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Abstract 
In recent years, lip reading has attracted extensive research attention as deep learning shows 

great potential in computer vision. In this work, we proposed Multi-Dilation Temporal 

Convolutional Networks (MD-TCN) to predict individual words in lip reading tasks. Although 

Temporal Convolutional Networks (TCNs) have lately demonstrated promising importance in 

a variety of video sequence tasks, ordinary TCNs' bottom layers still have tiny receptive fields 

and are unable to reproduce complicated temporal dynamics in scenarios of lip-reading tasks. 

To tackle this problem, we use dual dilated convolution in the network instead of typical dilated 

convolution to capture more powerful temporal features. Furthermore, our method incorporates 

a self-attention block after each convolutional layer to further enhance the classification and 

screening capabilities of the model. On the lip-reading in the wild (LRW) dataset, our MD-

TCN Model achieves 85.7 percent accuracy and is an effective method for individual word 

prediction. 
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1. Introduction 

Lip Reading, also known as Visual Speech Recognition, is a task of recognizing words based on the 

movement of the speaker's lips without audio assistance. Due to the complexity of Lip Reading, human 

lip readers need to take a long period of professional training to ensure the accuracy, which usually 

requires a high cost. Machine Lip Reading has become a very hot topic in video processing due to its 

relative low cost and even higher accuracy than human lip readers. And with the development of 

informatization, a real-time and fast lip-reading solution is required in many scenarios. Especially for 

speech recognition in a high-noise audio signal environment, the fusion of video signal and speech 

signal can greatly improve the accuracy of recognition, and the robustness of the system can also be 

greatly improved. At the same time, because of the nature of the lip-reading task, it is easy to apply the 

model to other video recognition tasks, such as action recognition and emotional semantic analysis. 

This paper will build an end-to-end Visual Speech Recognition model and test it on both English 

and Mandarin data to better evaluate the model performance. Researchers generally divide Visual 

Speech Recognition into two steps: the front-end structure of visual feature extraction and the back-end 

structure of time series information recognition [1]. For visual feature extraction, VGG or Resnet are 

usually used as feature extraction tools in deep learning [2]. Because the lip-reading dataset usually has 

a large time series scale, 3D-CNN is also used for auxiliary data compression [3]. For time-series 

information recognition, deep learning generally adopts a series of time-series models, such as 

Recurrent Neural Networks (RNN), Long-Short Term Memory (LSTM) networks, and Gated Recurrent 

Units (GRU) [4]. In recent years, the use of Temporal Convolutional Networks (TCN) in the back-end 

structure of Lip Reading has also become an outstanding scheme due to its good performance in many 

natural language processing tasks. Attention mechanisms have also become a popular model for video 

processing as they continue to prove their high effectiveness in the Natural Langrage Processing (NLP) 

and Computer Vision (CV) domains. However, these methods still have some limitations, such as poor 

robustness and low accuracy. This paper mainly adopts a network structure with 3D-CNN + dense-

Resnet18 as the front end and Self-Attention Temporal Convolutional Networks SA-TCN as the back 

end, which got a good result on LRW dataset. 
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This article will be divided into five main sections. The second part of the article will review the 

classic literature on Visual Speech Recognition and the deep neural network architecture used in this 

paper, such as discussing previous research on Visual Speech Recognition and temporal convolutional 

networks. The third part of the article will focus on the feature extraction model of 3D-CNN + dense-

Resnet18 and the sequence model of TCN, and discuss their advantages. The fourth part of the article 

provides an in-depth discussion of the experiments, introducing the dataset, experimental setup, 

experimental results, and a discussion of the results. Finally, the fifth section of the article will conclude 

by discussing the limitations of this study and directions for future research. 

2. Related Works 

2.1. Lip Reading 

Before the deep learning gold rush, Lip Reading was mostly accomplished by depending on 

manually derived features, such as Discrete Cosine Transform (DCT) [2], Support Vector Machines 

(SVM) [3], and Hidden Markov Models (HMM) [1] etc. With the rapid advancement of deep learning, 

an increasing number of scholars have attempted to tackle the Lip Reading task using deep learning 

approaches in recent years. In 2014, Noda et al. [4] first proposed to apply the Convolutional Neural 

Network (CNN) to the Lip Reading task. This paper used 2D-CNN as the feature extractor to extract 

the lip feature vector, and it uses HMM as the backend to complete the classification. In subsequent 

work [5][6], Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) gradually replaced 

HMM as the mainstream back-end classifiers. LipNet [7] is the first approach to extract spatiotemporal 

features using 3D-CNN and present them to BGRU for classification. Stafylakis et al. [8] suggested a 

network topology that employed a 2D residual network on top of a 3D convolutional layer as the front-

end (LSTM as the back-end), and they obtained a big accuracy breakthrough on the LRW dataset [11]. 

In recent years, Martinez and Ma et al. [9] proposed to apply Temporal Convolutional Networks (TCN) 

to the Lip Reading task, and it achieved good accuracy. In addition to the above-mentioned direct 

application of different network structures to Lip Reading, many researchers now begin to design some 

unique modules to achieve better results. In 2018, Stafylakis et al. [13] improved word-level lip-reading 

performance on the LRW dataset by extracting word boundary information. Chung et al. [14] applied 

an attention mechanism to select keyframes for sequence-to-sequence models. The word-level lip 

reading accuracy has reached 88.5% [9] and 55.7% [10] on the LRW [11] dataset and the LRW-1000 

[12] Mandarin dataset, respectively. 

2.2. Temporal convolutional networks (TCN)  

Though RNN-like neural networks such as GRU and LSTM have been widely employed for time 

series applications, sequential models with higher parallelism and faster training have also received 

extensive attention in recent years. Lea et al. [15] first proposed Temporal Convolutional Networks 

(TCNs) for video action segmentation. The encoder and decoder of this network are both two-layer one-

dimensional convolutional blocks. In 2018, Bai et al. [16] suggested an effective and simple TCN 

structure that surpassed RNN models in a variety of time series problems. Martinez et al. [17] first 

proposed Multi-scale TCN architecture to mix up long-term and short-term information, which 

improved robustness of network over time domain. Although the Temporal Convolutional Network 

introduced in [16] is a causal one-way model, it can also be adapted to an acausal structure in practical 

classification tasks (such as our lip-reading task). The work of [9] adopts a non-causal TCN structure 

and introduces densely connected layers to improve the performance of the network on complex 

datasets. However, these models may not consider the autocorrelation within the series. Many studies 

[18, 19] have shown that considering the autocorrelation of sequential models can effectively increase 

the prediction accuracy. As a result, we propose a TCN-embedded temporal self-attention strategy to 

increase the capture of sequence autocorrelations. 



3. Methodology 

3.1. Overview 

The main framework of our technique is depicted in Fig. 1. The input is a raw video from a dataset 

with the shape 𝐵 × 𝑇 × 𝐻 ×𝑊, where 𝑇 denotes the temporal dimension and 𝐻,𝑊 denotes the input 

video's height and width, respectively. After we adapt a face detection to input video, it can easily be 

transformed and cropped to gray-scale mouth Region of Interests (RoIs). We start by using a 3D 

convolutional layer to approximately extract the spatial-temporal features with the shape of 

𝐵 × 𝑇 × 𝐻1 ×𝑊1 × 𝐶1 , where 𝐻1  and 𝑊1  are the modified height and width, and 𝐶1  is the feature 

channel number, as described in [17]. We apply a 2D ResNet-18 [20] on top of this layer to generate 

features with the form 𝐵 × 𝑇 × 𝐻2 ×𝑊2 × 𝐶2. To summarize the information of lip characteristics and 

compress the dimension to 𝐵 × 𝑇 × 𝐶2, the following layer uses spatial average pooling. After the 

pooling layer, the temporal dynamics are modeled using our suggested Multi-Dilation TCN (MD-TCN). 

To complete the temporal information into 𝐶4 channels, the output tensor (𝑇 × 𝐶3) is routed through 

another average pooling layer. The Softmax layer that follows predicts single word probability.  

 
Figure 1: The pipeline of proposed Lip Reading recognition network Self-Attention Multi-Dilation 
Temporal Convolutional Networks(MD-TCN). “Ks” means kernel size, “BN” means batch 
normalization, and “Dilation” means dilated factor of the 1D convolution. 

3.2. Multi-Dilation TCN 

TCN is much better than other sequential models in parallel processing and training speed. However, 

due to the size limitation of the convolution kernel, the receptive field of TCN is usually limited. In 

other words, it is difficult to comprehensively consider information with a long interval. The most basic 

TCN method [15] usually solves this problem by increasing the number of hidden layers and adding 

dilation layer by layer. Although the top layers may have a broad receptive field, the lowest levels still 

have a very small receptive field. Furthermore, because of the significant dilation factor of upper layers 

in TCN, convolutions must be applied at very distant time steps.  

Inspired by [21], we adopt a dual dilated convolution (DDC) to replace the traditional dilated 

convolution. Two convolutions with different dilation factors are combined in DDC (shown as the 

orange and green blocks in Fig. 1). Smaller levels of the first convolution (orange block in Fig. 1) have 

a lower dilation factor, which increases exponentially as the number of layers increases. The second 



convolution (green block in Fig. 1) starts with a strong dilation factor in the lower levels and gradually 

decreases as the number of layers grows. Finally, in order to ensure that the output shape is similar to 

standard TCN, we use a 1*1 convolution layer to transform the shape. Since higher layer don’t have the 

problem of conception field size, we only use DDC in the lower layers of the MD-TCN, while we still 

use traditional Single Dilation Convolution in the higher layers of the network. 

In the meantime, because the size of the conventional TCN convolution kernel is constant, all 

activations of a certain layer have the same temporal receptive field. As a result, this kind of network 

generally cannot consider both long-term and short-term information. We expect that the network will 

be able to capture receptive fields over a range of time scales, allowing short-term and long-term data 

to be combined for feature encoding. We use a TCN with several convolution kernels to do this. Each 

temporal convolution in this multi-kernel TCN variation now has many branches, each with a distinct 

kernel size. Each convolutional layer therefore combines data from many time scales. 

In view of the above two points, we finally generate the Multi-Dilation Temporal Convolutional 

Networks (MD-TCN) to replace the standard TCN (shown in Fig. 1). In this network, we create four 

temporal branches with kernel sizes of 1, 3, 5, and 7, respectively. And in each branch, we also use dual 

dilated convolution to replace ordinary dilated convolution. Hence each layer of this MB-TCN has eight 

branches. After each convolution, we employ Batch Norm layers [24] to speed up training converge, 

and we apply dropouts [25] using dropping probability of 0.5 for regularization. Meanwhile, as in 

standard TCN, we also reuse two identical convolutional layer in each MB-TCN to achieve better model 

effectiveness.  

In our experiments, we adopt a total of four convolutional layers structure, because this setup can 

balance the training speed and accuracy. Also, the number of layers of the hyperparameter DDC in our 

model is set to 2, which is proved to be the best value in our experiments, and the specific experiments 

will be shown later in the discussion of hyperparameters. 

3.3. Self-Attention 

Each lip position in a lip motion model is frequently linked to other positions in the sequence. If 

each word corresponds to a position, the lips will likewise be in a regular posture. This prompted us to 

create a method that would allow us to choose the most relevant context for the features we needed to 

extract. As a result, we propose a temporal attention strategy built in TCN for assigning weights to 

contextual information at each time step in an adaptable manner. We incorporate a self-attention block 

after each MB-TCN to account for the autocorrelation of lip-reading sequences.  

4. Experiment 

4.1. Dataset 

Our studies were done using the Lip Reading in the Wild (LRW) [11] dataset, which is the biggest 

publicly accessible dataset for lipreading individual English words. The LRW dataset has a vocabulary 

of 500 English words. Each video sequence segment in LRW has a length of 1.16 seconds and was 

recorded from over 1000 speakers in a BBC show (29 video frames). This dataset contains 538 766 

sequences, which are separated into 488 766/25 000/25 000 for training, validation, and testing. Due to 

the enormous number of speakers and the wide changes in lighting conditions, head positions, and 

speech speeds, this dataset is also one of the most difficult dataset in Lip Reading. 

4.2. Experiment Setup 

4.2.1. Preprocessing:  

We preprocessed the video similar to the methods introduced in [17]. We first detected face marks 

and did face alignments for every single video. Then we can easily crop the videos into the size of 

96 × 96 and converted them to grayscale. In order to simulate different lighting and positions between 



different videos, we did a bunch of data argumentations such as random horizontal flip, random 

brightness jitter 20% and random contrast jitter 20%. Finally, to avoid over-fitting to training dataset, 

we randomly select 1 to 3 frames in a video and randomly delete or copy them. Thus our model can be 

more powerful to fit different application scenarios. 

4.2.2. Pretraining:  

Since the easy part of the dataset is often correct even for the simplest model, the accuracy of the 

model is ultimately determined by the most difficult part of the dataset. We observed that pretrain the 

whole model on a relatively small sub-dataset is also an effective way to adjust hyperparameters, test 

model performance and accelerate training. We extract the 50 hardest words based on the current state-

of-the-art open-source model [17] for LRW to create the sub-dataset. As a result, we use this pre-

training method since it may significantly speed up training. 

4.2.3. Training Settings:  

The whole model is trained end-to-end, with all weights initialized using the pretrained model, as 

illustrated in Fig. 1. With a batch size of 32, an initial learning rate of 0.0004, and a weight decay of 1e-

4, we train for 90 epochs. To acquire the weights at the best performing point, we measure the accuracy 

using the validation set provided by LRW. We adopt Adam [22] and cross entropy as optimizer and 

loss function. The learning rate is gradually reduced from its original value to zero using the cosine 

scheduling [23]. 

4.2.4. Implementations:  

Our approach is conducted in the PyTorch framework 3.8.10 [27]. We used a 1080Ti GPU for our 

experiments. The LRW sub-dataset takes roughly 5 hours to train an end-to-end hyperparametric 

validation model. To train a single model from beginning to end, it takes roughly 5 days. Our network 

is lighter than other works, and our training time is significantly lowered. 

4.2.5. Explorations of Hyperparameter:  

On the LRW sub-dataset, we analyze several structural parameters of the MD-TCN model in order 

to find the best performing one. In particular, we validate the effect of the selection of DDC layers on 

the results while freezing other hyperparameters, such as the total number of layers and the kernel size. 

To accelerate training, we only train on LRW sub-dataset for 20 epochs and fix the weight of the front-

end (ResNet). 

4.3. Results 

Table 1 
Performance With Different DDC Layers 

Number of DDC layer(s) Test Accuracy (%) 

0 72.8 

1 72.6 

2 73.5 

3 73.4 

4 73.6 



4.3.1. Number of DDC layers:  

To determine the best DC-TCN structure, we evaluated the effect of number of dual dilated layers 

on the LRW sub-dataset, while keeping the values of other hyperparameters constant. As shown in 

Table 1, it is noticed that the best performance is achieved when the number of DDC layers is 4, i.e., 

all dilated layers are dual dilated layers. The performance is significantly increased when the number 

of DDC layer is greater than or equal to two. We note that with more than two layers, increasing DDC 

layers will barely improve the test accuracy, so we decided to use two DDC layers in the subsequential 

experiments for a good balance between accuracy and speed. 

Table 2 
Performance With Use of Self-Attention 

Self-Attention Block Test Accuracy (%) 

Yes 73.5 

No 73.1 

4.3.2. Attention block:  

For effectiveness of attention block, we also do an experiment on whether the Self-Attention Block 

is enabled. Here we do this experiment by using the DDC layers of 2 to ensure consistency with the 

final experimental hyperparameters. The result shows that when using Self-Attention Block, the training 

speed slow down but can achieve a better test accuracy. It is worth stating that since the sub-dataset was 

selected from the most difficult 10% of LRW and we only trained for 20 epochs, the results shown here 

are not as accurate as they could be. 

Table 3 
Comparison with Other Methodologies on LRW 

Method Front-end Back-end Acc. (%) 

LRW [11] VGG-M - 61.1 

WLAS [5] VGG-M LSTM 76.2 

ResNet+BLSTM [26] 3D Conv + ResNet34 BLSTM 83.0 

End-to-end AVR [28] 3D Conv + ResNet34 BLSTM 83.4 

Multi-Grained [29] ResNet34 + DenseNet3D Conv-BLSTM 83.3 

Multi-scale TCN [17] 3D Conv + ResNet18 MS-TCN 85.3 

Face cutout [30] 3D Conv + ResNet18 BGRU 85.0 

Multi-modality SR [31] 3D ResNet50 TCN 84.8 

3D-ResNet+Bi-GRU [10] 3D SE-ResNet Bi-GRU 85.5 

Ours 3D Conv + ResNet18 MD-TCN 85.7 

4.3.3. Performance on LRW:  

On the LRW dataset, we compare the performance of our technique versus several baseline methods 

in Table 3. On the LRW dataset, our technique achieves an accuracy of 85.7 percent, which has a 0.2 

percent increase over other similarly structured networks [10]. 



4.4. Discussion 

4.4.1. Effectiveness of LRW Sub-dataset:  

We chose the LRW sub-dataset as the training dataset for both hyperparameter tuning and pre-

training because of accelerated training. However, we did not investigate whether the LRW sub-dataset 

can truly reflect the LRW dataset and whether the hyperparameters that perform well in the LRW sub-

dataset also perform well in the LRW dataset. Therefore, we extracted the results of the completed 

training model to investigate how accurate the part of the results corresponding to the sub-dataset. 

4.4.2. Optimizability:  

Although our model is fast and has very good accuracy, there is still much room for optimization. 

First, although the LRW sub-dataset is selected from the LRW, the data might be different in 

distribution, so the network architecture applicable to the sub-dataset may not be optimal on the LRW. 

Therefore, with sufficient arithmetic power, it is better to select hyperparameters directly on the LRW 

to guarantee optimal results. Second, in this paper, we improve the accuracy by constructing a dual 

dilation layer, where the dilation can also be carefully designed like using more than two dilation in one 

layer. Third, we have taken the data pre-processing approach of adding and deleting frames for data 

argumentation, but this may affect the speaker's rhythm. We would like to take the approach of directly 

increasing or decreasing the video length (without changing the frame rate) to simulate different speech 

rates of the speaker, which has the potential to significantly improve the model robustness. 

5. Conclusion 

In this work, we propose MD-TCN for isolated word recognition. Our model has a very good 

performance on LRW by solving the problem of sparse perception field and data autocorrelation. We 

also adopted a novel method for data argumentation that randomly copy and delete frames to improve 

model robustness. Finally, we use sub-dataset to select hyperparameters and accelerate training.  
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