
Object oriented REA using DBQUITY

Jesper Kiehn1 and Lars Hammer2

1 EG A/S, Dbquity ApS, Copenhagen, Denmark
2 Hammer Software, Dbquity ApS, Frederiksberg, Denmark

1. Introduction

In this presentation, we introduce the software platform, Dbquity [9], and some learning points about
REA models.

Dbquity lets you declaratively model data structure and express derived information at the domain
expert’s level of abstraction without over-specifying or repeating knowledge using a dedicated
declarative1 language, which centers on the notions of entity and association and single inheritance with
powerful member-specialization capabilities, and lets you work on multiple levels of abstraction
factoring out domain-specific, reusable libraries.

The language abstracts away all implementation details, and the model declared is executed directly
by the Dbquity runtime without any need for further artefacts.

Design goals for Dbquity include, that based on a single inheritance combined with expressive,
intuitive constraints, the language must support both basic and more advanced REA patterns such as
policy and valuation whilst aiming to be if not writable, then at least readable for non-programmers
using a no/low-code approach. Further, the system must be able to generate the required set of reports
from the model itself in as simple a way as possible.

We aim to open source the specification of the language itself and keep the core tooling and runtime
implementations closed source. The first2 incarnation of the runtime targets a simple, ubiquitous two-
tier topology using cloud-based storage and mobile phones aiming to make it as effortless as possible
for modelers to distribute Dbquity models and for consumers to use the models.

Our work includes several examples to make it clear how to implement REA patterns using Dbquity,
and we hope to get feedback on the presented models, the language, the tooling, and the current scope.

1.1 The Dbquity language introduced by an example

The example of (a sketch of) a REA library and a DAAS design referencing that library in figure 1 on
the following two pages shows how the Dbquity language uses semantic indention such that text
indented under a model element is either properties of that model element or nested elements or
members of that same model element, meaning that the Agent entity will have a field of type text
called Name and the identity of the Agent will be the Name.

In general, a type followed by a name declares an element or a member of that type, and properties
are declared by their name followed by a colon and the property value, which is often an expression
over the model.

Dbquity stores data in a hierarchy of entities rooted by areas. An area is itself a (special kind of)
entity. Only concrete (not abstract) entities declared inside an area will be instantiable at runtime.

Proceedings of the 16th International Workshop on Value Modelling and Business Ontologies (VMBO 2022), held in conjunction with the
34th International Conference on Advanced Information Systems Engineering (CAiSE 2022), June 06–10, 2022, Leuven, Belgium
EMAIL: jkiehn@hotmail.com (J. Kiehn); lars.hammer@dbquity.com (L. Hammer)

© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

1 While continuing to strive for maximum declarativeness, we have not – yet? – been able to avoid all and any imperativeness, and the language
seems to still need some imperative constructs, e.g., for adding an entity and setting field values in behavioural expressions.
2 Other runtime implementations capable of executing the exact same Dbquity models – for example webserver-based ones, as well as some
that focus on scalability in terms of concurrency and data amounts – are anticipated.

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

Note how the name of a previously declared entity can be used as a keyword for declaring a
specialized entity. For example, the line Agent Producer, declares the Producer entity in the
Sales area specializing the Agent entity of the REA library.

library REA
 entity Resource
 text Name
 identity: Name
 decimal Price

 entity Event
 date When
 decimal Amount

 entity Agent
 text Name
 identity: Name

design DaaS
 references: REA

 area Sales
 Agent Producer

 Agent Lessor
 decimal ComputerPurchaseTotal
 expression: Lessor@Sale.sum(Amount)
 integer ComputersBorrowed
 expression: Lessor@ComputerBorrowSale.count(Active)

 Agent User
 link Employedby
 entity: Lessor

 Resource Computer
 link User
 expression: Computer@ComputerBorrowSale.last(Active).User
 link Soldto
 entity: User
 expression: Computer@ComputerBorrowSale.last(Sold).User

 Resource TransportService

 Event Sale
 link Producer
 link Lessor
 link Computer

 Event SalePayment
 link Producer
 link Lessor
 link Sale

 Event Transport
 link Producer
 link Lessor
 link TransportService
 link Computer

 Listing 1: Example of a Dbquity design referencing a library (continues on next page)

 Event ComputerBorrowSale
 link Lessor
 link User
 link Computer
 date LatestReturn
 default: When.addyears(3)
 boolean Active
 expression: not (Returned or Sold)
 boolean Returned
 expression: ComputerBorrowSale@Return.any()
 boolean Sold
 expression: ComputerBorrowSale@UserPayment.any()
 step IssueNotice
 guard: today() >= LatestReturn.adddays(-10)
 behaviour:
 add(Notice,
 Due: max(LatestReturn,today()),
 Amount: Amount,
 Note: "Please return PC by "|max(LatestReturn,today())|
 " or pay "|Amount|"USD.")

 entity Notice
 decimal Amount
 date Due
 text Note
 multiline

 Event Return
 link ComputerBorrowSale

 Event UserPayment
 link ComputerBorrowSale

Listing 1: Example of a Dbquity design referencing a library (continued from previous page)

2. References

[1] William E. McCarthy, G. L. Geerts “An ontological analysis of the economic primitives of the extended-
REA enterprise information architecture”

[2] William E. McCarthy, G. L. Geerts: “Policy-Level Specifications in REA Enterprise Information
Systems”

[3] Valueflows: https://www.valueflo.ws/
[4] Cheryl Dunn , J. Owen Cherrington, Anita Hollander: Enterprise Information Systems: A Pattern-Based

Approach
[5] Cheryl Dunn: REA Accounting Systems
[6] Frederik Gailly; Wim Laurier; Geert Poels: Positioning and Formalizing the REA Enterprise Ontology
[7] James Perry, Richard Newmark: Building Accounting Systems Using Microsoft Access 2013
[8] ISO/IEC 15944-4
[9] http://www.dbquity.com/
[10] https://grpc.io/
[11] Hruby, Pavel. (2006). Model-Driven Design Using Business Patterns. 10.1007/3-540-30327-2.

