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Abstract 
Bayesian optimisation is a widely used tool for the hyper-parameter optimisations of black box 

functions. It implements a cheaper surrogate model such as Gaussian processes (GPs) to model 

search space. Acquisition functions on the top of GPs such as Probability Improvement (PI) 

and Expected Improvement (EI) are used to query the distribution of loss at all unevaluated 

positions in order to find the best one in theory. Traditionally, both acquisition functions use 

current optima in computations directly, but GPs assume that observations are noise corrupted. 

In this work, we mathematically derive modify PI and EI under Gaussian noise assumption. 

Modified PI and EI are compared with original versions on benchmark functions. We show 

that modified versions converge faster in same number of iterations and can achieve better 

performance in complex loss functions with reduced iterations. 
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1. Introduction 

Machine learning has achieved phased success. However, almost all machine learning models need 

to optimize hyper-parameters, such as Neural Networks, Topic Model and Random Forest. In practice, 

tuning the hyper-parameters includes methods such as Grid Search, Random Search [1], and Gradient-

based Optimizations [2]. These mehthods are then designed in order to minimize empirical risk with 

the desired efficiency or convergence speed. Bayesian Optimization [3] is acted as a probabilistic 

approach that majorly implements Gaussian Process (GP) and utilizes its property of both prediction 

and uncertainty measure to achieve derivative-free optimization. It can be used when the gradient of 

function for optimizing is not accessible. 

For Bayesian optimization, J Snoek et al. summarizes the applications in the field of machine 

learning, and numerical simulation shows that Bayesian optimization has the characteristics of high 

efficiency and strong convergence [4]. Martin Pelikan further find that hierarchy can be used to reduce 

problem complexity in black box optimization [5]. K Swersky et al. extends multi-task Gaussian 

processes to the framework of Bayesian optimization, and aims to transfer the knowledge gained from 

previous optimizations to new tasks in order to find optimal hyperparameter settings more efficiently 

[6]. J Snoek et al. further explores the use of neural networks as an alternative to GPs to model 

distributions over functions [7]. 

In fact, the principle of Bayesian Optimization is like reinforcement learning, it updates the 

modelling to hyper-parameters after each evaluation and then calculate the location for the next 

evaluation. Acquisition functions are used to calculate the desirability of each unevaluated locations, 

which also trades off between exploration and exploitation. Typical Acquisition functions are Upper 

Confidence Bound (UCB), Probability of Improvement (PI) and Expected Improvement (EI). However, 

the above acquisition functions does not fully take into account the deviation in the machine learning 

data collection process, that is, the noise contained in the current optimal. Based on the assumption of 

normal noise, we propose the corresponding modified version of PI and EI acquisitions, derive the 

corresponding explicit equations, and through a large number of numerical simulations and 

comparisons, the results indicates the feasibility of our proposed acquisition function. 
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2. Algorithms 

2.1. Gaussian Process 

Gaussian process [8] can be considered as a proxy for a black-box function which enables 

uncertainty quantification. Gaussian process (GP) is infinite-dimensional multivariate Gaussian 

distribution. Covariance matrix of this distribution is defined by kernel functions k(⋅,⋅). Imagining 𝐱 

forms a finite discretization of input space. Assuming the distribution has zero mean, prior draws 𝐟 can 

be simulated:  

 f|𝐱 ∼ 𝒩(0, 𝐊) () 

Statistical assumptions about the GP prior are represented in kernel functions. A commonly adopted 

kernel function is Matern kernel [8], where ν controls the smoothness of gaussian process. Let r = 𝐱i −
𝐱j, Matern class of covariance function has the following definition: 

 k(r) =
21−ν

Γ(ν)
(

√2νr

ℓ
)

ν

Kν (
√2νr

ℓ
) () 

with positive parameters ν and length-scale ℓ, Gamma function Γ and modified Bessel function Kν. 

Smooth GP kernels assumes that if x and x′ are close by, then f(x) and f(x′) have similar values. 

Given noise observations 𝐲1:n  at 𝐱1:n  where yi ∼ 𝒩(fi, σy
2) . For a new point 𝐱n+1 , the joint 

probability distribution is given by  

 (
𝐲1:n

fn+1
) ∼ 𝒩 (𝟎, [

𝐊 + σy
2𝕀 𝐤(𝐱1:n, 𝐱n+1)

𝐤(𝐱n+1, 𝐱1:n) k(𝐱n+1, 𝐱n+1)
]) () 

where 𝐊 = 𝐊(𝐱1:n, 𝐱1:n). After applying the rule for conditional gaussians, we can gather the posterior 

over function values fn+1|𝐲1:n , which follows a univariate Gaussian distribution 

𝒩(μ(𝐱n+1), σ2(𝐱n+1)) with  

μ(𝐱n+1) = 𝐤(𝐱1:n, 𝐱n+1)(𝐊 + σy
2𝕀)−1𝐲1:n 

σ2(𝐱n + 1) = k(𝐱n+1, 𝐱n+1) − 𝐤(𝐱1:n, 𝐱n+1) 

(𝐊 + σy
2𝕀)−1𝐤(𝐱n+1, 𝐱1:n) 

GP regression estimates the probability distribution of function values on unevaluated points. For 

each prediction location 𝐱∗, mean μ(𝐱∗) gives the best estimate of the function value, and variance 

σ2(𝐱∗) models the uncertainty at the point. Acquisition functions utilizes the computed distribution to 

guide the search for the optimal function value.  

2.2. Acquisition Functions 

Acquisition functions take the mean and variance at each unevaluated point as input and compute a 

value indicating how favorable it is to sample at this point. It trades off between exploitation and 

exploration: 

• Exploitation: looking for locations that minimize the posterior mean μ(𝐱). 

• Exploration: looking for locations that maximize posterior variance σ2(𝐱) 

Given the data C = [(𝐱1, y1), ⋯ , (𝐱t, yt)] observed, the next point 𝐱t+1 is chosen by the ranking the 

value returned by acquisition function at candidate points.  

 𝐱t+1 = arg min 
𝐱

a(𝐱|C) () 

Acquisition functions is defined as the expected utility u at the unevaluated location 𝐱: 

 
a(𝐱|C) = 𝔼(u(𝐱, y)|𝐱, C)

= ∫ u(𝐱, y) p(y|𝐱, C) dy
 () 

The probability p(y|𝐱, C) here is gathered from posterior distribution 𝒩(μ(𝐱), σ2(𝐱)) calculated by 

GP regression. 



Probability Improvement (PI), Expected Improvement (EI) and Entropy Search employ different 

utility functions. Other acquisition functions such as Upper confidence bound(UCB) directly invoke the 

mean and variance instead.  

2.2.1. Probability Improvement 

PI computes the likelihood that the function at unevaluated locations 𝐱 will return a value lower than 

the current minimum ỹ. Utility function of PI is defined as:  

 u(𝐱) = {
0, if(𝐱) > ỹ
1, if(𝐱) ≤ ỹ

 () 

We can understand utility function as a reward, when f(𝐱) ≤ ỹ , a certain amount of value is 

rewarded, here the reward is 1. According to the utility function above, the expected utility x can be 

written as the normal commutative density function of 
ỹ−μ(x)

σ(x)
:  

 

aPI(𝐱) = 𝔼[u(𝐱)|C]

= ∫
ỹ

−∞
𝒩f(𝐱)(μ(𝐱), σ2(𝐱))d f(𝐱)

= Φ (
ỹ−μ(𝐱)

σ(𝐱)
) PI(𝐱)

 () 

PI only cares whether f(𝐱) is greater than ỹ, but does not count the quantity of improvement. This 

will result PI very likely to pick points near to previously sampled locations. As the searching trajectory 

reach local minimum, it will be stuck here and hardly jump out. Therefore, PI only cares about 

exploitation.  

2.2.2. Expected Improvement 

EI leverages better between exploration and exploitation. The amount of improvement with respect 

to the recent global optima ỹ − f(𝐱) is taken into account. Utility function of EI is defined as:  

 u(𝐱) = max(0, ỹ − f(𝐱)) () 

Therefore, the expression of expected utility can be derived:  

 

aEI(𝐱) = 𝔼[u(𝐱)|C]

= ∫
∞

−∞
max(0, ỹ − f(𝐱)) 𝒩f(𝐱)(μ(𝐱), σ2(𝐱))d f(𝐱)

= ∫
ỹ

−∞
(ỹ − f(𝐱)) 𝒩f(𝐱)(μ(𝐱), σ2(𝐱))d f(𝐱)

= (ỹ − μ(𝐱))Φ (
ỹ−μ(𝐱)

σ(𝐱)
) + σ(𝐱)ϕ (

ỹ−μ(𝐱)

σ(𝐱)
)

 () 

where ϕ(⋅) is the probability density function. In order to get higher value, at the left side of equation, 

we want to minimize μ(𝐱); and at the right side, we want to maximize σ(𝐱). A basic equation based 

trade off between exploitation and exploration are achieved here.  

The trade off between exploration and exploitation can be adjusted by tunning a parameter ξ at the 

deduction part(ỹ − μ(𝐱) − ξ). Larger ξ will favour exploration in early steps and exploitaion later does 

not work well experimentally[9].  

2.2.3. Modified Probability Improvement 

If evaluations are noise corrupted yi|fi ∼ 𝒩(fi, σy
2), the current loss optimum ỹ is not a reliable 

sample. Instead of using the optimum directly, we consider to use the posterior distribution 

𝒩(μ(�̃�), σ2(�̃�)) at the current optimum. PI can be modified under the noise corrupted conditions in 

order to increase the robustness at sampling process. Let  

• k(𝐱, 𝐱) denotes the posterior variance σ2(𝐱) of an unevaluated point 𝐱 computed from 

gaussian process.  

• k(�̃�, �̃�) denotes the posterior variance σ2(�̃�) of loss optimum .  

• k(𝐱, �̃�) denotes the posterior covariance between unevaluated point and loss optimum.  

According to the rule of variance deduction of two dependent random variables:  



 Var[X − Y] = Var[X] + Var[Y] − 2 × Cov[X, Y] () 

Distribution of f(𝐱) − f(�̃�) can be derived:  

𝒩f(𝐱)−f(�̃�)(μ(𝐱) − μ(�̃�), k(𝐱, 𝐱) + k(�̃�, �̃�) − 2k(𝐱, �̃�)) () 

Utility function of Modified Probability Improvement (MPI) is rewritten as:  

 u(𝐱) = {
0, if(𝐱) − f(�̃�) > 0
1, if(𝐱) − f(�̃�) ≤ 0

 () 

Since the utility function only counts the improvement when f(𝐱) − f(�̃�) ≤ 0, PI can be written as 

the probability of f(𝐱) − f(�̃�) ≤ 0. As if X ∼ 𝒩(μ, σ2), then ℙ(X < x) = Φ(
x−μ

σ
). Cumulative density 

function for MPI can be derived:  

 

aMPI(x) = ℙ(f(𝐱) − f(�̃�) ≤ 0)

= Φ (
0−(μ(𝐱)−μ(�̃�))

√k(𝐱,𝐱)+k(�̃�,�̃�)−2k(𝐱,�̃�)
)

= Φ (
μ(�̃�)−μ(𝐱)

√k(𝐱,𝐱)+k(�̃�,�̃�)−2k(𝐱,�̃�)
)

 () 

2.2.4. Modified Expected Improvement 

Same as MPI, ỹ is replaced by the posterior distribution at �̃� in Modified Expected Improvement 

(MEI). Expression of utility function is:  

 u(𝐱) = max(0, f(�̃�) − f(𝐱)) () 

A lemma of expectation on max function applied on normal distributed random variables [10] can 

be directly employed to get the expression of MEI:  

 

If s ∼ 𝒩(μ, σ2)

  𝔼[max(0, s)] = ∫
∞

0
s𝒩(S; μ, σ2) ds

= Φ (
μ

σ
) μ + ϕ (

μ

σ
) σ

 () 

We already know the mean and variance of normal distribution of f(𝐱) − f(�̃�) from equation 11. 

Mean of f(�̃�) − f(𝐱)  is μ(�̃�) − μ(𝐱) , and the variance remines the same. Let ρ  denotes 

√k(𝐱, 𝐱) + k(�̃�, �̃�) − 2k(𝐱, �̃�), applying Lemma from equation 15:  

 
aMEI = 𝔼[u(x)|C]

= Φ(
μ(�̃�)−μ(𝐱)

ρ
)(μ(�̃�) − μ(𝐱)) + ϕ(

μ(�̃�)−μ(𝐱)

ρ
)ρ

 () 

3. Experiments 

Performance of modified versions of PI and EI are compared with the traditional PI and EI on 3 

selected 2D benchmark functions. Variables including kernel functions, kernel parameters and position 

of pre-samplings are controlled to be the same for each set of experiment. We will visualise sampling 

position and global optima in search space, and current minimal loss at each iteration. Performance of 

4 acquisition functions on each benchmark function will be discussed by sections.  

3.1. Testing on Spere Function 

Sphere function[11] has 1 global minima. It is bowl-shaped, convex and unimodal. Sphere function 

in d dimensions is: 

 f(𝐱) = ∑d
i=1 xi

2 () 



 
Figure 1: Coutours of Sphere Function 

Figure 1 shows the contour of this function. Sampling locations and loss in 45 iterations for 4 

acuqisation functions are in table 1, where star points represents the global optima and blue points are 

the sampling locations. We will compare acquisition functions in pair. PI performed competitively in 

the given environment, its sampling trajectory to the minima almost follows the gradient direction. After 

it reaches the global minima, it only sample the locations close to it. MPI shows similar performance, 

the difference is that it takes longer time (more iterations) to reach optima, and it will occationally jump 

out and sample locations far from current minima. EI and MEI puts more leverage at exploration side. 

Both of them will search globally before start to exploit near to loss optimum. Unlike EI, MEI converges 

faster after it had sampled locations close to global minima, it does not frequently jump out and 

searching locations far from current optima.  

Table 1 
Sampling Locations and Loss in 45 iterations on Sphere Function 

  

  



  

 
 

Table 2 
Loss on Sphere Function Averaged in 10 Trails 

Acquisition Function Mean Loss ± Standard Deviation 

PI 2.15 × 10−4 ± 3.04 × 10−5 

MPI 7.13 × 10−5 ± 7.07 × 10−5 

EI 1.42 × 10−4 ± 6.61 × 10−5 

MEI 1.81 × 10−3 ± 1.93 × 10−4 

 

Table 2 gives the mean and standard deviations of loss that averaged in 10 trails for each acquisation 

function. Each trail has 45 iterations and a unique random seed. MPI is better performed than PI, but 

MEI is worse than EI. Sphere function provides a simple situation where every acquisition function is 

able to sample near to the global optima. MPI shows a better exploitation ability in such a situation.  

3.2. Testing on Six-Hump Camel Function 

Six-hump camel function[11] has 6 local minima, and 2 of them are global minima. Six-hump camel 

function in 2 dimensions is defined as: 

 f(𝐱) = (4 − 2.1x1
2 +

x1
4

3
) x1

2 + x1x2 + (−4 + 4x2
2)x2

2 () 



 
Figure 2: Coutours of Six-Hump Camel Function 

Table 3 
Sampling Locations and Loss in 45 iterations 

 
 

 
 

 
 



  

 

Figure 2 shows the contour of this function. According to table 3, both PI and MPI could only find 

1 global optima, but PI converges faster than MPI. EI and MEI is able to sample points equally near to 

both global optimum. MEI converges faster than EI at finding the first global minima. 

Table 4 
Loss on Six-Hump Camel Function Averaged in 10 Trails 

Acquisition Function Mean Loss ± Standard Deviation 

PI 1.1 × 10−4 ± 8.62 × 10−5 

MPI 7.19 × 10−5 ± 1.34 × 10−4 

EI 7.41 × 10−3 ± 5.73 × 10−3 

MEI 1.15 × 10−2 ± 9.02 × 10−3 

 

Table 4 gives the mean of loss and its standard deviation with 45 iterations averaged in 10 trails. 

Six-hump camel function is more complex compared with sphere function Through EI and MEI is able 

to find multiple optima, PI and MPI still achieve smaller loss by exploiting single one. Comparing 

acquisition functions in pairs, PI and MPI achieves similar performance, and EI still performs better 

than MEI. 

3.3. Testing on Rastrigin Function 

Rastrigin function[11] is a multimodal function, and its local minimas grid distribute through out the 

search space. It only has 1 global minima at the center. Rastrigin function in d dimensional is defined 

as: 

 f(𝐱) = 10d + ∑d
i=1 [xi

2 − 10cos(2πxi)] () 

Figure 3 shows the contour of this function. As rastrigin function is complicated, we set two set of 

experiments in order to test the performance of acquisitions in 45 and 100 iterations respectatively. 

 
Figure 3: Coutours of Rastrigin Function 



3.3.1. Testing on Rastrigin Function in 45 Iterations 

Table 5 shows the sampling locations and loss of 4 acquisition functions. Both PI and MPI exploit 

at a local optima close to global optima, and sampling points globally at the same time. EI and MEI 

find 4 local optima to exploit respectively, but since they has exploited too much, both of them do not 

have enough iterations to explore globally. The loss of PI and MPI converges faster than EI and MEI, 

and MPI is the fastest in the four acquisition functions. 

Table 5 
Sampling Locations and Loss in 45 iterations 

    

 
  

   

 
  



Table 6 
Loss on Rastrigin Function Averaged in 10 Trails 

Acquisition Function Mean Loss ± Standard Deviation 

PI 9.41 ± 4.41 

MPI 2.57 ± 2.17 

EI 4.22 ± 1.65 

MEI 2.17 ± 2.20 

 

Table 6 gives the comparison of loss averaged in 10 trails. Here both MPI and MEI achieve a better 

loss than original acquisition functions. MPI is also more robust than PI as the standard deviation is 

smaller. 

3.3.2. Testing on Rastrigin Function in 100 Iterations 

Table 7 shows the sampling locations and loss of 4 acquisition functions in 100 iterations. PI and 

MPI can sample locations near to global optima, but only PI actually exploits at the optima. EI and MEI 

exploits at several good local optimas close to global optima but did not exploit at global optima. All 4 

acquisation functions do explore search space with a number of sampling locations. PI spends more 

iterations to get a relatively small loss, both MPI and MEI converge faster than PI and EI. 

Table 7 
Sampling Locations and Loss in 100 iterations 

 
 

  



  

  

Table 8 
Loss on Rastrigin Functions in 100 Iterations Averaged in 10 Trails 

Acquisition Function Mean Loss ± Standard Deviation 

PI 1.18 ± 1.38 

MPI 1.70 ± 1.26 

EI 0.73 ± 0.45 

MEI 1.14 ± 0.53 

 

Table 8 gives the comparison of loss averaged in 10 trails. PI and EI are better than MPI and MEI. 

EI has the lowest loss with best robustness to get the good result. This shows in complex situation with 

sufficient iterations, EI shows its superiority on finding optimised result. 

3.4. Experiment Summary 

In simple loss functions with only a small number of minimas, MPI performs better than PI, EI and 

MEI. MEI is the worst one with much bigger loss and high standard deviations. In complicated loss 

functions with insufficient iterations, MEI and MPI is better than EI and PI. With sufficient iterations, 

EI is better than other acquisition functions, and MEI is the worst. In most of the conditions, loss of 

MPI and MEI converge faster than PI and EI. 

4. Conclusions 

This paper discusses the acquisition function in Bayesian Optimization in machine learning 

applications. Based on the traditional acquisition function, the systematic noise between the observation 

data and the ground truth is not fully considered. When the noise satisfies the Gaussian distribution 

assumption, we propose modified acquisition functions for EI and PI respectively. In addition, we 

believe that the following perspectives can be used as future work:  

• When the number of iterations increases beyond a threshold, we should consider using a more 

complex hypothesis space to construct the prediction of unknown points, such as Gaussian mixture 

distribution or depth neural network with complex structure.  



• When calculating the collection function of a point, the information of nearby points should 

be weighed at the same time, which can be realized by an algorithm similar to random forest, in 

which the nearby points will be assigned to a leaf node.  

• When the data contains non Gaussian noise, acquisition functions should be constructed 

correspondingly to achieve better balancing the exploration and exploitation, so as to improve the 

optimization efficiency.  
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