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Abstract 
Recommendation systems have been one of the most popular fields in machine learning and 

received significant attentions due to its applicability to everyday lives. This paper reviews the 

developing history of recommendation systems from CF to more recent LS-PLM. In this work, 

we first introduce representative algorithm in each time period and shed light on how they 

evolved with various demands of mobile applications and scientists’ increasing understanding 

of general machine learning. To concretely illustrate each algorithm, we present the basic 

framework, underlying mechanics, application methods, and potential weaknesses for 

comparison. We also run numerical experiments on four of the introduced algorithms, FM, 

FFM, GBDT+LR, and LS-PLM to test their performance on a particular dataset, KKBox’s 

Music Recommendation Challenge. Finally, we conclude with higher accuracy of FFM and 

attribute its advantage to better dealing with sparser features. This work presents meaningful 

viewpoints on comparison of recommendation algorithms through descriptions and 

experiments and further facilitates the emergence of new state-of-the-art algorithms. 
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1. Introduction  

Since the concept of online shopping first appeared in the late 20 century, it has played an essential 

role in daily business. For example, Amazon has over 300 million active customer accounts worldwide 

with 1.6 million packages and 385 dollar sales reached per day! As more and more products are selling 

online, one problem came up: how to recommend those products to their potential customers who need 

them? Amazon used a recommendation system that increased about 35% of over sales. In fact, not only 

goods companies like Amazon but also companies like Instagram, which recommend a person from 

social media to you, used a recommendation system in their operation.  

One of the fundamentals of the recommendation system is embedding. Embedding is a relatively 

low-dimension space into which you can translate high-dimension vectors. Objects are distributed in 

such space through their feature – one common feature could be one dimension. Such as one dimension 

shows the size of objects, another dimension shows what age group uses more. Some companies use 

embedding to process the similarities between objects and display their similarities by distance in the 

space between them. For example, both burger and sandwich are food, so the distance between burger 

and sandwich should be smaller than the distance between burger and fossil. Also, the distance between 

objects should have some meaning in Embedding – the distance between women and men should 

approximately equal the distance between males and females. After having the relation, or distance, 

between different objects, the recommendation system would recommend similar goods to customers 

based on their preference or history purchase record. 

2. Pre- Deep Learning Era—Recommender System 

This is the evolution diagram of the recommender system model. 
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Figure 1: Algorithms of recommender system 

Figure 1 shows the traditional recommendation model consists of the following four components: 

CF, LR, FFM and the combined model (GBDT+LR). 

2.1. Collaborative Filtering 

CF is a collaborative process of filtering a large amount of information through feedback, reviews 

and opinions, and filtering the information that may be of interest to the target user. About the 

development of CF: Tapestry was the first design to apply CF, solving the information load problem of 

the research center mail system with no way to filter the classification; [1] GroupLens as a milestone, 

the system was applied to news filtering, helping readers filter their interested news content through the 

record of readers' rating of the content. Similar web recommender platforms are still prevalent today, 

like YouTube; it has also achieved outstanding success in the field of e-commerce. 

CF is mainly divided into User-based, Item-based, Memory-based and Model-based. 

User-based: First, collect information that represents user interests, usually user ratings or 

evaluations, which are called "active ratings", and replace user evaluations by the system through user 

behavior, which is called "passive ratings". The starting point of UserCF is to calculate the similarity 

between two users. For example to get user A is interested in whether the commodity X, based on the 

historical evaluation data (user A historical evaluation data for other commodities, and other users of 

the historical evaluation data) of these commodities to analysis with the user A to find most similar n 

users, and then the synthetic evaluation of similar users for the commodities, the weighted average of 

user similarity and similar users' evaluation is usually used to obtain the evaluation prediction of target 

users. Through the operation of this formula, the final recommendation list can be sorted according to 

the predicted score. 

𝑅𝑢,𝑠 =
∑ (𝑤𝑢,𝑠 ∙ 𝑅𝑠,𝑝)𝑠∈𝑆

∑ 𝑤𝑢,𝑠𝑠∈𝑆
 (1) 

The weight 𝑤𝑢,𝑠 represents the similarity between user u and user s, 𝑅𝑠,𝑝 represents user s's rating of 

item p. 

If the rating is negative, the recommender system will not recommend X to A. Otherwise, the 

commodity X is recommended to the user A. 

Item-based: Similar to user-based, the historical data information should be collected first, and then 

calculate the similarity between the evaluated commodities and the commodities with prediction. Find 

out k commodities that are most similar to the commodities to be predicted, and the similarity should 

be used as the weight to rank the scores of the evaluated commodities by weighting them, and finally 

the predicted value of the commodities to be predicted can be obtained. 

How to calculate the similarity? 

⚫ Cosine Similarity measures the vector angle between user vector i and user vector j : 

sim(𝑖, 𝑗) = cos(𝑖, 𝑗) =
𝑖∙𝑗

‖𝑖‖⋅‖𝑗‖
(2) 

⚫ Pearson's correlation coefficient is modified by using average user scores: 

sim(𝑖, 𝑗) =
∑ (𝑅𝑖,𝑝 − 𝑅𝑖)(𝑅𝑗,𝑝 − 𝑅𝑗)𝑝∈𝑃

√∑ (𝑅𝑖,𝑝 − 𝑅𝑖)
2

𝑝∈𝑃
√∑ (𝑅𝑖,𝑝 − 𝑅𝑗)

2

𝑝∈𝑃

(3)
 

𝑅𝑖,𝑝 represents user I's rating of item P,𝑅𝑖 represents user I's average rating of all items, P represents the 

collection of all objects. 

⚫ Based on the idea of Pearson coefficient, the article average score is introduced: 



sim(𝑖, 𝑗) =
∑ (𝑅𝑖,𝑝 − 𝑅𝑝)(𝑅𝑗,𝑝 − 𝑅𝑝)𝑝∈𝑃

√∑ (𝑅𝑖,𝑝 − 𝑅𝑝)
2

𝑝∈𝑃
√∑ (𝑅𝑖,𝑝 − 𝑅𝑝)

2

𝑝∈𝑃

(4)
 

𝑅𝑝 represents the average score of all the scores for item P. 

In traditional collaborative filtering systems, the amount of work increases with the number of 

participants in the system. [2] One of the disadvantages of UserCF is that the number of users is often 

greater than the number of items, resulting in the storage overhead of user similarity matrix is very 

large, and its spatial complexity grows rapidly at the speed of N square times, which is an unbearable 

expansion speed. And because the data vector is usually very sparse, UserCF is not suitable for 

applications where positive feedback is difficult to obtain. In combination with the above two types of 

collaborative filtering, UserCF has stronger social features, which can make a point of interest that is 

not in the range of their interests before, or quickly update their recommendation list through the 

dynamic of "friends". It is applicable to hotspot discovery and hotspot trend tracking, and news 

recommendation scenarios. [2] ItemCF is suitable for applications with stable interest changes, so 

ItemCF is better than UserCF to recommend videos with similar styles and types. 

In general, CF is a very intuitive and explicable model. It can filter the information that is difficult 

for the machine to analyze automatically, share the experience of others, and have the ability to 

recommend new information. The recommendation is personalized and highly automated. The main 

problems are as follows: the recommendation quality is poor at the beginning of the system, and its 

quality depends on the historical data. The head effect of recommendation results is obvious, and the 

ability to process sparse vectors is weak, and the system is not strong in extensibility, it does not have 

strong generalization ability. 

In order to solve the above problems and increase the generalization ability of the model, matrix 

factorization technique is proposed. 

2.2. Matrix Factorization 

On the basis of co-occurrence matrix of collaborative filtering, the concept of hidden vector is added 

to strengthen the ability of the model to deal with sparse matrix and solve the main problems of 

collaborative filtering specifically. As a tool of matrix mathematics, matrix factorization is good at 

finding information hidden under data. It is mainly used for scoring prediction. In general, we have 

many users and commodities and express them in the form of a two-dimensional matrix, in which each 

element represents the rating of the corresponding user on the corresponding commodity. Obviously, 

such matrix is sparse in real life, because the tastes of the public are different, and each user may not 

have all the corresponding commodities and score them. Scoring prediction can be regarded as a process 

of completing the missing elements in the matrix, that is, inferring the missing data according to the 

existing data in the matrix. [3] 

Matrix factorization is to complete the matrix better. In essence, it is to decompose a matrix so that 

two or more small matrices can be found and multiplied back to the original matrix. In terms of 

application, matrix decomposition can find the implicit characteristics of interaction between different 

users. Such information is obtained by analyzing users' behaviors instead of being given directly, which 

is its advantage. Thus, by discovering these underlying characteristics, we can predict the rating of a 

given user and a given item because the relevant characteristics match. Therefore, we can predict 

whether users will like something they have never touched before. When using this method, we assume 

that the number of hidden features is smaller than the number of users and items. If each user is 

independently associated with a feature, that is, people and objects have nothing in common, then 

recommendation will have no meaning. Now we have a set U of users, and a set D of items, create a 

matrix M with dimensionality of (m, n) this matrix can be viewed as a dot product between two matrix 

U, V with each  matrices having dimensions of (m, k) and (k, n). 

�̂�𝑢𝑖 = 𝑞𝑖
𝑇𝑝𝑢 (5) 

We classify matrix factorization into Eigen Decomposition, Singular value Decomposition(SVD) 

and FunkSVD (Gradient Descent). 

Since Eigen Decomposition can only be applied to square matrices, it is generally not applicable to 

decompose matrices between users and items. 



Singular Value Decomposition factorizes the matrix into: 

M ≈ Um×kΣk×kVk×n
T (6) 

Σ is a diagonal matrix, in which the larger k elements are taken as hidden features, and other 

dimensions in Σ  as well as dimensions in U and V are deleted, the matrix decomposition of k-

dimensional hidden vectors is completed. 

However, the premise of applying SVD requires that the original matrix must be dense. In general, 

the co-occurrence matrix in the Internet scene is very sparse. If this method is used, missing data must 

be filled, so this method is limited. In addition, the computational complexity of traditional 

decomposition is as high as O(mn2), which is unacceptable. 

To solve these problems, Simon Funk proposed an improved method of FunkSVD, [4] which 

decomposed the original matrix into three matrices into two low-rank matrices while reducing the 

complexity: 

min
q∗,p∗

∑ (rui − 𝑞𝑖
𝑇pu)

2

(u,i)∈K

(7) 

In this way, the difference between the original score R and the product of user and item vectors can 

be minimized, and the original data of the co-occurrence matrix can be retained to the maximum extent, 

where K is the sample set of all user scores. In order to avoid the over-fitting phenomenon, the objective 

function of FunkSVD after adding the regularization term of L2 was proposed: 

min
q∗,p∗

∑ (rui − 𝑞𝑖
𝑇pu)

2

(u,i)∈K

+ 𝜆(‖𝑞𝑖‖ + ‖𝑝𝑢‖)2 (8) 

𝜆  is called the regularization coefficient, and the larger 𝜆  is, the stronger the regularization 

constraint. Regularization, that is, in order for the model to be more regular and stable, it needs to put 

some constraints on the model to avoid predicting unpredictable results. Generally, the objective 

function is solved by gradient descent method. We take partial derivatives of the objective functions 

with respect to 𝑞𝑖 and 𝑝𝑢 respectively, and get the results: 

2(rui − qi
Tpu)pu − 2 λqi (9) 

2(rui − qi
Tpu)qi − 2 λpu (10) 

According to the results, the parameters are reversely updated along the gradient: 

qi ← qi − γ ((rui − qi
Tpu)pu − λqi) (11) 

pu ← pu − γ ((rui − qi
Tpu)qi − λpu) (12) 

λ is the learning rate. 

At the same time, in order to eliminate the user and item scoring bias, deviation vectors of users and 

items are often added in matrix factorization: 

rui = 𝜇 + 𝑏𝑖 + 𝑏𝑢 + qi
Tpu (13) 

𝜇 is the global deviation constant. The resulting dot product, 𝑞𝑖
𝑇𝑝𝑢, captures the interaction between 

user u and item i—the user’s overall interest in the item’s characteristics. [3] The objective function of 

matrix factorization will also become: 

min
q∗,p∗,𝑏∗

∑ (rui − 𝜇 − 𝑏𝑖 − 𝑏𝑢 − 𝑝𝑢
𝑇𝑞𝑖)2

(u,i)∈K

+

𝜆(‖𝑞𝑖‖ + ‖𝑝𝑢‖ + 𝑏𝑢
2 + 𝑏𝑖

2)
2

(14)

 

FunkSVD takes matrix factorization to a new height and is widely used in daily life. For matrix 

factorization, it is simple to operate, easy to program, low spatial complexity, has good generalization 

ability, scalability and flexibility, is a good choice to deal with small recommendation system, large 

recommendation system will not have obvious advantages. At the same time, due to the inconvenience 

of adding user, item and other related features, matrix factorization loses the opportunity to use a lot of 

effective information; unable to make effective recommendations in the absence of user behavior. 

3.  Logistic Regression 

To make up for the defect of matrix factorization, logistic regression model is developed, which can 

integrate a variety of different features and generate relatively comprehensive recommendation results. 



Logistic regression is actually a classification model, mainly used to solve dichotomous problems, used 

to estimate the probability of something. Its essence is to use maximum likelihood estimation to estimate 

parameters after assuming data obey a certain distribution. As a generalized linear model, logistic 

regression can be said to be based on linear regression and introduce nonlinear factors through Sigmoid 

function, which can easily solve the problem of binary classification. 

Logistic regression models transform the recommendation problem into a CTR estimation problem. 

The recommendation process is roughly as follows: Firstly, each feature is converted into a numerical 

feature vector to determine the optimization objective (taking the optimization of "click rate" as an 

example). By using the existing sample data to train the model, the internal parameters of the logistic 

regression model are determined. In the model service stage, feature vectors are input, and the 

probability of users "clicking" items is obtained through the judgment of the model. Finally, a list of 

recommendations is made by ranking all items using the probability of "clicks". 

The emphasis is on model training and online inference using feature vectors of samples. 

First, about the sigmoid function(also called logistic function): 

𝑓(𝑧) =
1

1 + 𝑒−𝑧
=

1

1 + 𝑒−(𝑤∙𝑥+𝑏)
(15) 

 
Figure 2: Example for the sigmoid value 

Figure 2 shows the graph of the function. Then input feature vector X, and then assign corresponding 

weight w to each feature to represent the difference in importance. Sum up each feature by weight to 

get 𝑥𝑇𝑤. Input sigmoid function of 𝑥𝑇𝑤 to map it to the range of 0~1 to get the final "click rate". 

And Gradient descent is a common training method for logistic regression models. It is a first-order 

optimization algorithm, also known as the fastest descent method, whose purpose is to find the local 

minimum of a function. So we just take the derivative of the objective function to get the direction of 

the gradient, and then we go down in the opposite direction of the gradient, and we iterate until we find 

the local minimum. Input sample x, and the probability of positive sample and negative sample is: 

{
P(y = 1|x; w) = fw(x)

P(y = 0|x; w) = 1 − fw(x)
(16) 

merge:P(y|x; w) = (fw(x))
y

(1 − fw(x))
1−y

 

The objective function is obtained according to the maximum likelihood estimation principle: 

𝐿(𝑤) = ∏ 𝑃(𝑦|𝑥; 𝑤)

𝑚

𝑖=1

(17) 

By taking the partial derivative of each parameter after deformation: 

𝜕

𝜕𝑤𝑗
𝐽(𝑤) =

1

𝑚
∑(𝑓𝑤(𝑥𝑖) − 𝑦𝑖)

𝑚

𝑖=1

𝑥𝑗
𝑖 (18) 

𝑤𝑗 ← 𝑤𝑗 − 𝛾
1

𝑚
∑(𝑓𝑤(𝑥𝑖) − 𝑦𝑖

𝑚

𝑖=1

)𝑥𝑗
𝑖 (19) 

Finally, let's analyze the advantages of logistic regression model. It is suitable to integrate different 

features in form to form a comprehensive recommendation result. Secondly, as a kind of generalized 

linear model, it has the support of numerical meaning. Moreover, it makes the model highly 

interpretable and can effectively reduce the communication cost. It is also the need of engineering: 

because it is easy to parallelize, simple model, low training cost and so on, this model occupies the 

mainstream of engineering field. 



As a basic model, logistic regression is simple, intuitive and easy to operate, but its limitations are 

also very obvious. Its expression ability is not strong, unable to carry out a series of relatively advanced 

operations such as feature crossing and feature screening, inevitably resulting in the loss of information. 

In order to solve these problems, recommendation systems continue to develop towards the direction 

of complexity, derived from the Field-aware Factorization Machine (FFM) and other high-dimensional 

complex models. 

4. pOLY2, fm, and ffm 

4.1. Poly 2 

By using Poly2 for mapping can effectively capture the information of feature conjunctions. Also, 

Poly 2 is a feature Cross that use for the recommendation system. Here is the mathematical equation: 

ØPoly2(𝑤, 𝑥) =  ∑  

𝑛

𝑗1=1

∑ 𝑤ℎ(𝑗1, 𝑗2)𝑥𝑗1
𝑥𝑗2

𝑛

𝑗2=𝑗1+1

(20) 

Where 𝑤ℎ is the weight, and 𝑥𝑗1
 𝑥𝑗2

 are features. However, Poly2 has some disadvantages. First, 

when people deal with data from the internet, they will use one-hot coding for the most time. However, 

one-hot coding would cause the feature vector to be very sparse. One-hot coding is a way to transfer a 

feature into a vector. For example, Wednesday may be represented by [0 0 1 0 0 0 0]. (The first place 

represents Monday, the second represent Tuesday...) Thus, if we have lots of features, most of the 

dimensions would be zero except for one dimension.  

2, Using Poly2, the number of weights we have complexity of 𝑂(𝑛2) because there are 𝑛 × 𝑘 

variables. Since it will consider every possible pairs, makes Poly2 impractical when n is very large. 

Thus, FM could solve this problem and become more practical.  

4.2. FM 

To solve the problem of Poly2, FM was suggested in 2010 by Rendle. [5] 

The formula is: 

ØFM(𝑤, 𝑥) =  ∑  

𝑛

𝑗1=1

∑ (𝑤𝑗1
⋅  𝑤𝑗2

)𝑥𝑗1
𝑥𝑗2

𝑛

𝑗2=𝑗1+1

(21) 

FM studied a latent vector, 𝑘, for every feature, very similar to matrix decomposition. FM proposed 

a latent vector for each feature. There exists 𝑘 feature factors in each feature vector, where 𝑘 is a user 

specified parameter.  

FM reduced the complexity, which is  𝑛2  in Poly2, to 𝑛𝑘 (𝑛 >>  𝑘), so it is more practical in 

solving sparse feature vectors.  

FFM is an updated version of FM. Instead of using one latent vector, FFM uses a group of latent 

vectors for each feature. Also, FFM uses a concept, field-aware, to make improvements to this model. 

4.3. FFM 

The idea of FFM originated from PITF, which is a recommendation system for personalized labels. 

Three variables were assumed in PITF.  

In FFMs, each feature has several potential vectors. Depending on the other features, one of them is 

used to do the inner product, which is shown in the equation.  

ØFFM(𝑤, 𝑥) =  ∑  

𝑛

𝑗1=1

∑ (𝑤𝑗1𝑓2
⋅  𝑤𝑗2𝑓1

)𝑥𝑗1
𝑥𝑗2

𝑛

𝑗2=𝑗1+1

(22) 

𝑓1 and 𝑓2 are respectively the field the 𝑗1 and 𝑗2. As shown in the equation, there are three variables: 

𝑛𝑘𝑓. Usually, 𝑘𝐹𝑀𝑀 ≪  𝑘𝐹𝑀, and the complexity to compute is 𝑂(𝑛2𝑘). 



4.4. Experiments 

We choose FM as first algorithm to try out. The reason why we choose Factorization Machines (FM) 

is mainly because it serves as a approach that at the middle part of the whole recommendation system 

development. Before FM, there are methods such as Logistic Regression (LR) and Support Vector 

Machines (SVM). After FM, improved FM with field awareness which called Field-aware Factorization 

Machines (FFM), DeepFM which combines FM and deep learning algorithm and Gradient Boosting 

Decision Tree (GBDT) with LR bring recommendation quality to another level. As far as we concerned, 

FM can be a good start point for us to dive into recommendation system. The similarity between FM 

and embedding is another reason that leads us to here.  

Since FM is designed and well known for its prediction on CTR (click-through rate). 

Firstly, we try to find an dataset and ends up finding a dataset of anime [6] which includes anime's 

attribute such as name, genre, episode, member, type and average rating and users' rating for anime. 

Here we use only anime's genre as feature and average rating as its FM's label in order to simulate the 

situation that CTR have, the situation which only item's features are given. Moreover, we convert the 

rating to binary value where values over 7.0 are set to 1 and less than 7.0 are set to 0. Secondly, we 

clean the data by one-hot encoding the genre field. Due to the fact that every anime can have more than 

one genre, we have to extract the genres name and mapping genre of every anime to 1 in the specific 

genre name field. After data munging is done, we divide data into training and testing set by KFold with 

shuffle. When it comes to training, we use an efficient package called xLearn that had already 

implemented FM. 

 
Figure 3: Example for the real valued anime feature vector from the dataset. Every row represents a 
feature vector of a specific anime with its corresponding target y^n - here is been clicked or not. The 
first row (blue) represents a anime and its features (genres); the columns (orange) represent indicator 
variables for each genre. The rightmost column is the target - here the clicked. 

Figure 3 shows feature vector pattern from dataset [6] The result of training is not very satisfying. 

While we play around with the hyper parameter, the accuracy or any other valuations did not change a 

little. We realized that the features in this dataset are not enough and too simple for model to improve 

itself, thus the training usually face early-stop at early training epoch. Instead of apply FFM to this 

dataset, we searched for another dataset, which is from KKBox [7], to apply FFM and FM to. We user 

xLearn [8] package which is focus on fast FM, FFM and LR training. During this time, we found that 

FFM is sensitive to epoch and number of features and k, which is the number of latent vectors. The 

result is impressive when k is equal to 4 with 70,000 features and 14 fields. 

The whole training process can be divided to 2 independent phases data cleaning and train, first we 

clean up the data, convert features, fields data into int, thus serve as values of latent vector. Before 

training the data styles that FM model and FFM model receive are libsvm [9,10] and libffm [11]. After 

cleaning the data, we use xLearn to train and try out as much hyper parameters as we can to find out 

the best for our dataset. 



 
Figure 4: FM’s and FFM’s Accuracy of test data 

 
Figure 5: FM’s and FFM’s AUC(Area Under the Curve) of test data 

Figure 4, 5 show that FFM has better ACC and AUC than FM and the accuracy grow faster than FM 

when training data ratio is around 1~20%. 

 
Figure 6: FM’s and FFM’s AUC(Area Under the Curve) of test data 

Figure 6 shows that loss of FFM is smaller and decreases faster than FM. 



5. Extension of Logistic Regression 

5.1. GBDT+LR 

FM and FFM increase their performance in model’s accuracy by multiplying pairs of features with 

latent vectors. However, combination of multiple features in reality sometimes determines the output. 

FM and FFM fall short of this aspect because, once they take into account multiplication of triple 

combinations, space complexities increase to an intolerable extent. To solve this problem, Facebook in 

2014 came up with a method of GBDT+LR to predict Click-Through Rate (CTR), that fits certain 

combinations of features into models at the same time of avoiding combinatorial explosion [12]. 

They briefly divided the procedure into 2 independent phases. In Phase I, training data are fed into 

the Gradient Boosting Descent Tree (GBDT). Here, the divide-and-conquer algorithm generates several 

trees and sets each tree to fit the loss between former trees and real outputs. However, after training the 

model of GBDT, the results of predictions are unimportant while the trees themselves play a significant 

role. Then, the training data are again fed into the trained trees and generate a feature by one-hot 

encoding based on which leaf they finally fall into. For example, if each tree has 64 leaves, when a 

piece of data is put into the tree model and falls into the 43rd position, it generates one-hot-encoding 

with 1 on 43rd position and 0s on every other one. This 64-dimensional feature, together with features 

generated from other trees, becomes the transformed feature of this piece of data. In Phase II, all 

transformed features of data are fed into a Logistic Regression algorithm, that finally trains the model 

and yields predictions. 

This GBDT+LR works well because of its efficiency in combining features, which is mainly the 

benefit of using GBDT for transforming feature vectors. Each transformed feature represents not only 

one feature, but a set of determinant features that come from each node of a tree. It’s because when 

building the trees in GBDT, they automatically select features that work well together. Thus, while 

putting these multiple features into Logistic Regression, they’re treated linearly but indeed are 

meaningful for several features. Figure 7 shows the AUC and F1 curve of GBDT+LR model on test 

samples with respect to the percentage of training samples. This graph indicates the performance of this 

model on the dataset stabilizes around 0.65 (F1) and 0.67 (AUC) after training enough data which avoid 

underfitting. 

 
Figure 7: GBDT+LR’s AUC(Area Under the Curve) and F1 of different size test sample 

5.2.  LS-PLM 

Large Scale Piece-wise Linear Model (LS-PLM), or Mixed Logistic Regression (MLR), is another 

effective model that Alibaba once used for its recommendation system. Though the model is still linear, 

it separates different clusters of training data and applies Logistic Regression to each cluster [13]. 



LS-PLM consists of two steps. In the first one, a function σ divides the feature space into m parts. 

Then, within each part, normal Logistic Regression η is applied to features to produce a prediction. The 

overall output is the sum of products of weights and predictions in each subspace. 

𝑝(𝑦 = 1|𝑥) = 𝑔 (∑ 𝜎(𝑢𝑗
𝑇𝑥)𝜂(𝑤𝑗

𝑇𝑥)

𝑚

𝑗=1

) (23) 

LS-PLM is effective because when training data have obvious group divisions, normal Logistic 

Regression will treat them in the same way and lose useful information. MLR, on the other hand, fits 

training data in each group separately and uses different parameters to build the model. The 

hyperparameter m is arbitrary, where the optimal choice is based on experiments. Alibaba determined 

their optimal m to be 12, while in the dataset of this paper, the optimal m is approximately 10. Figure 8 

shows the AUC curve of LS-PLM model on test samples with respect to the percentage of training 

samples. This graph presents that the performance of this model is approximately 0.73 (AUC) after 

sufficient training data are fed, which is slightly better than GBDT+LR. 

 
Figure 8: LS-PLM’s AUC(Area Under the Curve) of different size test sample 

5.3. Kernel LR 

Sometimes, the subspaces between different clusters of training data are hard to distinguish using 

LS-PLM. To solve this problem, a combination of Kernel Method and Logistic Regression can make 

boundaries easier to divide. 

In LS-PLM, the space division function σ is usually linear. However, in the reality, the training data 

may not always have plane boundaries described in terms of linear variables. For example, a dataset of 

2-dimention features may have a hyperbola as their boundary. And the equation for hyperbola is caught 

by normal methods of LS-PLM. Thus, kernel functions are introduced to solve this problem. Kernel 

functions usually raises the dimension from n (the number of features) to m. The additional dimensions 

are the function of original dimensions and allow the boundary to be written in linear combination of 

them. In the same example, one of the additional dimensions may be  
𝑥2

𝑎2 −
𝑦2

𝑏2, so that the boundary 

between clusters of data is again a plane in higher dimensions. 

6. Challenges IN recommendation system 

In the application process of recommendation system, user behavior is mostly observational, not 

experimental. This introduces a lot of bias, if these deviations are not considered, blind data fitting, will 

lead to a lot of serious problems. 



 
Figure 9: Bias type caused by different processes 

The Figure 9 shows the feedback mechanism of the recommendation system, which can be divided 

into the following processes. Information about the interaction between users and commodities is 

collected from users. The collected interaction is expressed as feedback matrix between users and 

commodities. Generally, there are two kinds of feedback: implicit (if there is interaction, it is 1; 

otherwise, it is 0) and explicit (users' score on commodities). Based on the collected data to learn the 

recommendation model, according to the historical data to predict the relative probability; Feedback the 

results of the recommendation to the user, this process will influence the user's behavior and decision. 

One of the challenges that exist in the Recommendation system is bias. There are several factors 

about bias: First, User behavior is observational rather than experimental – user generates behaviors 

based on exposed items, so the observational data is confounded by the way the recommendation system 

exposes the data. Second, some items are more popular than others, which would cause the 

recommendation system to receive more feedback from popular items than others. As a result, those 

popular items would have a more significant impact on the modal training. Third, since the 

recommendation system has a feedback loop – it will intensify the bias, cause “the rich get richer.” 

Usually, users only rate items with the most interest – positive (like) or negative (dislike), and users 

tend to rate particularly good or bad items. Thus, cause selection bias. Selection bias exists when users 

decide which items they will rate by their willingness, missing randomness. 

Conformity bias also comes with rating items. People tend to rate similarly to others in the same 

group, which will even come against their ideas and judgments. An item with a higher score will receive 

more high rating comments than it deserves, which will make the better one better, and the worse one 

worse. Thus, it will not show the true preference of people. 

Position bias describes the tendency that users to note and interact with certain positions in the 

recommendation list with higher possibility, especially there are lots of items on the list. Moreover, 

users tend to trust more on first a few items on the list. Therefore, it fails to show the real preference of 

users. 

Those are biases caused by users. However, there are also bias exists in the recommendation system 

itself. 

Popularity bias causes popular products to be recommended even more often than they are. In most 

cases, a small fraction of the whole population of items accounts for the most interaction with users, 

which is the long-tail phenomenon. 

7. Conclusions and future works 

In this paper, we mainly compare the efficiency between 4 traditional methods used in recommender 

system. It displays that for certain kinds of data sets, FFMs outperform the GBDT+LR, LS-PLM and 

FM in terms of loss and accuracy. 

For the future work, the performance of GBDT+LR in our experiments is worse than that of other 

models. The reason is probably that while using one-hot encoding on leave nodes (features set), which 

GBDT generate, the space complexities grow rapidly (fields expands to 10,000) and ends up cost too 

much time for LR to train. In addition, the huge sparsity caused by one-hot encoding might lead to low 



accuracy too. When it comes to FM and FFM, it only takes 2.5 minutes for FM and FFM to train 1.8M 

entries, each epoch takes 1.6 seconds in average. However, the performance of FFM is better than the 

other two methods (GBDT+LR and LS-PLM) 
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