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Abstract 
 
Social media has facilitated an exponential increase in the distribution of hostile and toxic content 

in today's world. To tackle this issue, automated detection of such offensive content including hate 

speech, inflammatory, and abusive language have recently piqued the interest of many in the 

Natural Language Processing community. In this paper, we present machine learning and 

multilingual transformer models to automatically classify Tamil language comments as Offensive 

or Not-Offensive texts. The models make use of the dataset supplied for the Hate Speech and 

Offensive Content Identification (HASOC) challenge in Dravidian Languages under FIRE 2021. 

Among the proposed offensive language identification models, RoBERTa outperforms the others 

with an accuracy of 91.39%. 
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1. Introduction 

People around the world increasingly use social media platforms to share information and communicate 

with each other as part of their daily interactions.   The widespread popularity of social media and micro-

blogging platforms enhances connectivity among people, but it can also negatively affect their lives. 

Hateful and offensive comments have proliferated in social media, often by toxic users who hide under 

anonymity features of these platforms bypassing editorial control [1, 2]. If not curbed early, such toxic 

behavior can have a ripple effect and dissuade other people from being a part of the community [3] The 

hostile environment can stop them from expressing themselves freely due to the fear of being abused or 

harassed. Offensive language, hate speech and other objectionable content on the internet hence pose a 

threat to the well-being of our society [4].  

The adverse societal impact of the spread of offensive language in social media is well recognized. 

However, the sheer scale of the issue and lack of regulation makes it a hard problem to tackle.  Many 

countries outlaw hate speech on social media, with the caveat that it does not target any specific group or 

incite criminal behavior. Because hate speech shapes public opinion, platforms including YouTube, 

Facebook, and Twitter, have policies and tools in place to moderate hate speech content and related 

offensive behaviour to curb its ill effects on society [5]. One common approach is to employ automated 

methods that identify offensive language in order to remove/ hide them from other users [6].  

Systems for the automatic identification of hate and offensive language in Natural Language Processing 

(NLP) usually fall under one of the following categories: i) feature-based linear classifiers [7, 8], ii) neural 

network architectures such as CNN, RNN [9-11] and, iii) fine-tuned pre-trained language models, such as 

BERT (Bidirectional Encoder Representation from Transformer) and RoBERTa (Robustly Optimized 
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BERT Pretraining Approach), among others [12, 13]. Building on this work, we present machine 

learning and multilingual transformer models to automatically detect YouTube user comments as offensive 

or Not-Offensive texts for one of the tasks assigned under HASOC-Offensive Language Identification in 

Dravidian Code-Mix FIRE 20211. We specifically focus on Tamil, a classical language originating in India 

and spoken in Tamil Nadu, India's southernmost state, as well as Sri Lanka, Malaysia, and Singapore  

The remainder of the paper is structured as follows: Section 2 reviews background work on hate speech 

and offensive language detection by surveying existing research on the topic. Section 3 provides a task 

description, a summary of the dataset used in the study and 4 explains our proposed models, followed by 

results and discussion in Section 4. Finally, we conclude the paper in Section 5 by summarizing the findings 

and implications of the work. 

2.   Literature Survey 

The sheer volume and the growing number of people who use social media make it implausible for 

manual detection and removal of objectionable content through moderators. There is a high demand for 

tools and techniques that automatically detect offensive content on the internet to reduce its spread quickly 

and effectively. Recent years have witnessed a surge in the development of automated systems that filter 

offensive language on social media platforms, with identified challenges in classifying nuances due to the 

subjective and context-dependent nature of texts [6, 14]. Additional challenges emerge when working with 

texts containing more than one language –referred to as code-mixed data henceforth, which arises from 

multilingual users. Many previous systems eliminate data in languages other than English [14, 15], 

inducing scarcity in research in this area for low-resource languages.   

As the user-generated content in social-media is typically code-mixed and not well studied for under-

resourced languages, recent works have involved the development of systems on offensive text detection 

for such languages [16-18].  Additionally, the findings of the first shared task on Offensive Language 

Identification in Tamil, Malayalam, and Kannada, which relied on a thoroughly annotated data set based 

on human judgments was presented by [16]. The task setup allowed for testing of the model in multilingual 

contexts as well as the code-mixing phenomenon.  

A novel attempt in [17] included a multimodal classification problem in the shared task "Troll Meme 

Classification in Tamil" introducing an enhanced TamilMeme dataset that now includes Tamil text from 

memes. This work while presenting a multimodal classification problem also discussed difficulties in 

natural language processing of a low-resourced language and code-mixed dataset. Moreover, work by [18] 

describe the shared task of machine translation for Dravidian (Tamil) languages presented at the first 

workshop on Speech and Language Technologies for Dravidian Technologies, whereby  the best 

performing systems showcased a high Bilingual Evaluation Understudy Score despite a shortage of training 

data. Further work is essential in the detection of offensive language in under-resourced Tamil, Malayalam 

and Kannada languages to add to this growing area. 

Next, we highlight the approaches based on machine learning and natural language processing that have 

made significant progress in automatically detecting offensive language on web platforms. Traditional 

machine learning approaches employ features such as word-level and character-level n-grams, amongst 

others. Using a multi-class classifier, Davidson et. al.[19] classified tweets as hate speech, offensive, 

neither hate nor offensive using Naive Bayes, Decision Trees, Random Forests etc. with 5-fold cross 

validation and claimed model performance metrics as follows: precision 0.91, recall 0.90, and F1 score 

0.90. Gibert et al. [20] created a manually labelled hate speech dataset from Stormfront, a white supremacist  

online forum that contains hateful and non-hateful sentences. To annotate the test data based on hand-

annotated training data, Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and 

Recurrent Neural Networks have been used.  

When comparing linear classifiers to neural networks, the results were inconsistent across datasets and 

architectures, with linear classifiers proving to be very competitive, if not superior. Systems based on pre-

trained language models, on the other hand, have proven to have the best performance in this area, 

achieving new state-of-the-art results. However, one limitation in the case of these pre-trained models is 

that they are suited only for general-purpose language comprehension tasks because of their training 

language variety. To test machine learning models for hate speech classification, the authors have provided 

hate speech benchmark datasets [21]. In addition, the advantages and disadvantages of single and hybrid 



 

machine learning methods in the classification of hate speech were discussed in [21]. Besides the existing 

approaches and datasets for hate speech detection, MacAvaney et al. [22] investigated the challenges of 

automatic approaches for hate speech detection online. This study proposed a multi-view SVM approach 

that outperforms neural methods while being simpler and more interpretable. The experiments use datasets 

such as HatebaseTwitter, Stormfront, and TRAC [22]. Using bidirectional LSTM, Garain and Basu [23] 

described their system to detect offensive language in Twitter.   

Although numerous feature extraction methods have been utilised in machine learning-based 

approaches, what they require in common is a well-defined feature extraction strategy. To increase the 

performance of hate speech and offensive content detection models, neural network models now use text 

representation and deep learning methodologies such as CNNs , Bi-directional Long Short-Term Memory 

Networks (LSTMs), and BERT [24]. A study in [24] employed pre-trained BERT and multilingualBERT 

to detect hate speech and offensive content in English, German, and Hindi. The authors of [12] 

experimented with the following classifiers: a linear model containing features from word unigrams, 

word2vec, and Hatebase, word-based LSTM and a fine-tuned BERT. For this work, the Offensive 

Language Identification Dataset (OLID) is gathered via the Twitter API by searching a specific set of terms. 

Another study proposed BERT, a transfer learning approach based on an existing pre-trained language 

bidirectional encoder representation models [25]. In particular, this work studied BERT's ability to capture 

hateful contexts in social media content using new fine-tuning strategies based on transfer learning, and 

employed two publicly available datasets annotated for racism, sexism, hate, or offensive content on 

Twitter to assess the proposed approach.  

While multilingual transformer models were seen to be successful for the shared task provided in [16], 

a few machine learning models also performed well using hybrid approaches for feature 

selection/extraction from texts rather than single feature selection/extraction algorithms. In comparison to 

utilising a transformer, the advantage of employing machine learning models with feature selection 

techniques is that the model remains simple for easier interpretation, and hence form the basis of the work 

we describe in this paper. We demonstrate four different machine learning algorithms to categorize 

YouTube comments as offensive or Not-Offensive in addition to RoBERTa. Based on the no free lunch 

theorem [26] and our review of the current works with disparity in datasets, we note that, a method that 

works well for one dataset might not be appropriate for another. This means that there might not be a single 

classifier which best performs on all kinds of datasets and hence, we apply several different classifiers on 

a feature vector to observe which one provides better results. We provide more details of our approach in 

the next section. 

3. Materials and Methods  

3.1 Taskset Description  

Offensive texts in this study adopt the common definition for offensive language often expressed as 

‘flames’, which refers to “offensive messages or remarks that in some circumstances are inappropriate, 

exhibit a lack of respect towards certain groups of people or are just rude in general”. The dataset used to 

identify offensive language content consists of code-mixed data of Tamil comments collected from 

YouTube media, made available through HASOC-Offensive Language Identification track in Dravidian 

Code-Mix FIRE 20211. The comments are in code-mixed form (Mixture of Native and Roman Script) 

comprising of Tamil, English and Malayalam languages [27] .  

  There are comments in Tamil, English, and Malayalam in the dataset, and none of them are totally in 

English or Malayalam, but are mixed with Tamil. The comments in dataset contains more than one 

sentence, but the corpora's average sentence length is one [28]. Each comment in the dataset was annotated 

as either Offensive (OFF), Not-Offensive (NOT) or Non-Tamil. The dataset contained 5880 Tamil texts 

for training and 654 Tamil texts for testing with class labels as Offensive, Not-Offensive and Not-Tamil. 

The training set has 1153 texts under Offensive and 4724 as Not-Offensive texts. Three more texts mixed 

with Tamil and English/Malayalam were omitted. Since the dataset was imbalanced, we augmented 

available data by shuffling the texts to generate new texts. This was done by shuffling the words in each 

sentence to generate a new one [29]. We also reduced the imbalance by applying Synthetic Minority 



 

Oversampling TEchnique (SMOTE) [30], which is an oversampling approach that creates synthetic 

samples from the minority class. SMOTE is used to generate a synthetically or nearly class-balanced 

training set, which is subsequently utilized to train the classifier and works by selecting instances in the 

feature space that are near together. Sample Offensive and Not-Offensive texts from the dataset are 

presented in Table 1. 

 

Table 1  
Sample training texts from the dataset 

 

Documents Texts Label 

Document[10] படம் அழகாக இருக்குங்க  அத விட எதாரத்்தமாயிருக்குங்க NOT 
Document[11] இந்த படம் மாபபரும் பெற்றி பபற்று தமிழ் சினிமாவில் 

ஆதிக்கம் பெலுத்தும் ,,,இது பபான்ற பமலும் பல படங்களை 

இயக்க ொழ்த்துக்கை் NOT 
Document[13] தமிழக மக்கை் ொரப்ாக ொழ்த்துக்கை்... ொதிகை் 

இல்ளலயடி பாப்பா. ெலுளககை் நிளறய பெண்டுமடி  

((ஓட்டுக்காக)) பாப்பா.. NOT 
Document[352] இப்புடி படிெெ் பெங்க எல்லாம் பெனானு ஓடி ஓடி 

தான்யா நாபட நாெமா பபாயிருெச்ு.... OFF 
Document[62] குரூமா குருப்பு குண்டி பெந்பத ொகபபாரானுக 

ொழ்த்துக்கை் பமாகன் ொர.்... OFF 

3.2 Pre-processing and Feature Extraction  

Preprocessing the corpus (or data cleaning) is the first step to build any classifier.  As the corpus 

contained emojis, punctuation characters and texts that are not in Tamil, these were removed by 

preprocessing them. The emojis were converted into text using the Emoji for Python library and 

CountVectorizer was used to convert the text corpus to a vector of term/token counts. The CountVectorizer 

from Python scikit-learn library looks after controlling n-gram size, custom preprocessing, tokenization, 

stop words, and vocabulary size, making it a versatile feature representation module for texts. The result 

of the vectorizer is an encoded vector with the vocabulary length and an integer count of each word's 

appearances in the document. Sample results from CountVectorizer for the dataset take is shown in Table 

2. Here, we took the top 1050 features with word length more than or equal to 3. Note that CountVectorizer 

does not store these words as strings. Rather, they are assigned an index value. In this case, ‘படம் ' has 

index 0, ‘அழகாக' has index 1, and so on. Using fit() and transform() methods, each vector's value is 

calculated for each comment in the training set before inputting them to the classifiers.  
Table 2 
 Results from Count Vectorizer 

 

Text படம் அழகாக இருக்குங்க எதாரத்்தமாயிருக்குங்க பாப்பா 
Document[10] 1 1 1 1 0 

Document[11] 1 0 0 0 0 

Document[13] 0 0 0 0 2 

 

3.3.  Proposed Classifiers  
 

Having described the text to feature transformation, we present the classification algorithms used for 

offensive text detection in our study. We propose five classifiers based on machine learning namely, Naïve 

Bayes Multinomial classifier, SVM, Logistic Regression and KNN and a transformer model called 



 

RoBERTa. The output from count vectorizer is fed as input to these classifiers and the output is the 

classification identified for each text. The scikit-learn libraries in Python have been used to implement the 

proposed models.  

We now explain the rationale behind the use of the above models. The Naive Bayes Multinomial 

Classifier is a probabilistic model and a specialized version of the Naive Bayes algorithm. Simple Naive 

Bayes models a document for the presence or absence of specific words, whereas Multinomial classifier 

explicitly models the word counts and works well on small amounts of training data and trains relatively 

quickly when compared to other models [31]. Support-vector machines (SVM) are supervised 

classification algorithms that learn from training data to construct an optimal hyperplane that separates the 

categories while classifying new data. It handles a large number of samples well as SVMs are designed to 

find a hyperplane that maximizes the marginal distance between classes. In binary classification, the 

support vectors generate a hyperplane that divides the cases into two non-overlapping classes. SVM 

classifiers perform admirably in text classification tasks [31]. SVC() from the scikit-learn library has been 

used in our experiments with Radial Basis Function (RBF) as the kernel function. 

Another model called Logistic regression uses a sigmoid function to explain the relationship between 

one independent variable and one or more independent variables. Here, we employed L2 regularization 

for this model to deal with data that contains a binary dependent variable, such as offensive or not offensive 

It calculates the probability of an output by combining the independent or prediction variables in a linear 

fashion. KNN is a simple text classification algorithm that categorizes new data by comparing it to all 

available data using some similarity measure. While KNN is a simple algorithm that applies to both 

classification and regression tasks and makes no assumptions about the data, it is memory and time 

intensive because all training data must be stored. All the classifiers give different values for performance 

metrics, as they perform differently based on their features discussed above.  

RoBERTa is one of the most intriguing architectures derived from the BERT revolution. According to 

the authors of [32], while BERT exhibited a substantial performance improvement across various tasks, it 

was undertrained. RoBERTa improves the training technique by removing the next sentence prediction 

task from BERT's pre-training and introducing dynamic masking, which causes the masked token to change 

during the training epochs. Larger batch-training sizes have also been found to be more useful in the 

training operation. This enables RoBERTa to outperform BERT on the masked language modelling 

objective, resulting in higher downstream task performance.  

3.4 Model implementation 

Python programming language and its Sci-kit learn library have been used to implement the 

classification models. Google Co-laboratory (Colab) was used to train and test the proposed models. Colab 

is a fully cloud-based Jupyter notebook environment that doesn't require any desktop setup, hence it can 

run on any browser. The code-base is released open-source on Github. 

4. Results and Discussion 

In this section, we discuss the results of the classification models built for automatic detection of 

Offensive and Not-Offensive Tamil texts using the Dravidian Code-Mix FIRE 20211 dataset. We train each 

classifier using the features extracted from the training set and test the models using the test dataset 

provided.  

4.1 Performance Metrics 

The performance of the different models used for the classification problem have been evaluated using 

the following metrics: Accuracy, Precision, Recall and F1-Score [21]. These metrics commonly used for 

the evaluation of classifiers  are defined as follows. 

Accuracy is defined as the number of texts correctly classified as belonging to a specific class 

divided by the total number of texts in that class and is calculated by Equation (1).  

 



 

                      Accuracy = (TP + TN)/(TP + TN + FP + FN)                                              (1) 

 

Where, TP = True positive (the number of correctly classified texts for each class), TN = True 

Negative (the number of texts correctly classified in other class except the correct class), FP = False 

Positive (number of texts misclassified in other class except the right class) and FN = False Negative 

(the number of texts misclassified in the relevant class) in the confusion matrix.  
The number of texts correctly categorized as a certain class out of the total number of actual texts in 

that class is defined as Recall (also known as Sensitivity or True Positive Rate) and is computed using 

Equation (2). 

                                                         Recall = TP /(TP + FN)                                                       (2) 

 
Precision (Positive Predictive Value) is defined as the number of texts accurately categorized as a 

specific class out of the total number of texts categorized as that class, and is given by Equation (3). 

 

                                                 Precision = TP /(TP + FP)                                                       (3) 
 

F1-Score is defined as the harmonic average of the Precision and Recall, that is, the weighted average 

of Precision and Recall. It is calculated as in Equation (4). 

 

                            F1-Score = (2*Precision*Recall)/(Precision + Recall)                                         (4) 

 
The values of the performance metrics obtained for the test dataset for each of the classifiers are 

presented in Table 3. Based on the indices, we present the generated confusion matrix, a model matrix that 

compares the actual target values with those predicted by a machine learning model that helps us perform 

error analysis of the proposed models. The confusion matrix for the proposed models is shown in Figure 

1. The diagonal elements of the confusion matrix represent correct classifications. The predicted classes 

are represented by X axis, and the actual classes are represented by Y axis. For instance, Figure 1(a) shows 

that the naïve bayes model classified 50 offensive texts correctly as offensive and 83 offensive texts 

incorrectly as Not-Offensive. 

Table 3 presents the results of classifiers in terms of the performance measures. RoBERTa provides the 

highest accuracy in comparison to other classifiers. This high accuracy from RoBERTa is because of the 

significant improvement in the model by training it longer with larger batches over more data, removing 

the next sentence prediction objective,; training on longer sequences (takes complete sentences as input to 

the model, as opposed to the base model BERT),; dynamically changing the masking pattern applied to the 

training data (RoBERTa can make several more distinct masking patterns in the same sequence which 

reduces the need to significantly increase the number of instances of training) and creating a large 

vocabulary using Byte-Pair Encoding. However, this model is much more complex and requires a large  
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Figure 1. Confusion Matrix 
 

amount of time to run. But, [32]  recognizes that RoBERTa has a bigger vocabulary, which allows the 

model to represent any word resulting in more parameters, and the increase in complexity is justified by 

gain in performance. 

 
Table 3 
Performance of classifiers 

Classifiers Class Labels Accuracy (%) Precision 
(%) 

Recall  
(%) 

F1-Score 
(%) 

Naïve Bayes 
Multinomial  

Not-Offensive 
76.911 

84.515 86.948 85.714 
Offensive 42.373 37.594 39.841 

SVM Not-Offensive 
80.733 

94.216 84.167 88.908 
Offensive 19.492 42.593 26.744 

KNN Not-Offensive 
78.746 

87.500 86.691 87.094 
Offensive 38.983 40.708 39.827 

Logistic 
Regression 

Not-Offensive 
80.733 

84.515 87.791 86.`122 
Offensive 46.610 39.855 42.969 

RoBERTa Not-Offensive 91.390 96.455 84.339 89.991 
 Offensive  18.644 53.659 27.673 

 

For offensive class, the Recall and F1-score had low values compared to Not-Offensive classes. We 

understand that this is due to the smaller number of texts under this class. We have augmented texts for 

this class using SMOTE techniques, however, the low values for Not-Offensive class persisted. We used 

count vectors to extract features from the texts in this work - one issue with simple counts is that frequently 

used words, such as "an" and "the," make their high counts meaningless in the encoded vectors. An alternate 

option is to use TF-IDF to calculate word frequencies, which might be superior to Count Vectorizers 

because it not only considers the frequency of words in the corpus but also their importance. Future work 

can remove the words that are less important for analysis, reducing the input dimensions and making the 

model building less complex. 

5.     Conclusion 

This paper presented experimental work and respective results of the task to detect offensive content in 

code-mixed dataset of Dravidian languages to tackle the problem of offensive language in social media. 

We provided an in-depth review of past techniques in offensive text classification, and new models to 

automatically detect offensive texts in Tamil. Count vector was used to extract features from the dataset 



 

and different classifiers such as Naïve Bayes Multinomial model, SVM, KNN, Logistic Regression and 

RoBERTa were built for this task. Of these models, RoBERTa exhibited higher accuracy than other 

models. Our work could be further extended using other possible numerical/vectorial representation of 

texts and new classifiers based on neural networks, which have advanced linguistic features. The study 

contributes to research in offensive text detection for under resourced languages like Tamil, which we hope 

can inform future work in this area. 
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