
Improving the Accuracy of Software Reliability Modeling by
Predicting the Number of Secondary Software Defects

Oleg Odarushchenkoa, Elena Odarushchenkob, Olena Kopishynskac, Oleksandr Rudenkod and

Anatoliy Gorbenkoe

a Poltava State Agrarian University, odarushchenko@gmail, Poltava, Ukraine
b Poltava State Agrarian University, elena.odarushchenko@gmail, Poltava, Ukraine
c Poltava State Agrarian University, olena.kopishynska@pdaa.edu.ua, Poltava, Ukraine
d National University «Yuri Kondratyuk Poltava Polytechnic», olexantr@gmail.com, Poltava, Ukraine
e Leeds Beckett University, a.gorbenko@leedsbeckett.ac.uk, Leeds, United Kingdom

Abstract
Reliability assessment and prediction of the number of faults/defects is an

important part of the software engineering process. Many software reliability

models assume that all detected are removed with certainty and no new faults are

introduced. However, the introduction of secondary faults during software updates

has become quite common in software development practice, which can be

explained by the enormous complexity of modern computer applications. In the

paper we consider different scenarios of introducing secondary faults and how to

predict number of such faults. Finally, we discuss how different SRGMs like

Jelinski-Moranda, Exponential, Schick-Wolverton, Musa and Lipov models can

be modified to account secondary faults in order to improve accuracy of software

reliability prediction. We use an industrial case study to demonstrate applicability

of the proposed approach. Our results show that considering secondary faults

helped to considerably improve accuracy of software failure rate prediction.

Keywords1
Software reliability, software reliability growth models, secondary faults,

modified Jelinski-Moranda model

1. Introduction

Software (SW) has become a ubiquitous component and an important part of modern information

and communication systems. As a result, software failures caused by faults made during software

development and overlooked during the testing process can have severe consequences and lead to large-

scale outages of computer systems, significant financial losses and even human casualties.

Thus, assessment of software reliability is one of the key issues that arise during SW development,

verification, and validation. An importance of software reliability assessment is emphasized by the need

to comprehensively account its’ impact on reliability of computer systems for critical and busines-

critical applications [1, 2]. Quantitative approach to evaluate software reliability is based on application

of various mathematical models assessing and predicting the number of residual faults and probability

of failure occurrence. These models are called software reliability growth models (SRGMs) [3-5].

SRGMs reflect the critical difference in software and hardware failure mechanisms (hardware fails

mostly due to physical faults, while software faults are design faults; reliability of hardware can degrade

IntelITSIS’2022: 3rd International Workshop on Intelligent Information Technologies and Systems of Information Security, March 23–25,

2022, Khmelnytskyi, Ukraine
EMAIL: odarushchenko@gmail (A. 1); elena.odarushchenko@gmail (A. 2); olena.kopishynska@pdaa.edu.ua (A. 3); olexantr@gmail.com

(A. 4); a.gorbenko@leedsbeckett.ac.uk (A. 5)

ORCID: 0000-0003-3933-9637 (A. 1); 0000-0002-2293-2576 (A. 2); 0000-0002-3138-7215 (A. 3); 0000-0002-1847-6635 (A. 4); 0000-0001-
6757-1797 (A. 5)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

over time due to ageing, while software cannot age physically) and can predict the mean time to failure

(MTTF) based on failure statistics collected during software testing and operation.

A large number of software reliability models have been proposed over the past decades. A model

is a description of the relationship between two or more variables (e.g. the number of already detected

faults/defects and the time to the next failure).

Model assumptions are used to simplify model development. They denote a set of used conventions,

choices and other specifications on which the model is based. Many SRGMs contain an assumption that

in the process of eliminating already detected (primary) faults, new (secondary) faults cannot be

introduced [8]. However, the practice of software engineering shows that secondary faults/defects are

often introduced during software update which needs to be accounted by SRGMs [2]. This can be done

by developing a new reliability model from the scratch or via modification/upgrading of the existing

SRGMs by introducing new thoughtful assumption [6].

The paper proposes a new technique for prediction the number of secondary faults. This technique

has been incorporated into Jelinski-Moranda SRGM to improve accuracy of software reliability

assessment. An industrial case study was used to justify applicability of the proposed approach and to

demonstrate its efficiency.

2. Related Works

Over two hundred different software reliability models have been developed over the past decades.

These models define the set of assumptions about the number of faults (finite or infinite), fault rate, time

between failures, etc. and offer analytical equations forecasting the number of residual failures, the

failure rate and mean time to failure. A large set of different assumptions is caused by the wide range

of different factors in the process of software development, testing and operation affecting conditions

of faults creation, detection and manifestation [14-23].

There have been quite a few publications attempting to systematize and classify existing SRGMs

based on the assumptions they use:

• Hecht’s classification [7] divided models into prediction, estimation and measurement models;

prediction models such as Holsted and Motley-Brook predict number of software defects based on

physical program characteristics, i.e. code metrics, such as number of the source lines of code,

number of cycles and cyclomatic complexity, number of errors per page of the program code, etc.;

measurement models (e.g. Nelson-Bastani) evaluate reliability of a program working in an

operational environment for a sample of inputs which are randomly selected from the whole input

domain set and counting the number of inputs that results in execution failures; estimation models

like Musa model predict mean time to failure based on failure statistics collected during software

testing.

• Goel's classification [8] considered the following model domains: Times Between Failures

Models (e.g. Jelinski-Moranda and Schick-Wolverton models); Failure Count Models: (e.g.

Schumann model); Fault Seeding Models: (e.g. Mills and Beisin models); Input Domain Based

Models (e.g. Nelson model).

• Fatuev's classification [8]. According to Fatuev's classification SRGMs can be divided into two

major classes: static and dynamic. In turn, each class can be split into continuous and discrete

subclasses.

• Blagodatsky’s сlassification [9] extended Fatuev's classification by further dividing the static

models by defects and input data domains and introducing a new class of empirical models which

encompasses the complexity model and the model that determines the required software debugging

time. Continuous models include: Jelinski-Moranda, Mousses, and Transition probabilities models.

The class of discrete models consists of: Shumkan, La Padula, and Schick-Wolverton SRGMs.

• Polonnikov-Nikandrov [10] divided models by time structure (Jelinski-Moranda, simple

exponential, Schick-Wolverton, Lipov, geometric, Schneidewind, Weibul, and Duane models),

software complexity (Halsted model), error markup (Mills, Beisin, and simple heuristic models),

program text structure (Nelson, La Padula, and IBM regression models), input data space structure

(text and entropic models).

• Kharchenko et al in [24] put forward a facet-hierarchical classification of the most popular

SRGMs (Jelinski-Moranda, Shooman, Goel-Okumoto, Schneidewind, Musa, Lapri, Lipow, Musa-

Okumoto etc.) which is based on their assumptions systematisation and offered a method of software

reliability growth models choice using the proposed assumptions matrix.

Ultimately, we can conclude that software reliability models can be divided into three main classes:

(i) empirical models, (ii) statistical models and (iii) probabilistic models. The class of probabilistic

models seems to be the most suitable to consider and take into account probability of inserting the

secondary faults during the process of removing the primary faults. We selected a subset of probabilistic

models which risk functions can be modified to account probability of inserting the secondary faults:

Jelinski-Moranda, Simple exponential, Schick-Wolverton, Lipov and Musa models. In the next section

we will consider scenarios of introducing secondary defects during the software life cycle and how the

risk functions of the software reliability models mentioned above can be updated to account for

secondary faults in order to improve the accuracy of software reliability predictions.

3. Scenarios of introducing SW secondary faults

It is assumed that software contains Nd initial faults and undergoes a series of updates/upgrades

during its lifecycle. The number of faults Mi left in the software after the i-th update/upgrade can be

estimated using (1) depending on one of the following assumptions:

1. All faults Ni are removed with certainty and no new faults are introduced;

2. All faults Ni detected by the i-th update step are removed with certainty; however, Ki new

(secondary) faults are introduced after software is updated;

3. Not all faults out of Ni detected by the i-th update step are removed after updating the software;

∆Ni faults are left unfixed, but no new faults are introduced as a result of software update;

4. Not all faults out of Ni detected by the i-th update step are removed after updating the software; ∆Ni

faults are left unfixed; in addition, Ki new (secondary) faults are introduced as a result of software update;

5. All faults Ni detected by the i-th update step are removed with certainty; however, K*
i new faults

are introduced after upgrading software functionality (i.e. adding new functions);

6. Not all faults out of Ni detected by the i-th update step are removed after updating the software;

∆Ni faults are left unfixed; in addition, K*
i new faults are introduced after upgrading software

functionality (i.e. adding new functions);

7. All faults Ni detected by the i-th update step are removed with certainty; however, Ki* new

faults are introduced after upgrading software functionality (i.e. adding new functions); in addition,

Ki
B interaction faults (i.e. faults occurred during interaction of upgraded software modules with non-

upgraded ones) are introduced into the program.

8. Not all faults out of Ni detected by the i-th update step p are removed with certainty; however,

Ki* new faults are introduced after upgrading software functionality (i.e. adding new functions); in

addition, Ki
B interaction faults (i.e. faults occurred during interaction of upgraded software modules

with non-upgraded ones) are introduced into the program.

(1)

Table 1 summarizes updates which need to be made in the risk functions of different software

reliability models to incorporate new assumptions.

Table 1
Modified risk functions

SRGM Risk Functions Modified risk functions

Jelinski-Moranda λ(t)=K(Nd - (i-1)) λ(t)=K(Nd-i+1+nin)
Simple exponential λ(t)=K(Nd -N(t)) λ(t)=K(Nd - N(t)+nin)
Schick-Wolverton λ(t)=K(Nd - i+1)Xi λ(t)=K(Nd - i+1+nin)Xi

Lipov λ(t)=K(Nd - Fi-1) λ(ti)=K(Nd - Fi-1+nin)
Musa λ(t)=K(Nd - Fi-1) λ(ti)=K(Nd - Fi-1+nin)

where λ(t) – risk functions, Fi-1 – the total number of corrected defects at the time, Xi – test time from

ti-1 (time of detection of i-1 software defect) to ti.

4. Software reliability assessment workflow

The process of predicting the number of secondary SW faults can be split into the following steps.

Step 1. Collecting the SW defects statistics.

As an input this step uses the following information [11-13]:

• system requirements specification (SRS): description of system functions, operating scenarios,

interfaces description, functional and non-functional (i.e. performance, environment, information

security, reliability) requirements;

• software requirements specification (SWRS) and software detailed design (SWDD):

description of operating SW scenarios, SW functional requirements and requirements for SW

interfaces, and non-functional requirements;

The output of this stage is statistics about failure occurrence and fault detection. It is obtained based

on the analysis of testing and validation reports and code reviews.

Step 2. Analyzing failure occurrence and fault detection statistics as a function of time.

Failure occurrence and fault detection statistics in each time interval collected at the previous stage

is used to analyze its time correlation.

Step 3. Selecting the regression function.

Step 4. Evaluating regression coefficients.

Step 5. Predicting the number of secondary SW faults.

4.1. Prediction of the number of secondary software faults

Below we define steps for predicting the number of secondary SW defects.

1. Calculating the module of the difference between the actual number of software defects detected

in the specified time interval and the value predicted by the regression function for the same period of

time.

2. The number of secondary SW faults in the i-th testing interval can be estimated as the difference

between the results obtained in the previous step and the standard deviation of the fault statistic in the

specified time interval multiplied by the coefficient (2) and rounded to the nearest whole number.

1

1n i+ −
,

(2)

where n – is the total number of testing intervals.

As a result, we can derive the following equation:

1
,

1
y

a
y b

x n x
 = − − −

+ −

(3)

where y – is statistics of software faults detected in each testing interval; x – is the sequence number of

the testing interval; a, b – are coefficients of the regression function; n – is the total number of testing

intervals; y – is the standard deviation of y;  – is the estimated deviation value.

The number of secondary faults then can be estimated by rounding  to the nearest whole number.

Figure 1: Prediction of the number of secondary SW faults

4.2. Industrial case study: evaluation of the number of secondary SW faults
in the Logic Module of RadICS platform

RadICS’s (see Fig. 2) is the digital instrumentation and control platform used in safety and control

systems applications in operating nuclear power plants [23]. It is a modular platform which includes a

set of replaceable standardized modules such as logic module, digital and analog input/output modules.

The functionality of each module is driven by the program logic implemented in the on-board FPGA(s).

FPGA (Field-Programmable Gate Array) is an integrated circuit designed to be programmed through

the use of hardware description languages, e.g. VHDL or Verilog [26, 27]. FPGA code is written in a

description language, then is interpreted, synthesized, and ultimately produces hardware. As such, faults

in the FPGA program code can introduce logic errors into the system.

Figure 2: FPGA-based platform RadICS and its modules

In this section we report fault detection statistics (see Table 2) for RadICS’s Logic Module collected

during its functional testing and apply the discussed approach to predict the number of secondary faults.

The Logic Module serves as the core of the entire RadICS platform. It implements the application logic

and is used as a communication node linking other modules installed in the chassis together, performs

self-diagnostics and controls communications with external chassis and systems.

Table 2
Statistics of the faults detected in RadICS’s Logic Module during its functional testing

Month 1 2 3 4 5 6 7 8 9 10 11 12

Number of
detected

faults
14 12 8 7 7 6 5 6 3 2 1 1

Figure 4 depicts the fault detection statistics (NS_1) collected during functional testing and the power

regression function (4) used for theoretical approximation of the testing results (NS_2). Values of the

parameters of the regression function were estimated by the least-squares technique.

y = 12.66/x + 2.31 (4)

Figure 4: Fault detection statistics.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12

N
u

m
b

er
 o

f
 f

au
lt

s

Testing intervals, month

NS_1 (detected faults)

NS_2 (regression function)

The number of secondary software faults nin was calculated using (3) by pairwise comparison of

NS_1 and NS_2 series. Obtained results are summarised in Table 3.

The number of predicted secondary faults can now be used to estimate the software failure rate λd

with the help of software reliability growth models. Table 4 compares software failure rates predicted

using Jelinski-Moranda SRGM with and without considering secondary software faults.

Table 3
The results of predicting the number of secondary software faults

Testing
interval

x

Number of
detected
faults y

𝑎 +
𝑏

𝑥
 |𝑦 − 𝑎 −

𝑏

𝑥
| |𝑦 − 𝑎 −

𝑏

𝑥
| −

1

13 − 𝑥
𝜎 𝑦

Predicted number
of secondary

faults nin

1 13 14,96916 1,969157 1,667813 2
2 11 8,639352 2,360648 2,031909 2
3 8 6,529417 1,470583 1,108970 1
4 7 5,474449 1,525551 1,123758 1
5 6 4,841469 1,158531 0,706515 1
6 5 4,419482 0,580518 0,063928
7 4 4,118063 0,118063 –0,48463
8 6 3,891998 2,108002 1,384776 1
9 3 3,716170 0,716170 –0,18786

10 2 3,575508 1,575508 0,370132
11 1 3,460421 2,460421 0,652356

12 1 3,364514 2,364514 –1,25161

Table 4
The results of software failure rate assessment λd

Testing
interval

x

Number of
detected
faults y

Predicted number
of secondary

faults nin

Failure rate λd

without considering
secondary SW faults

Failure rate λd
*

 taking
into account

secondary SW faults

1 13 2 0,013580 0,013979
2 11 2 0,011183 0,011583
3 8 1 0,009286 0,009486
4 7 1 0,007788 0,007988
5 6 1 0,006490 0,006690
6 5 0,005392 0,005392
7 4 0,004493 0,004493
8 6 1 0,003495 0,003694
9 3 0,002596 0,002596

10 2 0,002097 0,002097
11 1 0,001797 0,001797
12 1 0,001598 0,001598

Average Software Failure Rate 0,005816 0,005949
Average decrease of the Software Failure Rate 0,001089 0,001126

Table 5 and Fig. 5 summarize cumulative numbers of both actually detected faults and predicted

secondary faults. It is shown that the total number of faults detected during the testing period is equal

to 67. The number of predicted secondary faults is 8 (approx. 12% of the detected faults).

Thus, one can assume that the potential number of software faults equals 75 which means that the

software needs to be further tested to detect and remove the rest of the faults.

Table 5
Calculation of the relative error when taking into account secondary SW defects

Testing
interval

x

Number
of

detected
faults y

Predicted
number

of
secondary

faults

Number
of faults
including

secondary
ones

Cumulative
number of

faults
without

secondary
ones

Cumulative
number of

faults
taking into

account
secondary

ones

Predicted
cumulative
number of
secondary

faults

Relative
deviation

1 13 2 15 13 15 2 0,133333
2 11 2 13 24 28 4 0,142857
3 8 1 9 32 37 5 0,135135
4 7 1 8 39 45 6 0,133333
5 6 1 7 45 52 7 0,134615
6 5 5 50 57 7 0,122807
7 4 4 54 61 7 0,114754
8 6 1 7 60 68 8 0,117647
9 3 3 63 71 8 0,112676

10 2 2 65 73 8 0,109589
11 1 1 66 74 8 0,108108
12 1 1 67 75 8 0,106667

Figure 5: The cumulative number of software failures with (NC_2) and without (NC_1) accounting
predicted secondary software faults

5. Conclusions

This paper discusses an importance of software reliability assessment. A great number of models

have been proposed to predict software reliability (probability of failure, failure rate or mean time to

failure) and the number of residual software faults.

Different models use different approaches to evaluate software reliability. For instance, one of the

first attempt to predict the number of software faults was made by Maurice Halstead in 1977 in [23]

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

ve
 n

u
m

b
er

 o
f

fa
u

lt
s

Testing intervals, month

NC_1

NC_2

where he proposed a number of program code’s ‘complexity’ metrics used as predictors of program

defects.

In this paper we consider a class of software reliability growth models which use fault detection

statistics collected during software testing. These models put forward different assumption about

statistical distribution of failures (e.g. time between failures follows the exponential distribution),

number of faults (e.g. finite or infinite) and other limitations to simplify the process of software

reliability assessment.

However, some of these assumptions might not be very realistic and, hence, affect accuracy of the

reliability prediction. For example, many SRGMs assume that all detected faults are removed with

certainty and no new faults are introduced in the software. However, our industrial experience and other

studies show that the introduction of secondary faults is quite common and, hence, needs to be

accounted during software reliability modelling.

In the paper we discuss different scenarios of introducing secondary faults and how to predict number

of such faults. Finally, we discuss how different SRGMs like Jelinski-Moranda, Exponential, Schick-

Wolverton, Musa and Lipov models can be modified to account secondary faults in order to improve

accuracy of software reliability prediction. We use an industrial case study to demonstrate applicability

of the proposed approach. Our results show that considering secondary faults helped to increase

accuracy of software failure rate assessment up to 5%.

6. References

[1] IEC 61508:2010. Functional safety of electrical/electronic/programmable electronic safety-

related systems, IEC Standards, 2010, 594 p.

[2] IEC 61513:2011. Nuclear power plants – Instrumentation and control important to safety –

General requirements foe systems, IEC Standards, 2011, 210 p.

[3] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, A.Nicheporuk. A Technique for

detection of bots which are using polymorphic code. Communications in Computer and

Information Science. 2014. Vol. 431. PP.265-276, ISSN: 1865-0929.

[4] L. Mirtskhulava, M. Khunjgurua, N. Lomineishvili, K. Bakuria, Software Reliability Prediction

Model Analysis, International Journal of Computer, Information, Systems and Control

Engineering, 2014, № 6, pp. 927-932. URL: https://publications.waset.org/9998645/software-

reliability-prediction-model-analysis.

[5] I. Lakshmanana, S. Ramasamya, Selection of Right Software Reliability Growth Models for

Every Software Project. International Journal of Control Theory and Applications. Volume 9.

Number 40. 2016, pp.807-817. URL: https://serialsjournals.com/abstract/85226_89-cha-

21.pdf.

[6] L. Xiaomei, X. Naiming, Grey-based approach for estimating software reliability under

nonhomogeneous Poisson process. Jornal of Systems Engineering and Electronics. Volume 33,

No. 2, April 2022, pp.360-369.

[7] H, Hecht, NASA-CR-145135: Measurement, estimation and prediction of software reliability,

NASA, 1977.

[8] A.L. Goel, Software reliability models: Assumptions, Limitations and Applicability. IEEE

Transactions on Software Engineering, Vol. SE-11, № 12, 1985, pp. 1411-1423. URL:

https://dl.acm.org/doi/abs/10.1109/TSE.1985.232177.

[9] R.P. Garg, K. Sharma, R. Kumar, R.K. Garg, Performance Analysis of Software Reliability

Models using Matrix Method. International Journal of Computer, Information, Systems and

Control Engineering, 2010, № 11, pp. 31-38. URL: https://publications.waset.org/3581/pdf.

[10] ISO/IEC/IEEE 29148:2011 – Systems and software engineering – Life cycle processes

– Requirements engineering, ISO, 2011.

[11] K. Wiegers, J. Beatty, Software Requirements, Microsoft Press, 2013.

[12] E. Hull, K. Jackson, J. Dick, Requirements Engineering, Springer, 2011.

[13] X. Li, Y. Yin, L. Fiondella, Y. Zhou, Software reliability analysis considering

correlated component failures with coupling measurement framework. Journal of Systems

http://www.waset.org/author/l-mirtskhulava
http://www.waset.org/author/m-khunjgurua
http://www.waset.org/author/n-lomineishvili
http://www.waset.org/author/k-bakuria
https://publications.waset.org/9998645/software-reliability-prediction-model-analysis
https://publications.waset.org/9998645/software-reliability-prediction-model-analysis
http://www.waset.org/author/rajpal-garg
http://www.waset.org/author/kapil-sharma
http://www.waset.org/author/rajive-kumar
http://www.waset.org/author/r-k-garg

Engineering and Electronics. Vol. 26, № 5, 2015, pp. 1114-1126, doi:

10.1109/JSEE.2015.00121.

[14] Y. Shi, Infusing reliability techniques into software safety analysis. Proceedings of the

Annual Reliability and Maintainability Symposium (RAMS 2015), pp. 1-5. doi:

10.1109/RAMS.2015.7105133.

[15] S.P. Chatzis, A.S. Andreou, Maximum Entropy Discrimination Poisson Regression for

Software Reliability Modeling. IEEE Transactions on Neural Networks and Learning Systems.

Vol. 26, № 11, 2015, pp. 2689-2701. doi: 10.1109/TNNLS.2015.2391171.

[16] A. Tickoo, P.K. Kapur, S.K. Khatri, Developing software reliability growth model for

multi up gradations with faults of different severity and related release time problem.

Proceedings of the 2015 International Conference on Futuristic Trends on Computational

Analysis and Knowledge Management (ABLAZE), 2015, pp. 376-382. doi:

10.1109/ABLAZE.2015.7155023.

[17] P. Rotella, S. Chulani, D. Goyal, Predicting Software Field Reliability. Proceedings of

the 2015 IEEE/ACM 2nd International Workshop on Software Engineering Research and

Industrial Practice (SER IP), p.p. 62-65, DOI: 10.1109/SERIP.2015.20.

[18] S. Gnatiuk, Analytical model of reliability program of computer systems and software-

controlled means of communication. Proceedings of the 13th International Conference on

Modern Problems of Radio Engineering, Telecommunications and Computer Science

(TCSET), № 16, 2016, pp. 90-92. doi: 10.1109/TCSET.2016.7451979.

[19] J. Zhang, Y. Lu, S. Yang, C. Xu, NHPP-based software reliability model considering

testing effort and multivariate fault detection rate. Journal of Systems Engineering and

Electronics. Vol. 27, № 1, 2016, pp. 260-270.

[20] H. Sukhwani, J. Alonso, K.S. Trivedi, I. Mcginnis, Software Reliability Analysis of

NASA Space Flight Software: A Practical Experience. Proceedings of the 2016 IEEE

International Conference on Software Quality, Reliability and Security (QRS), 2016, pp. 386-

397, doi: 10.1109/QRS.2016.50.

[21] A.N. Ivutin, E.V. Larkin, D.A. Perepelkin, Software errors and reliability of embedded

software. Proceedings of the 2016 IEEE Conference on Quality Management, Transport and

Information Security, Information Technologies (IT MQ IS)". № 23, 2016, pp. 69-71. doi:

10.1109/ITMQIS.2016.7751926.

[22] A. Choudhary, A.S. Baghel, O.P. Sangwan, Software reliability prediction modeling:

A comparison of parametric and non-parametric modeling, Proceedings of the 2016 6th

International Conference – Cloud System and Big Data Engineering (Confluence), № 19, 2016,

pp. 649-653. doi: 10.1109/CONFLUENCE.2016.7508198.

[23] Radiy. Products for NPP. URL: http://radiy.com/ru/produktsiya-dlya-

aes/produktsiya/platforma-radics.html.

[24] V.S. Kharchenko, O.M. Tarasyuk, V.V. Sklyar, V.Yu. Dubnitsky. The method of

software reliability growth models choice using assumptions matrix, Proceedings of the 26th

Annual International Computer Software and Applications Conference (COMPSAC’02), 2002,

pp. 541-546.

[25] M.H. Halstead, Elements of Software Science, Amsterdam: Elsevier Science Ltd.,

1977.

[26] M. Rafiquzzaman, Steven A. Mcninch, Digital Logic: With an Introduction to Verilog

and FPGA-based Design, Wiley, 2019.

[27] S. Naumenko, V. Moskalets, O. Odarushchenko, E. Odarushchenko, V. Peschanenko,

L. Degtyareva, O. Letychevskyi, Formal methods of FPGA Project Verification Flow,

Proceedings of the 11th IEEE International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications, Cracow, Poland, 2021, pp.1141-

1146.

