
ing mask classification composed of cross-entropy classi-
fication loss and a binary mask loss.
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where mask loss is a linear combination of dice and focal
loss as in MaskFormer.

Since we exploited MaskFormer for binary segmenta-
tion, most ground truth classes for each query will be

zero, and the cross-entropy loss will rapidly converge to
zero. Therefore we changed cross-entropy loss to focal
loss to mitigate class imbalance in the classification. We
have experimented with Boundary loss, which showed
promising results in other medical imaging tasks. For
our results with this loss, refer to Section 5.2.

3.5. Our modifications

The MaskFormer’s transformer module’s has an ability to
reason about connections in different localities of the im-
age and make distinct predictions for each segment. The
model was designed for such large datasets as ADE20k
and COCO-Stuff-10k. Whereas the challenge dataset is
small compared to them, some model hyperparameters
were changed to increase the performance and gener-
alizability of our model. We decreased the number of
queries from 100 to 50, FC layers dimensionality from
2048 to 24, and pixel- from 256 to 64. We use a standard
convolution ResNet backbone (R50 with 50 layers) in-
stead of SWIN because transformer backbones have poor
performance on datasets with few samples and this was
proven in our experiments as well. We use the same pixel
decoder as described in [5]. Normalization coefficients
were recalculated for the PolypGen dataset.

4. Post-processing

Test time augmentation is widely used to increase the
model’s robustness in deep learning. This procedure
makes the final prediction by averaging the predictions
after several separately performed augmentations. Our
TTA includes horizontal and vertical flips, rotations for
90 and 180 degrees, scaling the input from original size
down to 50% of the original size.
Connected-component analysis We perform
connected-component analysis of predicted labels during
inference. The algorithm divides the segmentation mask
into components according to the given connectivity.
CCA can have 4 or 8-connected-neighborhood. We
remove all smaller parts from the prediction based on
the largest connected component.

5. Experiments

We compare our approach against CaraNet [8] which is
one of the state-of-the-art methods for polyp segmen-
tation. This model has proven to be effective on many
endoscopy datasets including Kvasir-SEG [9]. On this
challenge, however, CaraNet with default parameters
shows a good Precision score of 0.6041, but much worse
Dice than our proposed solution, refer to Tablel. In our
experiments MaskFormer is capable of capturing more
cases of polyps presence.



Table 1
Metrics on our local validation set. MF stands for MaskFormer.

Method Dice Dice std | Type2 error
CaraNet 0.37516 | 0.31954 0.71444
MF 0.73587 | 0.30823 0.28758
MF + TTA + CCA | 0.75717 | 0.32518 0.27494

predicted mask with TTA and CCA

predicted mask with TTA and CCA

Figure 4: Examples of images where TTA and CCA improved
predicted masks

5.1. TTA and CCA impact

TTA and CCA impact on result on our validation set is
provided in Table 1. We observe that TTA and CCA in
most cases help to decrease false positive regions. For
images where TTA and CCA improved predicted masks,
see Fig. 4.

5.2. Boundary loss

We use a combination of cross-entropy classification loss
and a binary mask loss for each predicted segment dur-
ing training. The binary loss is a linear combination of
focal, and dice losses [10]. We also experimented with
other losses. Boundary loss [11] was initially proposed
for highly unbalanced segmentation, for instance, when
the size of the target foreground region is several times
less than the background. It works as a distance metric on
the space of contours; computing active-contour flows
through a non-symmetric L2 distance on the space of
contours as a regional integral. This method has shown
remarkable results on medical images, for example, in the
task of white matter hyperintensities segmentation. How-
ever, our experiments didn’t show any positive impact of
boundary loss for polyp segmentation. It decreased the
performance severely, refer to the comparison in Table 2.

Table 2
Metrics on round 2 test data of PolypGen2.0 track in En-
doCV2022 challenge. MF stands for MaskFormer.

Method Dice Dice std | Type2 error
MF 0.5497 | 0.4319 0.556
MF + boundary loss | 0.3346 | 0.3631 0.400

6. Discussion

We assume that including sequence information as an
input to MaskFormer [5] can potentially improve the re-
sults. Since the original MaskFormer architecture starts
with a regular convolution, one could combine sequences
into a volume and pass it as a separate channel for the con-
volutional layer. Another option is to use a Mask2Former
[12] model, which was created for video segmentation
and inspired by MaskFormer. Mask2Former [12] is based
on Masked-attention Mask Transformer for universal
image and video segmentation. It is possible to incorpo-
rate their idea in combining the images from the same
sequence into a single input with additional dimension
responsible for time frames.

7. Conclusion

We are first to show the mask classification-based model
performance on endoscopy data. We use MaskFormer [5]
as the main component of our approach, adding modifi-
cations to the number of queries, for instance, decreasing
the number as polyp segmentation is a binary segmen-
tation task. We also introduce a simple pre-processing
technique for endoscopy images, which helps to remove
redundant information from the input. This step simpli-
fies the learning of meaningful features for the model.
Moreover, we add test time augmentation and connected-
component analysis at post-processing. Combining all
these components achieves a 54.97 Dice score on round
2 validation in the EndoCV2022 challenge.

In this work, we also experiment with boundary loss
for MaskFormer [5] and show that it doesn’t bring im-
provements in the polyp segmentation task.

References

[1] S. Ali, D. Jha, N. Ghatwary, S. Realdon, R. Can-
nizzaro, O. E. Salem, D. Lamarque, C. Daul, K. V.
Anonsen, M. A. Riegler, et al, Polypgen: A
multi-center polyp detection and segmentation
dataset for generalisability assessment, arXiv
preprint arXiv:2106.04463 (2021). doi:10.48550/
arXiv.2106.04463.


http://dx.doi.org/10.48550/arXiv.2106.04463
http://dx.doi.org/10.48550/arXiv.2106.04463

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

S. Ali, M. Dmitrieva, N. Ghatwary, S. Bano, G. Polat,
A. Temizel, A. Krenzer, A. Hekalo, Y. B. Guo, B. Ma-
tuszewski, et al., Deep learning for detection and
segmentation of artefact and disease instances in
gastrointestinal endoscopy, Medical Image Analy-
sis 70 (2021) 102002. URL: https://doi.org/10.1016/j.
media.2021.102002. doi:10.1016/j .media.2021.
102002.

S. Ali, F. Zhou, B. Braden, A. Bailey, S. Yang,
G. Cheng, P. Zhang, X. Li, M. Kayser, R. D.
Soberanis-Mukul, et al., An objective comparison of
detection and segmentation algorithms for artefacts
in clinical endoscopy, Scientific Reports 10 (2020).
URL: https://doi.org/10.1038/s41598-020-59413-5.
doi:10.1038/541598-020-59413-5.

S. Ali, F. Zhou, A. Bailey, B. Braden, J. E. East,
X. Lu, J. Rittscher, A deep learning framework
for quality assessment and restoration in video en-
doscopy, Medical Image Analysis 68 (2021) 101900.
URL: https://doi.org/10.1016/j.media.2020.101900.
doi:10.1016/j.media.2020.101900.

B. Cheng, et al., Per-pixel classification is not all you
need for semantic segmentation, 2021. URL: https:
//arxiv.org/abs/2107.06278. doi:10.48550/ARXIV.
2107.06278.

N. Carion, et al., End-to-end object detection with
transformers, in: European conference on computer
vision, Springer, 2020, pp. 213-229.

A. Vaswani, et al., Attention is all you need, Ad-
vances in neural information processing systems
30 (2017).

A. Lou, et al., Caranet: Context axial reverse at-
tention network for segmentation of small medical
objects, arXiv preprint arXiv:2108.07368 (2021).

D. Jha, et al., Kvasir-SEG: A segmented polyp
dataset, in: MultiMedia Modeling, Springer
International Publishing, 2019, pp. 451-462. URL:
https://doi.org/10.1007/978-3-030-37734-2_37.
doi:10.1007/978-3-030-37734-2_37.

T.-Y. Lin, et al., Focal loss for dense object detection,
2017. URL: https://arxiv.org/abs/1708.02002. doi:10 .
48550/ARXIV.1708.02002.

H. Kervadec, et al., Boundary loss for highly un-
balanced segmentation, Medical Image Analysis
67 (2021) 101851. URL: http://dx.doi.org/10.1016/].
media.2020.101851. d0i:10.1016/j .media.2020.
101851.

B. Cheng, et al., Masked-attention mask trans-
former for universal image segmentation, arXiv
(2021).


https://doi.org/10.1016/j.media.2021.102002
https://doi.org/10.1016/j.media.2021.102002
http://dx.doi.org/10.1016/j.media.2021.102002
http://dx.doi.org/10.1016/j.media.2021.102002
https://doi.org/10.1038/s41598-020-59413-5
http://dx.doi.org/10.1038/s41598-020-59413-5
https://doi.org/10.1016/j.media.2020.101900
http://dx.doi.org/10.1016/j.media.2020.101900
https://arxiv.org/abs/2107.06278
https://arxiv.org/abs/2107.06278
http://dx.doi.org/10.48550/ARXIV.2107.06278
http://dx.doi.org/10.48550/ARXIV.2107.06278
https://doi.org/10.1007/978-3-030-37734-2_37
http://dx.doi.org/10.1007/978-3-030-37734-2_37
https://arxiv.org/abs/1708.02002
http://dx.doi.org/10.48550/ARXIV.1708.02002
http://dx.doi.org/10.48550/ARXIV.1708.02002
http://dx.doi.org/10.1016/j.media.2020.101851
http://dx.doi.org/10.1016/j.media.2020.101851
http://dx.doi.org/10.1016/j.media.2020.101851
http://dx.doi.org/10.1016/j.media.2020.101851

	1 Introduction
	2 Data Pre-processing
	3 Method
	3.1 Pixel-level module
	3.2 Transformer module
	3.3 Segmentation module
	3.4 Model training
	3.5 Our modifications

	4 Post-processing
	5 Experiments
	5.1 TTA and CCA impact
	5.2 Boundary loss

	6 Discussion
	7 Conclusion

