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Abstract
This paper describes a semi-automatic process for the semantic annotation of institutional non-RDF spatial
datasets and their integration into an incrementally populated knowledge base. The knowledge base can
serve as the organizational Spatial Knowledge Infrastructure which can be exploited for data querying
and further integration purposes. The highlights of the process are the inclusion of analytical capabilities
that produce annotation recommendations based on existing semantic knowledge for minimizing the user
involvement during the semantification process, the dynamic and incremental building of the underlying
schema based on the spatial datasets at hand, and the adoption of the RDF* model for maintaining
triple-level metadata. This work is undertaken for the case of the University of the Aegean; however, the
solution is generic and can be easily adapted by other organizations as well.
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1. Introduction

Many organizations, such as national mapping agencies, regional or local authorities, universities
and research institutes, produce and manage a substantial amount of high quality and resolution
spatial data for covering their geographical areas of jurisdiction or sites where research work
is carried out. These data are usually stored in a variety of formats, such as ESRI Shapefile,
GeoJSON or Spatial Relational Database Management Systems (RDBMS), or disseminated
through Spatial Data Infrastructures (SDI) as services, e.g., according to the Web Feature Service
(WFS) format. The adoption of open and well-known formats and protocols may ensure the
syntactic interoperability among datasets [1], however still institutional datasets may present
high heterogeneity with regards to the thematic areas that they cover, their production methods
and purposes, schema definitions, storage and dissemination formats, quality and documentation
level. For example, within a university various data stores, databases or SDIs may developed and
maintained independently by different Departments or Research Labs to cover different thematic
domains and to serve different purposes and applications (e.g., an RDBMS with economic
indicators for administrative units, an SDI about natural disaster protection, or scattered spatial
datasets produced during research programs and student assignments). These factors hinder the
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possibility for achieving semantic interoperability between spatial data that could potentially
unlock advanced capabilities for institutional data exploitation. A possible solution could be
the conversion of the (dispersed across the various sources) spatial datasets to a common data
representation format, such as the RDF, for the semantic representation and annotation of the
data and their metadata, and their publication to the web according to the linked data principles.
Such a process will provide additional capabilities for querying, integration and reasoning
among the institutional spatial data as well as with the entire Linked Open Cloud (LOD). As
[2] note regarding the availability of spatial data in LOD, most spatial data are published by
global data providers (e.g., DBpedia and LinkedGeoData) and few local organizations participate
actively to the linked data domain, possibly because the lack of resources and expertise in the
domain and the absence of easy-to-use semantification tools.

Towards the goal of tabular data transformation to RDF, W3C outlines some approaches. On
one hand, the Direct Mapping Recommendation [3] generates RDF by assigning table names to
classes and column names to predicates. On the other hand, the R2RML Recommendation [4]
is a mapping language that allows to define custom mappings between tabular data and RDF
resources. Most existing semantic transformation tools apply the above recommendations or
similar processes in a manual, semi-automatic or automatic manner. For example, GeoTriples [5]
extents the R2RML language to allow the transformation of spatial datasets to RDF and includes
sophisticated methods for mapping geometric attributes to the GeoSPARQL and stSPARQL
vocabularies. TripleGeo [6] is an ETL tool that also focuses on the conversion of the geometric
attributes of spatial datasets. Regarding thematic attributes, it allows the selection of columns
that their values will be used as identifiers, names and types in order to generate the URI, the
rdfs:label and the rdf:type triples respectively for the produced RDF entities. SemGIS [7] goes
beyond simple transformation and describes a sophisticated approach for the automatic semantic
integration of spatial datasets into the semantic web. Specifically, it tries to guess the class of the
data to be integrated by performing content-based geometric and textual comparisons between
the spatial dataset and existing semantic web resources. Also, it tries to guess the predicates to
be mapped with each column by applying NLP and geocoding methods and performing a feature
analysis that classifies columns according to their probable types (e.g., IDs, measurement units,
addresses, phone numbers, email). The above works are pioneers in semanticficatinon in the
geospatial domain, but in our opinion they present some shortcomings with regard to an easy-
to-use process for the transformation of spatial datasets to RDF. For example, GeoTriples and
TripleGeo support only the manual specification of the semantic annotation rules for the dataset
thematic attributes, while, SemGIS does not provide many options for the geometric attributes
transformation, such as CRS reprojection, and does not allow users to select alternative class
and predicate annotations. Moreover, to the best of our knowledge, SemGIS is not provided as a
publicly available application.

This paper describes the design and implementation of a semantification process that rec-
ommends annotations of spatial datasets based on existing semantic knowledge. The process
acts like a semi-automated wizard, thus, it minimizes the human effort for semantification,
while allowing users to intervene by defining alternative conversion options, such as the use of
custom classes and predicates. The converted RDF graph, which consists of schema, feature
and metadata triples, is fed in a knowledge base, which is the main knowledge source of the
process. By this way, the process allows the interactive, dynamic and incremental building of



Figure 1: The semantification process

organizational Spatial Knowledge Infrastructures (SKI) [8]. The process is designed to handle
a variety of spatial dataset formats and to manage both geometric and thematic attributes.
A highlight of the process is the generation of triple-level metadata according to the RDF*
model [9], that allows the enrichment of feature triples with useful provenance information.
The process is applied on spatial datasets maintained by the University of the Aegean, Greece.
However, the solution is generic and can be easily adapted by organizations that manage spatial
data and want to build their own SKI. The paper concludes with a discussion on the initial
results and pointers for future work.

2. Semantification Process

Fig. 1 depicts the overall process. The process is designed to accept as input various spatial
dataset formats, such as Shapefile, GeoJSON, WFS and spatial RDBMS tables. Datasets may be
heterogeneous, cover different thematic areas and are not required to follow a specific schema.
In addition, the process is designed to handle XML files and CSW records in several dataset
metadata standards, such as Dublin Core, INSPIRE or ISO19139, that may be associated with
spatial datasets.

The semantification process begins with the parser module that contains an interface adaptor
for each dataset format. The adaptor extracts schema-level information (i.e., a list of column
names and their types) and the actual data (i.e., geographic features with their attribute values)
of the dataset. Also, it extracts some basic metadata from the input file, such as dataset name,
creation date, dataset format, publisher, description, geometry column, geometry type, original
CRS and dataset spatial extent. Finally, if related metadata files exist, e.g. INSPIRE-compliant
XML files, it tries to parse them. The module applies some string cleaning on dataset name and
on column names in order to remove special characters and to convert non-Latin characters to
Latin. All the above information and metadata (regardless the format of the input dataset) are
modeled in a spatial dataset superclass that is used for the next steps of the process.

The analyzer module examines schema and data-level information of the dataset thematic
attributes to decide a set of conversion options. First, it searches for candidate primary key
columns so as their values to be used later for assigning URIs to geographic features. The list of



Figure 2: Examples of a) class URI, b) feature URI, and c) spatial dataset URI.

candidate primary keys is formed by integer and string columns that contain distinct not null
values. String columns that contain large-length values are discarded from the list of candidate
primary keys, since they usually provide additional verbal information about the geographic
features. The analyzer then selects the most appropriate primary key column by giving priority
to the candidate string columns. If no candidate columns are found, then no primary key column
is selected. Second, the analyzer searches for columns with values that can be used later for
assigning labels to features (using the rdfs:label predicate). The list of the candidate label
columns is formed by string columns that contain small-length values. In addition, the analyzer
tries to detect the language for each candidate label column. Third, the analyzer search for
columns that will be blocked, i.e. not converted to RDF. The blocked columns list is formed by
the label columns (because they are already annotated), by columns that may refer to foreign
keys and by user-defined/selected columns. Possible foreign keys columns empirically set to be
integer columns that contain not distinct values.

For the next step, the process annotates spatial data with suitable schema resources, extracted
from an existing knowledge base. First, it tries to guess the type (class) of the spatial data by
comparing the textual and semantic similarity between the spatial dataset name and existing
classes in the knowledge base. For the textual comparison it applies the Levenshtein similarity
and for the semantic the WordNet WuPalmer index. Classes that are similar above a certain
threshold are ranked and the top-one is recommended to be used as the class for the spatial
dataset. In case that no recommendations are generated, the user has the option to select another
class from the knowledge base or to create a new class. In the latter case, the class will be added
to the knowledge base and the user is opted to additionally provide a characteristic label and a
description for the new class. The same procedure is applied to annotate the columns that will
be converted (except for the label columns) with suitable predicates from the knowledge base.
That is, the module searches for existing predicates with similar names to the column name
and recommends them to the user. The user can keep the default recommendation, select an
alternative predicate from the knowledge base or create a new predicate. In the latter case, the
user is opted to provide a label and a description for the new predicate.

Finally, the spatial dataset is converted to RDF, containing triples about schema, features and
metadata. Schema triples contain the definition of new classes and predicates that may have
been created during the annotation step. Their URI is formed by the default base URI, the term
“ontology” and the resource (class or predicate) name as depicted in Fig. 2a.

Feature triples contain the descriptions of spatial features. Specifically, each feature is assigned
with a URI, formed by the default base URI, the term ‘resource’, the class name and the primary



Figure 3: RDF* triple example

key value (Fig. 2b). If no primary key was found during the analysis step, a serial number is used.
A feature (entity URI) is declared to be member (with the rdf:type predicate) of the annotated
class and of the GeoSPARQL Feature class. Accordingly, the feature is associated with its labels
using the rdfs:label predicate. For each of the rest columns, the feature is associated with
the respective cell values using the annotated predicates. The feature’s geometry is represented
according to the GeoSPARQL vocabulary in the WKT serialization, which additionally embeds
the CRS code of the geometry. If the geometry is not projected in WGS 84, the geometry is
reprojected to WGS 84 and is also represented according to the GeoSPARQL vocabulary. Finally,
if the geographic feature is point, then the geometry is also represented according to the W3C
Basic Geo vocabulary (long and lat predicates).

Metadata triples contain the dataset-level metadata that were extracted during the parsing
step. Each converted spatial dataset is assigned with a URI formed by the base URI, the term
metadata and a randomly generated ID (Fig. 2c). Each dataset entity is declared to be member of
a SpatialDataset class and is associated with its metadata (e.g., dataset name, publisher, creation
date, spatial extent) using fixed predicates from the Dublin Core vocabulary.

The converter associate feature triples with the spatial dataset entity URI from which they
originate. By this way, the knowledge base maintains triple-level metadata, allowing users to
gain knowledge such as who created a piece of information and when. To this end, the RDF*
model is used with the following syntax: for each feature triple a new RDF* triple is created
that in the subject position appears the triple itself, enclosed in ‘« »’, in the predicate position
the ‘dc:source’ and in the object position the spatial dataset URI (Fig. 3).

The output of the process are files in RDF / RDF* serializations that can be directly imported
in the selected knowledge base.

3. Implementation

The semantification API is implemented in Java. The GeoTools and JTS libraries are used for
spatial dataset parsing and geometric transformations and the Apache Jena framework is used
for RDF modelling and for sending SPARQL queries to the knowledge base, which is selected
to be a Fuseki instance. On top of the semantification API, three applications, which share
the same functionality but serve different system requirements, were developed: a) a desktop
command-line, b) a desktop GUI and c) a web application. Screenshots of the web application
are depicted in Figure 4. The applications provide user-friendly interfaces and target users with
at least an elementary knowledge about semantic web concepts and about the content of the
underlying knowledge base. The applications provide default recommendations for each step
of the process, however they allow users to intervene by editing dataset metadata, selecting
different primary key, label and blocked columns and annotating with alternative classes and
predicates. Moreover, users have access to generic process customization options such as, setting



the URL of the default knowledge base, the base URI for annotation, the default output RDF
serialization (e.g., RDF/XML, Turtle), and the CRS and spatial vocabulary (e.g., GeoSPARQL)
that will be used for the geometric attributes transformation.

The semantification process was tested by converting more than a hundred spatial datasets to
RDF and loading them to an initially empty knowledge base. The datasets are maintained by the
University of the Aegean and stored in various institutional databases, SDIs and local computers.
Since the current version of the applications support only shapefiles, the datasets were first
converted to the shapefile format. Their thematic coverage span in several categories, including
administrative units (prefectures, municipalities, etc), statistical indicators (population, GDP,
etc), natural environment (rivers, volcanos, etc), natural phenomena (floods, earthquakes, etc),
infrastructure (airports, hospitals, etc) and facilities (museums, schools, etc). Fig. 5 shows the
semantification result for a ‘ports’ shapefile. Above is depicted the attribute table of the shapefile.
Below is depicted the output, consisted of schema (lines 9-12), spatial dataset metadata (lines
15-23), feature (line 26-38) and RDF* triples (lines 40-44). For brevity, only the conversion for
the Herakleion port and a subset of the RDF* triples are depicted.

4. Conclusion and Future Work

This paper described a semantification process for spatial datasets. Its main features are the
provision of easy-to-use tools that semi-automatically build incrementally a semantic knowledge
base and the adoption of the RDF* model for providing triple-level metadata. The design and
implementation of the process are still in progress, thus, next we summarize our so far experience
and we outline the roadmap for the further development. An initial assessment of the process
indicates that the design of the semi-automatic semantification wizard is intuitive and allows
the completion of the process easily and in short time even by non-experts on semantic web.
In particular, the annotation recommendations help users, without strong familiarity with the
knowledge base content, to quickly determine the suitable classes and properties. Moreover, the
process guarantees the instant population of the knowledge base with well-formed RDF that is
ready to use. In the future, we plan to undertake more detailed experiments in order to evaluate
the overall performance of the semantification process and its ability to populate high-quality
semantic content.

As long as we are dealing with more spatial datasets, we will encounter with unseen disparities
that will be valuable input for designing more sophisticated rules for the dataset analysis and
the annotation steps of the process. For example, we may incorporate rules that better detect
primary and foreign key columns, block duplicate columns or identify specific-content columns
(e.g., telephones, emails) in order to annotate them with standard predicates from well-known
ontologies. Also, as long as the knowledge base is populating with data, it will become ‘smarter’
regarding the semantic annotation recommendations. In this respect, we plan to improve
recommendations by additionally employing instance-based methods that will recommend
classes and predicates based on the textual, semantic and spatial similarity. In addition, the
possibility of integrating APIs of third-party semantic web search engines (e.g., Linked Open
Vocabularies [10], GeoLOD [2]) could be investigated in order to augment the annotation
recommendations with classes and properties from external knowledge bases. Currently, the



semantification process primary focus is on the basic transformation aspect and puts aside
other important tasks such as entity reconciliation and ontology alignment. This decision was
taken in order to not burden the process with additional operations that could distract the user
from the main process and diminish the performance of the process. However, these tasks will
be part of a post-processing process that will perform some cleaning (e.g., merging URIs that
refer to the same entity within knowledge base or finding literals that can be substituted by
entity URIs), establish sameAs links between local and external instances, and perform ontology
alignment in order to detect equivalency or hierarchy relations between local and external
classes and properties. Regarding dataset metadata, these are currently represented using terms
from the DC vocabulary. However, we plan to examine and standardize the vocabulary for
representing spatial dataset metadata (e.g., by adapting the INSPIRE metadata template to RDF).
Also, triple-level metadata are maintained according to the RDF* model, which in its default
syntax requires the creation of additional triples and complicates the formation of SPARQL
queries. A possible solution to these limitations would be the adoption of the alternative RDF*
annotation syntax. Lastly, for the annotation of the geometric attributes, we use the GeoSPARQL
and the W3C Basic Geo vocabularies since they are widely used and easy to use. However, in
future versions we plan to provide the option for selection of additional spatial vocabularies.
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Figure 4: Semantification web application. Example of the dataset analysis (top) and semantic annota-
tion (bottom) steps.



Figure 5: Semantification result
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