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Abstract  
Reliability assessment and prediction of the number of faults/defects is an 

important part of the software engineering process. Many software reliability 

models assume that all detected are removed with certainty and no new faults are 

introduced. However, the introduction of secondary faults during software updates 

has become quite common in software development practice, which can be 

explained by the enormous complexity of modern computer applications. In the 

paper we consider different scenarios of introducing secondary faults and how to 

predict number of such faults. Finally, we discuss how different SRGMs like 

Jelinski-Moranda, Exponential, Schick-Wolverton, Musa and Lipov models can 

be modified to account secondary faults in order to improve accuracy of software 

reliability prediction. We use an industrial case study to demonstrate applicability 

of the proposed approach. Our results show that considering secondary faults 

helped to considerably improve accuracy of software failure rate prediction. 
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1. Introduction 

Software (SW) has become a ubiquitous component and an important part of modern information 

and communication systems. As a result, software failures caused by faults made during software 

development and overlooked during the testing process can have severe consequences and lead to large-

scale outages of computer systems, significant financial losses and even human casualties. 

Thus, assessment of software reliability is one of the key issues that arise during SW development, 

verification, and validation. An importance of software reliability assessment is emphasized by the need 

to comprehensively account its’ impact on reliability of computer systems for critical and busines-

critical applications [1, 2]. Quantitative approach to evaluate software reliability is based on application 

of various mathematical models assessing and predicting the number of residual faults and probability 

of failure occurrence. These models are called software reliability growth models (SRGMs) [3-5]. 

SRGMs reflect the critical difference in software and hardware failure mechanisms (hardware fails 

mostly due to physical faults, while software faults are design faults; reliability of hardware can degrade 
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over time due to ageing, while software cannot age physically) and can predict the mean time to failure 

(MTTF) based on failure statistics collected during software testing and operation. 

A large number of software reliability models have been proposed over the past decades. A model 

is a description of the relationship between two or more variables (e.g. the number of already detected 

faults/defects and the time to the next failure).  

Model assumptions are used to simplify model development. They denote a set of used conventions, 

choices and other specifications on which the model is based. Many SRGMs contain an assumption that 

in the process of eliminating already detected (primary) faults, new (secondary) faults cannot be 

introduced [8]. However, the practice of software engineering shows that secondary faults/defects are 

often introduced during software update which needs to be accounted by SRGMs [2]. This can be done 

by developing a new reliability model from the scratch or via modification/upgrading of the existing 

SRGMs by introducing new thoughtful assumption [6].  

The paper proposes a new technique for prediction the number of secondary faults. This technique 

has been incorporated into Jelinski-Moranda SRGM to improve accuracy of software reliability 

assessment. An industrial case study was used to justify applicability of the proposed approach and to 

demonstrate its efficiency.  

2. Related Works 

Over two hundred different software reliability models have been developed over the past decades. 

These models define the set of assumptions about the number of faults (finite or infinite), fault rate, time 

between failures, etc. and offer analytical equations forecasting the number of residual failures, the 

failure rate and mean time to failure. A large set of different assumptions is caused by the wide range 

of different factors in the process of software development, testing and operation affecting conditions 

of faults creation, detection and manifestation [14-23].  

There have been quite a few publications attempting to systematize and classify existing SRGMs 

based on the assumptions they use: 

• Hecht’s classification [7] divided models into prediction, estimation and measurement models;  

prediction models such as Holsted and Motley-Brook predict number of software defects based on 

physical program characteristics, i.e. code metrics, such as number of the source lines of code, 

number of cycles and cyclomatic complexity, number of errors per page of the program code, etc.; 

measurement models (e.g. Nelson-Bastani) evaluate reliability of a program working in an 

operational environment for a sample of inputs which are randomly selected from the whole input 

domain set and counting the number of inputs that results in execution failures; estimation models 

like Musa model predict mean time to failure based on failure statistics collected during software 

testing. 

• Goel's classification [8] considered the following model domains: Times Between Failures 

Models (e.g. Jelinski-Moranda and Schick-Wolverton models); Failure Count Models: (e.g. 

Schumann model); Fault Seeding Models: (e.g. Mills and Beisin models); Input Domain Based 

Models (e.g. Nelson model). 

• Fatuev's classification [8]. According to Fatuev's classification SRGMs can be divided into two 

major classes: static and dynamic. In turn, each class can be split into continuous and discrete 

subclasses. 

• Blagodatsky’s сlassification [9] extended Fatuev's classification by further dividing the static 

models by defects and input data domains and introducing a new class of empirical models which 

encompasses the complexity model and the model that determines the required software debugging 

time. Continuous models include: Jelinski-Moranda, Mousses, and Transition probabilities models. 

The class of discrete models consists of: Shumkan, La Padula, and Schick-Wolverton SRGMs.  

• Polonnikov-Nikandrov [10] divided models by time structure (Jelinski-Moranda, simple 

exponential, Schick-Wolverton, Lipov, geometric, Schneidewind, Weibul, and Duane models), 

software complexity (Halsted model), error markup (Mills, Beisin, and simple heuristic models), 

program text structure (Nelson, La Padula, and IBM regression models), input data space structure 

(text and entropic models). 

 



• Kharchenko et al in [24] put forward a facet-hierarchical classification of the most popular 

SRGMs (Jelinski-Moranda, Shooman, Goel-Okumoto, Schneidewind, Musa, Lapri, Lipow, Musa-

Okumoto etc.) which is based on their assumptions systematisation and offered a method of software 

reliability growth models choice using the proposed assumptions matrix. 

Ultimately, we can conclude that software reliability models can be divided into three main classes: 

(i) empirical models, (ii) statistical models and (iii) probabilistic models. The class of probabilistic 

models seems to be the most suitable to consider and take into account probability of inserting the 

secondary faults during the process of removing the primary faults. We selected a subset of probabilistic 

models which risk functions can be modified to account probability of inserting the secondary faults: 

Jelinski-Moranda, Simple exponential, Schick-Wolverton, Lipov and Musa models. In the next section 

we will consider scenarios of introducing secondary defects during the software life cycle and how the 

risk functions of the software reliability models mentioned above can be updated to account for 

secondary faults in order to improve the accuracy of software reliability predictions.  

3. Scenarios of introducing SW secondary faults 

It is assumed that software contains Nd initial faults and undergoes a series of updates/upgrades 

during its lifecycle. The number of faults Mi left in the software after the i-th update/upgrade can be 

estimated using (1) depending on one of the following assumptions: 

1. All faults Ni are removed with certainty and no new faults are introduced; 

2. All faults Ni detected by the i-th update step are removed with certainty; however, Ki new 

(secondary) faults are introduced after software is updated; 

3. Not all faults out of Ni detected by the i-th update step are removed after updating the software; 

∆Ni faults are left unfixed, but no new faults are introduced as a result of software update; 

4. Not all faults out of Ni detected by the i-th update step are removed after updating the software; ∆Ni 

faults are left unfixed; in addition, Ki new (secondary) faults are introduced as a result of software update; 

5. All faults Ni detected by the i-th update step are removed with certainty; however, K*
i new faults 

are introduced after upgrading software functionality (i.e. adding new functions); 

6. Not all faults out of Ni detected by the i-th update step are removed after updating the software; 

∆Ni faults are left unfixed; in addition, K*
i new faults are introduced after upgrading software 

functionality (i.e. adding new functions); 

7. All faults Ni detected by the i-th update step are removed with certainty; however, Ki* new 

faults are introduced after upgrading software functionality (i.e. adding new functions); in addition, 

Ki
B interaction faults (i.e. faults occurred during interaction of upgraded software modules with  non-

upgraded ones) are introduced into the program.  

8. Not all faults out of Ni detected by the i-th update step p are removed with certainty; however, 

Ki* new faults are introduced after upgrading software functionality (i.e. adding new functions); in 

addition, Ki
B interaction faults (i.e. faults occurred during interaction of upgraded software modules 

with non-upgraded ones) are introduced into the program.  
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Table 1 summarizes updates which need to be made in the risk functions of different software 

reliability models to incorporate new assumptions. 



Table 1 
Modified risk functions 

SRGM Risk Functions Modified risk functions 

Jelinski-Moranda λ(t)=K(Nd - (i-1)) λ(t)=K(Nd-i+1+nin) 
Simple exponential λ(t)=K(Nd -N(t)) λ(t)=K(Nd - N(t)+nin) 
Schick-Wolverton λ(t)=K(Nd - i+1)Xi λ(t)=K(Nd - i+1+nin)Xi 

Lipov λ(t)=K(Nd - Fi-1) λ(ti)=K(Nd   - Fi-1+nin) 
Musa λ(t)=K(Nd - Fi-1) λ(ti)=K(Nd   - Fi-1+nin) 

where λ(t) – risk functions, Fi-1 – the total number of corrected defects at the time, Xi – test time from  

ti-1 (time of detection of i-1 software defect) to ti.  

4. Software reliability assessment workflow  

The process of predicting the number of secondary SW faults can be split into the following steps. 

Step 1. Collecting the SW defects statistics.  

As an input this step uses the following information [11-13]: 

• system requirements specification (SRS): description of system functions, operating scenarios, 

interfaces description, functional and non-functional (i.e. performance, environment, information 

security, reliability) requirements; 

• software requirements specification (SWRS) and software detailed design (SWDD): 

description of operating SW scenarios, SW functional requirements and requirements for SW 

interfaces, and non-functional requirements; 

The output of this stage is statistics about failure occurrence and fault detection. It is obtained based 

on the analysis of testing and validation reports and code reviews. 

Step 2. Analyzing failure occurrence and fault detection statistics as a function of time. 

Failure occurrence and fault detection statistics in each time interval collected at the previous stage 

is used to analyze its time correlation. 

Step 3. Selecting the regression function. 

Step 4. Evaluating regression coefficients. 

Step 5. Predicting the number of secondary SW faults. 

4.1. Prediction of the number of secondary software faults 

Below we define steps for predicting the number of secondary SW defects. 

1. Calculating the module of the difference between the actual number of software defects detected 

in the specified time interval and the value predicted by the regression function for the same period of 

time. 

2. The number of secondary SW faults in the i-th testing interval can be estimated as the difference 

between the results obtained in the previous step and the standard deviation of the fault statistic in the 

specified time interval multiplied by the coefficient (2) and rounded to the nearest whole number. 
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where n – is the total number of testing intervals.  

As a result, we can derive the following equation: 
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where y – is statistics of software faults detected in each testing interval; x – is the sequence number of 

the testing interval; a, b – are coefficients of the regression function; n – is the total number of testing 

intervals; y  – is the standard deviation of y;   – is the estimated deviation value. 

The number of secondary faults then can be estimated by rounding   to the nearest whole number. 

 

 
Figure 1: Prediction of the number of secondary SW faults 

 

4.2. Industrial case study: evaluation of the number of secondary SW faults 
in the Logic Module of RadICS platform 

RadICS’s (see Fig. 2) is the digital instrumentation and control platform used in safety and control 

systems applications in operating nuclear power plants [23]. It is a modular platform which includes a 

set of replaceable standardized modules such as logic module, digital and analog input/output modules. 

The functionality of each module is driven by the program logic implemented in the on-board FPGA(s). 

FPGA (Field-Programmable Gate Array) is an integrated circuit designed to be programmed through 

the use of hardware description languages, e.g. VHDL or Verilog [26, 27]. FPGA code is written in a 

description language, then is interpreted, synthesized, and ultimately produces hardware. As such, faults 

in the FPGA program code can introduce logic errors into the system. 



         
Figure 2: FPGA-based platform RadICS and its modules 

 

In this section we report fault detection statistics (see Table 2) for RadICS’s Logic Module collected 

during its functional testing and apply the discussed approach to predict the number of secondary faults. 

The Logic Module serves as the core of the entire RadICS platform. It implements the application logic 

and is used as a communication node linking other modules installed in the chassis together, performs 

self-diagnostics and controls communications with external chassis and systems.  

 

Table 2 
Statistics of the faults detected in RadICS’s Logic Module during its functional testing 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Number of 
detected 

faults 
14 12 8 7 7 6 5 6 3 2 1 1 

 

Figure 4 depicts the fault detection statistics (NS_1) collected during functional testing and the power 

regression function (4) used for theoretical approximation of the testing results (NS_2). Values of the 

parameters of the regression function were estimated by the least-squares technique. 

 

y = 12.66/x + 2.31 (4) 

 

 
Figure 4: Fault detection statistics. 
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The number of secondary software faults nin was calculated using (3) by pairwise comparison of 

NS_1 and NS_2 series. Obtained results are summarised in Table 3.  

The number of predicted secondary faults can now be used to estimate the software failure rate λd  

with the help of software reliability growth models. Table 4 compares software failure rates predicted 

using Jelinski-Moranda SRGM with and without considering secondary software faults. 

 

Table 3 
The results of predicting the number of secondary software faults 

Testing 
interval  

x 

Number of 
detected 
faults y 

𝑎 +
𝑏

𝑥
 |𝑦 − 𝑎 −

𝑏

𝑥
| |𝑦 − 𝑎 −

𝑏

𝑥
| −

1

13 − 𝑥
𝜎 𝑦 

Predicted number 
of secondary 

faults nin 

1 13 14,96916 1,969157 1,667813 2 
2 11 8,639352 2,360648 2,031909 2 
3 8 6,529417 1,470583 1,108970 1 
4 7 5,474449 1,525551 1,123758 1 
5 6 4,841469 1,158531 0,706515 1 
6 5 4,419482 0,580518 0,063928  
7 4 4,118063 0,118063 –0,48463  
8 6 3,891998 2,108002 1,384776 1 
9 3 3,716170 0,716170 –0,18786  

10 2 3,575508 1,575508 0,370132  
11 1 3,460421 2,460421 0,652356  

12 1 3,364514 2,364514 –1,25161  

 

Table 4 
The results of software failure rate assessment λd  

Testing 
interval  

x 

Number of 
detected 
faults y 

Predicted number 
of secondary 

faults nin 

Failure rate λd  

without considering 
secondary SW faults 

Failure rate λd
*

 taking 
into account 

secondary SW faults 

1 13 2 0,013580 0,013979 
2 11 2 0,011183 0,011583 
3 8 1 0,009286 0,009486 
4 7 1 0,007788 0,007988 
5 6 1 0,006490 0,006690 
6 5  0,005392 0,005392 
7 4  0,004493 0,004493 
8 6 1 0,003495 0,003694 
9 3  0,002596 0,002596 

10 2  0,002097 0,002097 
11 1  0,001797 0,001797 
12 1  0,001598 0,001598 

Average Software Failure Rate 0,005816 0,005949 
Average decrease of the Software Failure Rate 0,001089 0,001126 

 

Table 5 and Fig. 5 summarize cumulative numbers of both actually detected faults and predicted 

secondary faults. It is shown that the total number of faults detected during the testing period is equal 

to 67. The number of predicted secondary faults is 8 (approx. 12% of the detected faults).  

Thus, one can assume that the potential number of software faults equals 75 which means that the 

software needs to be further tested to detect and remove the rest of the faults. 



Table 5 
Calculation of the relative error when taking into account secondary SW defects 

Testing 
interval  

x 

Number 
of 

detected 
faults y 

Predicted 
number 

of 
secondary 

faults 

Number 
of faults 
including 

secondary 
ones 

Cumulative 
number of 

faults 
without 

secondary 
ones 

Cumulative 
number of 

faults 
taking into 

account 
secondary 

ones 

Predicted 
cumulative 
number of 
secondary 

faults 

Relative 
deviation 

1 13 2 15 13 15 2 0,133333 
2 11 2 13 24 28 4 0,142857 
3 8 1 9 32 37 5 0,135135 
4 7 1 8 39 45 6 0,133333 
5 6 1 7 45 52 7 0,134615 
6 5  5 50 57 7 0,122807 
7 4  4 54 61 7 0,114754 
8 6 1 7 60 68 8 0,117647 
9 3  3 63 71 8 0,112676 

10 2  2 65 73 8 0,109589 
11 1  1 66 74 8 0,108108 
12 1  1 67 75 8 0,106667 

 

 
 

Figure 5: The cumulative number of software failures with (NC_2) and without (NC_1) accounting 
predicted secondary software faults 

5. Conclusions 

This paper discusses an importance of software reliability assessment. A great number of models 

have been proposed to predict software reliability (probability of failure, failure rate or mean time to 

failure) and the number of residual software faults.  

Different models use different approaches to evaluate software reliability. For instance, one of the 

first attempt to predict the number of software faults was made by Maurice Halstead in 1977 in [23] 
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where he proposed a number of program code’s ‘complexity’ metrics used as predictors of program 

defects.  

In this paper we consider a class of software reliability growth models which use fault detection 

statistics collected during software testing. These models put forward different assumption about 

statistical distribution of failures (e.g. time between failures follows the exponential distribution), 

number of faults (e.g. finite or infinite) and other limitations to simplify the process of software 

reliability assessment.  

However, some of these assumptions might not be very realistic and, hence, affect accuracy of the 

reliability prediction. For example, many SRGMs assume that all detected faults are removed with 

certainty and no new faults are introduced in the software. However, our industrial experience and other 

studies show that the introduction of secondary faults is quite common and, hence, needs to be 

accounted during software reliability modelling.  

In the paper we discuss different scenarios of introducing secondary faults and how to predict number 

of such faults. Finally, we discuss how different SRGMs like Jelinski-Moranda, Exponential, Schick-

Wolverton, Musa and Lipov models can be modified to account secondary faults in order to improve 

accuracy of software reliability prediction. We use an industrial case study to demonstrate applicability 

of the proposed approach. Our results show that considering secondary faults helped to increase 

accuracy of software failure rate assessment up to 5%. 
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