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Abstract  
Social media has seen a worrying rise in hate speech in recent times. Branching to several distinct 
categories of cyberbullying, gender discrimination, or racism, the combined label for such derogatory 
content can be classified as toxic content in general. This paper presents experimentation with a Keras 
wrapped lightweight BERT model to successfully identify hate speech and predict probabilistic impact 
score for the same to extract the hateful words within sentences. The dataset used for this task is the 
Hate Speech and Offensive Content Detection (HASOC 2021) data from FIRE 2021 in English. Our system 
obtained a validation accuracy of 82.60%, with a maximum F1-Score of 82.68%. Subsequently, our 
predictive cases performed significantly well in generating impact scores for successful identification of 
the hate tweets as well as the hateful words from tweet pools. 
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1. Introduction 

With the ever-evolving paradigms of global socio-economic issues, there has also been an 
increment in vast amounts of expressions and opinions on social networks in recent years. 
Depending on the context or topic, often the participating agents (humans) in the conversation 
can mutually agree or be polarized. Such contrast between the opinions and perceptions causes 
the tendency in people to get under the nerves of the other people involved in the discussion, 
even if it is by the help of hateful comments, or toxic content in general. The Cambridge Dictionary 
defines hate speech as “public speech that expresses hate or encourages violence towards a 
person based on something such as race, religion or sexual orientation”. However, it could be 
unanimously agreed that political and financial viewpoints also play a significant role in modern 
hate content on social media.  
     In the need to counter the online hate content, the NLP research community is continuing 
prominent contributions and findings for the same [1, 2, 3]. However, hate speech is not always 
directly trackable, as it is dependent on topic and context [4]. Also, in a longer sequence of 
discussions, hate comments can occur as well we dissolve.          

    In this work, we focus on detecting hate speech and offensive content in English by exploratory 
data analysis with an ensemble transformer model. 
____________________________ 
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The hate data HASOC produced by the FIRE 20211 [5], which are multilingual datasets for the 
Hate Speech and Offensive Content Identification shared task, but the datasets are available in 
separate fractions as per different languages (English, Hindi, and Marathi). 
     For the proposed research, we choose only the English dataset from HASOC Subtask 1. In order 
to shape the data for our proposed work, we introduce a set of extensive data analysis steps and 
reduce the data attributes only to the atomic columns. We split the train and test sets using linear 
Logistic Regression, and save the model. Next, we incorporate the ktrain BERT model [6], which 
is a lightweight BERT wrapped by the Tensorflow-Keras2 library for low resource systems and a 
faster training phase. We extend the model further for several hyperparameters tuning, train and 
test visualization, and most importantly for probabilistic impact score generation from the 
trained model for any random sentences, to point out the hate speech factor (word) in those 
sentences. Finally, we produce the qualitative analysis by classification report from the saved 
model. We intend to make the code publicly available at Github3. 
     The rest of the paper is organized as follows: Section 2 provides a detailed insight on the data 
and processing of the same. Section 3 describes the structural details of the selected model, with 
experimental and hyperparameter settings. Section 4 demonstrates the results with metrics and 
visualizations, probabilistic impact score generation for hate or positive tweets, and error 
analysis. Finally, Section 5 concludes the work with future directions. 
 

2.  Data Description 
 
As mentioned earlier, our data for experimentation is the Hate Speech and Offensive Content 
Identification in English and Indo-Aryan Languages or HASOC 20214, provided by the Forum for 
Information Retrieval Evaluation (FIRE 2021) [7]. There are three separate sets of train and test 
corpora, respectively in English, Hindi, and Marathi. The datasets are primarily available for 
particular shared Subtask 1, which is further divided as subtask 1A for identifying hate and 
offensive contents from the tweets, and subtask 1B for discriminating between hate, profane, and 
offensive posts. We select the English corpus of Subtask 1 for our approach. The train set is a 
binary classification dataset, where the tweets contain the user id for each tweet, the tweets 
themselves in text format without the eradication of emojis, special characters, and external web 
links, and the classification category for each tweet. The columns are named “id”, “text”, and 
“task_1”. The tweets are already annotated, and either labeled as HOF, i.e., Hate and Offensive 
Content, or NOT, i.e., Non-Hate-Offensive Content under the task_1 column. On the other hand, 
the test set contains tweets with respective user ids only. These tweets are not labeled and could 
either be used for hate content identification (in the form of HOF and NOT), or for system 
validation and hate tweet prediction. We showcase the detailed dataset information in Table 1.  
 

Data Total Tweets 
Labels 

HOF NOT 

HASOC 2021 Train 
(English) 

3844 2508 1976 

HASOC 2021 Test 
(English) 

1282 
NA 

  

 
Table 1 
HASOC 2021 Train and Test Dataset Details. 
 

 
1 http://fire.irsi.res.in/fire/2021/home 
2 https://www.tensorflow.org/api_docs/python/tf/keras 
3 https://github.com/SouravD-Me 
4 https://hasocfire.github.io/hasoc/2021/index.html 



2.1    Preprocessing 

To normalize the data in plain English texts, at first, we aim to eliminate the web links, 
abbreviations. We drop the additional columns not contributing to the determinant factor of the 
dataset. Next, we process the emojis and translate the labels (HOF or NOT) of the tweets into 
binary categories for better efficiency of the subsequent training phases. Here, hate speech can 
obviously be interpreted as negative content, while a generic tweet is a positive content. For that, 
we introduce two columns, neg and pos. the fundamental behind this is that we want to maintain 
an exact bipolarity of each tweet from the corpus. We maintain two labels parallelly, while joining 
the tweets with their respective HOF and NOT categories, and providing a score of 1 in a pos 
column if the tweet is non-hateful, or 1 in the neg column if the tweet contains hate speech. We 
show the head end of the preprocessed data shape in Figure 1. 
 

 
 

Figure 1: Head Columns of the Preprocessed Training Data. 
 

3.  Model 
 
At first, we implement the already popularized Logistic Regression algorithm from scikit learn5 
to make a manual imbalanced partition of the train set itself. Since this is a classification task, LR 
has proved to be efficient in this genre of tasks [8]. LR maintains a uniform numerical 
regularization to normalize the stability of the training data, otherwise is also termed as the C 
value, i.e., the hyperparameter set. The downright advantage of deploying the LR model from 
scikit learn library is that it is fairly tuned, so the split (and training, if needed) needs little to no 
further optimization.  
     In order, we use the pre-trained BERT model wrapped in a Keras-Tensorflow library for 
efficiency in low code. This custom wrapper library is known as ktrain. BERT is already a widely 
renowned application. It is a bi-directional transformer that learns a language representation for 
pre-training. It uses the attention mechanism Transformer to learn the relationships between 
words in a text. Instead of having the model sequentially read the text input, the transformer 
encoder reads the entire text sequence at once. This characteristic makes it non-directional. But 
one major downside of such an acclaimed model is that classic BERT performs better than 
expected on many challenging tasks mainly due to its ability to handle large datasets, with 
Google’s state-of-the-art computing resources, and the complexity of its pre-training tasks. This 
is not always beneficial for researchers with low resources or access. Hence, diluted and more 

 
5 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html# 



comprehensive versions of BERT have emerged as the more popular choices for 
experimentations. A few of such models are DistilBERT [9], BERT-Base-Uncased [9], DeBERTa 
[10], etc.  
     A similar, but underutilized extension is the ktrain wrapper for BERT. It is not exclusively built 
for BERT, but the original repo is influenced by fastai6 library, and also offers a wide range of 
other implementations for NBSVM [11], BiLSTM [12], and LDA [13]. It is also a potential library 
for image classification and graph neural networks. For dedicated NLP tasks, ktrain helps build 
and train neural networks for text classification, question answering, document summarization, 
named entity tagging, etc. It can also be used to estimate an optimal learning rate and schedule 
learning rates.  
     The first step involves loading and preprocessing data from different sources. Since ktrain is 
developed to work seamlessly with Keras, this step is quite similar to data loading in Keras 
models. It can be done in various forms, such as text, images, and graph data. At this stage, the 
model expects a preprocessor instance, where the preprocessor is loaded with the encapsulated 
feature set, pretraining length, and model range. In the second step, the model can be further 
customized by hyperparameter tuning, learning schedules interchanging, or by creating a custom 
one using tf.keras. Here we can employ the learning rate schedules such as one-cycle policy and 
SDGR. For our approach, we use the turnwise one-cycle policy, i.e., repeating a cycle each with 25 
epochs for three consecutive times. After that, the model is automatically configured after 
inspecting the data. Next, we call the predictor method from the already learned model, and we 
provide instances (tweets) from the test data, or even random sentences to predict the category 
(HATE or NOT). Now, for the predicted set of sentences, the explain method can be called to 
generate the probabilistic scores to showcase the scores for each word in that sentence. A word 
with a higher score represents the higher negative impact and essentially turns out to be hate, 
offensive, or discriminatory content. Here the predictor log along with the model implementation 
could also be saved for later deployment. Our model with the proposed methodology for the 
experiment is represented in Figure 2.  

 
3.1    Setup  

 
We use Google Colab as our platform for experimentation. It introduces a native feature named a 
hardware accelerator for faster execution time, but with a limited resource threshold. Colab 
provides the options to choose from the dedicated graphical processor environment execution 
based on Tesla K80 GPUs or Google’s Tensor Processing Units, developed for parallel neural 
computations simultaneously. Users can select any of the previously mentioned options, and for 
the record, any BERT-based model requires demanding resources. Since we worked with the 
ktrain wrapper, we select the notebook settings as GPU on a regular non-pro Colab account. We 
intend to utilize the available CUDA cores in a GPU environment for enhanced training and 
prediction time. We also connect to a hosted runtime with sufficient but abstract RAM and disk 
availability, as Google does not share the exact figurative information with the users.  
 

3.2    Hyperparameter Settings 

 
For the hate words classification from ktrain-BERT, at first, the pretrained BERT loaded with 
relatively fewer parameters to run on top of Keras. The ktrain-BERT has a pretraining length of 
75, with a maximum feature set consideration, and set of words per batch for embedding. For 
word token sequencing, it has a ngram range of 3. The model loading also includes determining 
the column labels, so the model itself can pre-judge if the task is binary classification or multi-
label classification. Then we call the get_learner function to place the already split data in the 
ktrain learner object. The batch size is kept as 16 for providing small training sets at a time. The  

 
6 https://docs.fast.ai/ 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Methodology for Hate Speech Identification with Ktrain-BERT. 
 
 
learner object can also be invoked by creating a custom fit function. We initiate the fit function 
while keeping the learning rate 1e – 5 for 25 epochs. For the training process, we further tune the 
learning rate by implementing the ktrain find function, which provides an interactive 
customization scope into the learning schedule. We employ a Stochastic Gradient Restart 
schedule (SGDR) to ensure to maintain checkpoints in training and resume training if the 
notebook is paused, or the GPU access gets terminated. Now, the training metrics are fit to 8 
epochs for 5 cycles, where only the best-performed batches are kept for entering into the next 
cycle, and the rest are discarded. Here we keep the learning rate as 1e – 6. Our total trainable 
parameters are 109,148,162. 
 



4. Results 
 

The results of ktrain-BERT for dedicated hate words identification for English data are shown in 
Table 2. At next, we show the model shape for the first 5 layers out of a total of 12 layers with 
layer-wise structure in Table 3 to provide a better investigation of the model itself. We run the 
ktrain-BERT for 40 epochs in 5 consecutive cycles. The training vs. validation accuracy is plotted 
in Figure 3. It shows the incremental growth of the model performance w.r.t time during this 
phase. For English HASOC data, the Precision, F1-Score, and the highest training and validation 
accuracy obtained subsequently are 87.16%, 83.63%, 97.28%, and 82.60%. The classification 
report can be depicted in Figure 4.  
 
 

Language Model Identification Labels Overall Metrics 

English 
Ktrain-
BERT 

HOF  
(Hate Content) 

Accuracy Precision Specificity F1-Score 

82.60% 87.16% 85.35% 83.63% NOT 
(Non-Hate Content) 

 

Table 2 
Overall Performance Metrics for the Test Data. 
 
 

 

Layers Layer Type Parameters Connected To 

1 

Input-Token and Segment 
(Input Layer) 

NA NA 

Embedding Token and 
Segment 

2344 
Input-Token-Segment 

& 
Embedding 

2 

Embedding Position, Dropout 
and Normalization 

57600, 1536, 2362368 Embedding Layers 

Encoder 1 – Multihead Self 
Attention 

1536 
Encoder 1 

Feedforward Add 
Layer 

3 
Encoder 3 – Feedforward 

MHA 
4722432 

Encoder 2 
Feedforward Add 

Layer 

4 
Encoder 4 – Feedforward 

MHA 
2362368 

Encoder 3 
Feedforward Add 

Layer 

5 
Encoder 5 – Feedforward 

MHA 
4722432 

Encoder 4 
Feedforward Add 

Layer 

 

Table 3 
Summary for Ktrain-BERT Model Used. 

 
 
 
 
 
 



 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Training vs. Validation Accuracy by Ktrain-BERT Model. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Classification Report for Validation Set. 
 
4.1    Probabilistic Impact Score 

 
After the validation phase, we choose random tweets both from the training and test data to 
explain the model on a predictive probabilistic scale. It is obtained by extending the trained set 
and validating the test data further by fusing the explain and predict function on the randomly 
fed tweets. We choose three tweets with hate content, and the other three with non-hateful 
content. The scores are normalized in a comparable scale, i.e., all the scores are in a non-negative 
scale, while quite naturally the higher scores represent more positive or negative impacts, reliant 



on the context of the concerning tweet itself. The results are shown here in Figures 5 to 10, with 
the impact score for each word within the sentences.  
 

     

   

 
 
 
 
 
 
Figure 5: Non-Hateful Tweet 1. 
 
Tweet impact score breakdown: the - 0.767, razer - 0.073, blade - 1.143, 15 - 2.052, is - 2.336, 
really - 3.190, good - 1.707, this - 0.517, year - 1.590. 
 

 

 

 
 
 
 
 
 
Figure 6: Non-Hateful Tweet 2. 

 
Tweet impact score breakdown: any - 0.539, daniel - 0.622, d - 0.922, lewis - 0.801, movie - 0.714, 
is - 0.223, almost - 1.595, flawless - 2.604. 

 
 

 

 

 

 

 

 

 

 
Figure 7: Non-Hateful Tweet 3. 
 

Tweet impact score breakdown: real - 0.259, madid - 1.032, has - 0.881, an - 0.002, excellent - 
1.583, record - 0.383, in - 0.171, the - 0.444, champions - 0.411, league - 0.652. 
 

 

 

 

 

 

 

 



Figure 8: Hateful Tweet 1. 
 
Tweet impact score breakdown: ryzen - 0.642, is - 0.977, a - 0.296, winner - 0.132, and - 0.036, 
you’re - 0.808, a - 0.091, freak - 1.920, to - 0.353, think - 0.194, otherwise - 0.506. 
 

 

 

 

 

 

 

 

 

 

Figure 9: Hateful Tweet 2. 
 

Tweet impact score breakdown: stop - 1.191, being - 1.630, a - 0.238, twat - 2.383, then - 0.818. 
 

 

 

 

 

 

 

 

 
 
 
Figure 10: Hateful Tweet 3. 
 

Tweet impact score breakdown: you - 2.082, are - 1.220, hopeless - 0.026, retire - 1.816, wanker 
- 3.773. 
 
     It is evident from the above demonstrations that the system has identified the impactful hate 
or non-hate words within the tweets in every instance. While it might be argued that the 
probabilistic impact score for the words “hopeless” or “retire” is relatively low to identify them 
as potential hate words, but the counter logic could be these words do not necessarily mean to 
use for derogatory comments always. These are heavily used for the generic purpose (e.g., “It is 
sad that Jim is finally going to retire”, or “I’m feeling hopeless since the beginning of the pandemic”). 
Hence the impact on these words could not entirely determine the toxicity of a tweet or reply. 
 

4.2    Error Analysis 

 
It can be depicted from Figure 4 that even if the training classification accuracy constantly 
maintains a stable increment range over 90%, in fare to that the validation rather performed less 
significantly, with a bottleneck around 82%. The primary reason for this is the misclassification 
of several tweets during the validation phase. We showcase such one instance, where a tweet is 
like: 
 
“@ na ##ren ##dra ##mo ##di @ ami ##ts ##ha ##h @ ra ##hul ##gan ##dhi @ r ##g ##way 
##ana ##do ##ffi ##ce its been long time holding my words…” 

 



Even after preprocessing and filtration, such tweets do not provide any particular insight for 
classification, hence these tweets fail to add any value to the overall validation and thereafter 
impact score generation process. The epoch performances are also relatively poor with higher 
loss where these tweets are retrieved and fed by the BERT for validating the classification. For the 

above-mentioned tweet, its ID is 139, and the epoch also suffers from a high loss value (loss: 7.77), in 

which it is originally entered within the batch. It has affected the overall validation accuracy also. 

 

5. Conclusion and Future Work 
 
In this work, we used a finetuned BERT wrapped in a custom Keras module for hate speech 
detection in English tweets. We obtained the highest training accuracy of 97.28% and a validation 
accuracy of 82.60%. Extending that work, we also identified the existence of hate or non-hate 
contents within concerned tweets using a probabilistic impact score generation for every word 
in a tweet, as well as with the whole tweet itself. For the further scope of this work, we want to 
develop a system capable of delivering the same for code-mixed tweets. Not only that, but we 
would also like to relate the hate speech detection to the tweet topics so that a separate scaling 
can be done for the topics; to determine which of the topics are more controversial than the 
others, and likely to stir up the hate speech, cyberbullying, and other forms of demeaning contents 
on the social networks. 
 

Declaration 
 

The hate speeches shown for the probabilistic impact score demonstrations are for experimental 
purposes only. These are real tweets and are collected from the training and/or test data. The 
authors DO NOT promote any form of hate content on social networks, and strongly condemn it. 

References 

[1] Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V. and Bhamidipati, N. 2015. Hate 

Speech Detection with Comment Embeddings. Proceedings of the 24th International Conference 

on World Wide Web (New York, NY, USA, May 2015), 29–30.      

[2] Fortuna, P. and Nunes, S. 2018. A Survey on Automatic Detection of Hate Speech in Text. ACM 

Computing Surveys. 51, 4 (Jul. 2018), 85:1-85:30. https://doi.org/10.1145/3232676. 

[3] Ayo, F.E., Folorunso, O., Ibharalu, F.T., Osinuga, I.A. and Abayomi-Alli, A. 2021. A probabilistic 

clustering model for hate speech classification in twitter. Expert Systems with Applications. 173, 

(Jul. 2021), 114762. https://doi.org/10.1016/j.eswa.2021.114762.  

[4] Gao, L. and Huang, R. 2017. Detecting Online Hate Speech Using Context Aware Models. 

Proceedings of the International Conference Recent Advances in Natural Language Processing, 

RANLP 2017 (Varna, Bulgaria, Sep. 2017), 260–266. 

[5] Modha, S., Mandl, T., Shahi, G.K., Madhu, H., Satapara, S., Ranasinghe, T. and Zampieri, M. 2021. 

Overview of the hasoc subtrack at fire 2021: Hate speech and offensive content identification in 

english and indo-aryan languages and conversational hate speech. FIRE 2021: Forum for 

Information Retrieval Evaluation, Virtual Event, 13th-17th December 2021 (2021). 

[6]ktrain: A Low-Code Library for Augmented Machine Learning: 

https://arxiv.org/abs/2004.10703.  

[7] Mandl, T., Modha, S., Shahi, G.K., Madhu, H., Satapara, S., Majumder, P., Schäfer, J., Ranasinghe, 

T., Zampieri, M. and Nandini, D. 2021. Overview of the HASOC subtrack at FIRE 2021: Hate speech 

and offensive content identification in English and Indo-Aryan languages. Working Notes of FIRE. 

(2021). 

https://doi.org/10.1145/3232676
https://doi.org/10.1016/j.eswa.2021.114762
https://arxiv.org/abs/2004.10703


[8] Shah, K., Patel, H., Sanghvi, D. and Shah, M. 2020. A Comparative Analysis of Logistic 

Regression, Random Forest and KNN Models for the Text Classification. Augmented Human 

Research. 5, 1 (Mar. 2020), 12. https://doi.org/10.1007/s41133-020-00032-0.  

[9] Nayak, A., Timmapathini, H., Ponnalagu, K. and Gopalan Venkoparao, V. 2020. Domain 

adaptation challenges of BERT in tokenization and sub-word representations of Out-of-

Vocabulary words. Proceedings of the First Workshop on Insights from Negative Results in NLP 

(Online, Nov. 2020), 1–5. 

[10]DeBERTa: Decoding-enhanced BERT with Disentangled Attention: 

https://arxiv.org/abs/2006.03654.  

[11] Wang, S. and Manning, C.D. 2012. Baselines and bigrams: simple, good sentiment and topic 

classification. Proceedings of the 50th Annual Meeting of the Association for Computational 

Linguistics: Short Papers - Volume 2 (USA, Jul. 2012), 90–94. 

[12] Das, S., Das, D. and Kolya, A.K. 2020. Sentiment classification with GST tweet data on LSTM 

based on polarity-popularity model. Sādhanā. 45, 1 (May 2020), 140. 

https://doi.org/10.1007/s12046-020-01372-8. 

[13] Blei, D.M., Ng, A.Y. and Jordan, M.I. 2003. Latent dirichlet allocation. the Journal of machine 

Learning research. 3, (2003), 993–1022. 

https://doi.org/10.1007/s41133-020-00032-0
https://arxiv.org/abs/2006.03654
https://doi.org/10.1007/s12046-020-01372-8

