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Abstract

OrientDB is a full-function, NoSQL MMDMS (multi-model database management system), addressing the big data variety
problem with one single, multi-model store and a SQL-based, multi-model query language. It combines graph and semi-
structured data management with object-oriented, text and spatial capabilities, and features a variety of deployment and
distribution / replication options, transactional / ACID storage and indexing, making it a commercially successful MMDMS.
With that, OrientDB is well-suited for novel adaptations of applications like smart logistics, asset management, social data
storage and analysis, and other use cases that require multiple perspectives on the data.

While OrientDB’s initial open source release was in 2010, many improvements like the multi-model API / query language
and full ACID support came with a recent re-design. This paper gives the first comprehensive description of the revamped
system, focusing on its data model, query language, distribution models and software architecture. We assess the current state
of OrientDB’s performance compared to other multi-model, but also “best-in-class” NoSQL single-model document systems.
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1. Introduction

Modern analytical, business and smart applications (e. g.,
in the areas of logistics, asset management, and social
network analysis) require efficient storage and access
to large amounts of multi-model data [1, 2, 3]. Data
management platforms addressing the multi-model or
in general the big data variety problem could be more
generally referred to as multi-model data platforms [1]
(e. g., as in the Q3/2021 Forrester wave' that especially
stresses on the importance of such a polyglot persistence
model for modern applications).

In the literature, these multi-model data platforms
are commonly differentiated into polystores (e. g., Big-
DAWG [4]) and multi-model database management sys-
tem (MMDMS) [1, 5], according to the number of sepa-
rate data stores: polystores have multiple, federated data
stores and MMDMSs have one single, integrated data
store. In practice, there are several (commercial) multi-
model data platforms? that are (a) more on the polystore
side, e. g., from Microsoft, Oracle, and SAP, or (b) on the
multi-model database side, e. g., from ArangoDB, Couch-
base, DataStax, Redis Labs, MarkLogic, or (c) aspiring
“best-in-class” NoSQL systems like MongoDB (document)
and Neo4j (graph) (all in the Forrester Wave).
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? Acknowledging that the list is not complete and does not men-

tion early MMDMSs like Berkeley DB (1994) or Virtuoso (1998).

While all of them support most of the data models
such as relational / table, graph, document or geospa-
tial, we limit the systems relevant to this work to those
selected for our evaluation shown in Tab. 1. Although
MongoDB (representing (c)) is a commercial, document
store, it started to extend support for other data models
like table, graph and key-value. Similarly, Redis (cf. (b))
is originally a key-value database, which added support
for document and graph. Postgres (cf. (a)) and OrientDB
(community edition) do not appear in the Forrester Wave
report, since they do not have a commercial offering per
se. However, for Postgres several extensions exist that,
e.g., add JSON document, key-value (hstore) and time
series (timescaledb) support to its relational core. The
selected systems all support time, geospatial and text.

In this paper we give the first comprehensive descrip-
tion of key aspects of one of the earliest NoSQL, open-
source MMDMSs that was designed from ground up with
a multi-model data design, namely OrientDB®. As such,
OrientDB uniquely combines object-oriented principles
like inheritance with semi-structured document (schema-
less and strict / mixed schema) and their relationships
in a (TinkerPop Blueprints compatible) graph with na-
tive and Gremlin graph traversal and pattern matching
support. OrientDB’s design decicions were influenced
by the key MMDMS differentiators, namely:

(1) single, unified data model covering multiple data
formats for complex data modeling (— data model)

(2) SQL-like, multi-model query / operations, e.g.,
traversal, matching, lookup (— querying data)

(3) single multi-model, ACID-transacted store / persis-
tence (— persisting data)

*OrientDB, visited 11/2021: https://git.io/JRY6H
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Table 1
Multi-model database management systems

Table | Graph  Document Key-Value | Object-oriented Text Time  Spatial

MongoDB (2009) 4] [ " [ Q 4] 0 0

Postgres/JSON (2013) 7] (§] (@] (@] (¢} [§] (¢] (&)

Redis (2009) Q (4] (@] o Q) Q ol (&)

OrientDB (2010) [w) e " 4] " 6] Q 4]

sl: supported, ): partially supported, ) not supported
(4) seamless scaling (— distribution model) Table 2
. . .. . 1. . Dat dels, entiti tially adapted fi 8
OrientDB aims to cover all of them, distinguishing it ata models, entities (partially adapted from [8])
from existing single-model databases that are growing _ Relational | Graph Document | OrientDB
into multi-model data platforms (in Tab. 1: MongoDB  Table Vertex/Edge  Collection | Class
misses (2) and partially (3), Postgres and Redis require Row Vertex Document | Vertex /
. document

extensions / modules for (1), Postgres could ease (4), and Column Propert Kev-value Property /
Redis lacks (2)). Its multi-model versatility (cf. differen- perty pa?; / at- attr?bu tZ
tiators (1)—(4)) lets OrientDB compete with single-model tribute
document stores [6] and graph databases [7] and helps  Ref. /join | Edge - (join) Edge / link

it to maintain high ranks as a NoSQL database system".
The multi-model concepts and design decisions that Ori-
entDB followed are presented in this work and might
further inspire designs of other MMDMSs.

This paper is organised as follows: Sect. 2 covers the
data model (cf. differentiator (1)) in Sect. 2.1 as well as
querying data (cf. (2)) in Sect. 2.2. Section 2.3 gives in-
sights into persisting data (cf. (3)). In Sect. 3 the general
system architecture is introduced and the distribution
model (cf. (4)) is explained. Section 4 shares initial perfor-
mance numbers on how OrientDB compares to selected
systems in Tab. 1 and Sect. 5 concludes the paper.

2. Multi-model data

In this section we describe OrientDB’s data model (cf. dif-
ferentiator (1)), its unified SQL-based query capabilities
over multi-model data (cf. (2)), and unified data storage
and manipulation (cf. (3)).

2.1. Data definition

As many NoSQL databases, OrientDB exclusively focuses
on the main non-relational data categories (i. e., graph,
document, key-value [8]), as shown in Tab. 1. However,
for a single, unified, and expressive data model (cf. dif-
ferentiator (1)), its multi-model data definition uniquely
combines semi-structured / document with graph data
and object-oriented principles.

Base entities For a better understanding, Tab. 2 sets
the main entities of OrientDB’s data model into context
to its relational, graph and document counterparts. In-
stead of a relational table, a graph vertex / edge or a doc-
ument collection, OrientDB defines class — known from
object oriented programming — as its top level entity

*db-engines.com: “graph+dbms” and “document+store”, 8/2021

(i. e., object-oriented features like inheritance and poly-
morphism are usable throughout the entire data model).

Considering a row table, OrientDB follows graph and
document approaches and offers vertex and document
entities, while in correspondence to column, property
(i. e., property graph) and attribute (i. e., key-value pairs)
entities are available.

The equivalent to a table join in graph databases is the
edge entity, which is the same in OrientDB. In addition,
documents might directly refer to other documents via
link entities, usually not found in document stores.

Logical, physical model entities In Fig. 1, the basic
entities are set into context to each other and connected
to the most important (physical) storage entity. That stor-
age entity is called cluster and denotes the place, where
the data of a class is stored, possibly in different physical
locations. In fact, usually multiple clusters are automati-
cally created or assigned for each class (e. g., one cluster
per CPU core or one per data center). A cluster has an
identifier id, information on whether it is the default clus-
ter of a class and a selection strategy that is considered,
when adding new data (e. g., round-robin, balanced). Fur-
ther storage details on clusters are discussed in Sect. 2.3.

Classes are object-oriented, schema constructs that
might have a super class (e. g., for inheritance) and proper-
ties with constraints / rules. OrientDB supports flexible /
schema-less data, but also strict and mixed-schema. With
properties and constraints, the latter can be realized. Ori-
entDB ships several default classes like OUser and ORole
for security, vertex vV and edge E, among others, from
which properties can be derived.

The main entity — in which all data is stored — is
a record, which gets assigned a record identifier erid
(RID), a version @version and a class eclass. The RID is
of the format #<CID>:<RP>, where <CID> is the cluster
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previously inserted documents (i. e., Linda is Frank’s friend
and she likes Frank) (lines 8-9).

Listing 1.: OrientDB DDL, DML for graph, document

--- collection as vertex

CREATE CLASS person EXTENDS V;

--- insert documents

INSERT INTO person CONTENT

INSERT INTO person CONTENT
"likes": "#13:382')

--- collection as edge

@”name ": "Frank ”;
m”name ": "Linda",

s CREATE CLASS friend EXTENDS E;

identifier and <RP> is the record’s position in that cluster,
thus it is a direct pointer to its physical storage location
(cf. Ex. 1), similar to CTID in PostgreSQL.

Example 1 (Clusters, RIDs). Figure 2 shows a'
Customer class with three clusters (i.e., identified by *?
11-13) and default cluster 11. A record with RID #13:382 *
can be found in cluster 13 at position 382. m
OrientDB has different record types with document as the *
most relevant. A document represents semi-structured
data by a set of JSON field elements or key-value pairs,
denoting properties of the record’s class (e. g., for strict
/ mixed schema). Unlike other document stores, docu-
ments in OrientDB can have links to other documents,
where a link is a set of RIDs. While in a schema-less
setup no properties are required, the creation of an index
for a field requires a property.

From a graph perspective, vertex and edge entities are
documents, thus allowing them to be simple property
graphs with key-value pairs or carrying more complex
data like JSON documents (cf. Ex. 2).

Example 2 (Class, document, graph). OrientDB’s

multi-model, SQL DDL, DML allow for the creation of a
class that is of type vertex V as shown in Listing 1. The
class extends built-in V to specify that the documents in
person can be vertices in a graph (line 2). As in SQL,
there are several way to insert data. For simplicity, two
JSON documents are inserted into the person class, the
second one with a RID, indicating a document link with
label 1ikes (lines 4-6). Since the documents are vertices
in a graph, they can also be related by creating an edge
class friend and specifying an edge using the RIDs of the

s CREATE EDGE friend FROM #13:382 to #13:37;

Eistimg9—Recordsd T OrtemtDE

{"erid": "13:382", "eclass": "person",
"name": "Frank", E| }
{"erid": "13:37", "eclass": "person",

"name": "Linda", "likes": "#13:382", [.] }

The corresponding JSON records in OrientDB are shown in
Listing 2. Notably, the RIDs and class assignments are part
of the documents and can be used as shown above. [ ]

Sizing / limits While the number of databases within
an OrientDB server is not limited, each database can have
21% _ 1 clusters. A cluster can store 20 — 1 records, which
allows up to 278 _ 1 records per database. The maximum
size of a record / document is 2GB (cf. 16MB in MongoDB
and 512MB in Redis). There is no limit on the number of
properties for a schema-less, and 2 x 10° properties per
database for schema-full usage.

Summary OrientDB specifies a single, unified data
model with an object-oriented class entity at its core.
The object-oriented features allow for expressive model-
ing, including key-value or JSON document records and
complex graph data at vertices and edges.

2.2. Querying data

On top of the unified data model, OrientDB specifies
OSQL with SQL-like query capabilities and operations
(cf. differentiator (2)), which we will briefly introduce
by example for document, graph, text and geospatial
(including object-oriented capabilities).
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Document queries OSQL queries on documents are
mostly similar to standard SQL. Notable deviations de-
note the dot-notation for specifying fields in nested JSON
objects (e. g., address.city) and working with arrays
(e. g., UNWIND returns the entries of a JSON array as single
lines).

Besides the usual SQL keywords like DISTINCT, object-
oriented extensions are added (e. g., to check the type of
a class with INSTANCEOF). !

Graph queries Apart from the support of TinkerPop j
/ Gremlin queries on its graphs, OSQL allows for graph

traversals and pattern matching (cf. Ex. 3). .

Example 3 (Graph traversal, pattern matching). °
An example of graph traversal on the documents of
Listing 2 is depicted in Listing 3 and pattern matching is
illustrated in Listing 4.

Listing 3.: Graph traversal: Breadth-first search

7

TRAVERSE friend FROM #13:37 "
WHILE [§depth <= 3 BREADTH_FIRST;

Listing 4.: Graph pattern matching

MATCH
mclass: Person, as: people, where: (name =
- 'Linda' )

RETURN people

1
Queries in Listings 3 and 4 return records #13:382, #13:37, ,
respectively. [ ]

3

Graph traversals are defined using TRAVERSE instead of *
SELECT, but traversals can be embedded into queries as °
sub-queries. In traversal queries, the FROM-clause can °
contain classes, clusters, one or more record identifiers ’
and sub-queries. Similar to a WHERE-clause, the WHILE
condition limits the traversal, while the result set can
be limited by LIMIT (not shown). During a traversal,
projections help to restrict to fields that should be fol-
lowed. While in Listing 3 vertices of type friend are spec-
ified, OSQL supports *, ALL(), and ANY(). When spec-
ifying a class, polymorphic traversals can be specified.
For instance, when customer is a person, then specifying
customer.name will also traverse person vertices. OSQL
supports different search strategies like BREADTH_FIRST,
which can be limited by selections on context variables
like $depth (nesting depth) or $path (path traversed).
Similarly, linked documents are traversed and traversals
can be directed by using keywords like IN() or OUT().

Graph pattern matching requires the MATCH keyword
with JSON input for a valid target CLASS, an alias for
a node pattern (e. g., people), and a WHERE-clause that
matches a node in the pattern.

Text and geospatial queries The text and geospatial
features are based on the data model in Sect. 2.1 and both
require index creation (cf. Ex. 4).
Example 4 (Graph traversal, pattern matching).
We recall that for indexed fields, a property has to be added
to the class, as shown in Listing 5.

Listing 5.: Text and spatial indexes

--- property, fulltext index
CREATE PROPERTY person.name STRING;
CREATE INDEX name ON Person(name)
FULLTEXT ENGINE LUCENE;
--- Geospatial index
CREATE PROPERTY person.location EMBEDDED
-~ OPoint;
INSERT INTO person SET location =
» St_GeomFromText (
"POINT (51.498308 -0.176882)")
WHERE name = "Frank";
CREATE INDEX person.location ON
-~ person(location)
SPATIAL ENGINE LUCENE;

For spatial coordinates (e. g., numeric), decimal degree val-
ues can be parsed from String using St_GeomFromText
(e. g., by updating Frank’s record).

Listing 6.: Text and spatial queries

--- text search using SEARCH_CLASS function
SELECT FROM person

WHERE SEARCH_CLASS("+name:Fran*") = true
--- spatial search using NEAR operator
SELECT *,@distance FROM person

WHERE [location,@spatial]

NEAR [51.495449,-0.17625,[{"maxDistance": 1[}|]

The syntax to support spatial arguments (i. e., $spatial) is
taken from Lucene. [ ]

In contrast to all other supported index types (e. g., hash,
B-tree / range), text and spatial indexes are created
in Lucenes, which was therefore embedded into Ori-
entDB (Cf ENGINE LUCENE, ENGINE SPATIAL ENGINE
LUCENE). When creating indexes in Lucene, additional
metadata can be passed to the underlying engines to con-
figure according to their full capabilities (e. g., analyzers,
parsers).

Text queries require function SEARCH_CLASS (line 3)
to specify complex fulltext searches (e. g., regular expres-
sions) in a query’s WHERE-clause. Further search func-
tions like SEARCH_FIELDS (search index for more than
one field) enable the full spectrum of Lucene’s search
capabilities.

> Apache Lucene, visited 11/2021: https://lucene.apache.org/
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Figure 3: Record storage

Similarly, geospatial queries use the syntax of the
underlying engine to work with multiple geometries
(e.g., Point, Line), using functions like ST_AsText,
ST Within, ST_Disjoint on indexed fields. Built-in con-
text fields like $distance (line 5) return distances sorted
from nearest to furthest and the NEAR (line 7) operator
finds all points near a given geo location. The special
keyword maxDistance (line 7) limits the search space.

Summary OrientDB defines a SQL-like, multi-model
query language that covers all aspects of the unified data
model (i. e., including object-oriented, document, graph,
key-value, text, and geospatial). External engines can be
added, however, which loose their state, if not persistent.

2.3. Persisting data

As one of the first MMDMSs, OrientDB provides a single,
multi-model persistence with ACID transactions (cf. dif-
ferentiator (3)), whose main aspects we briefly introduce.

Indexes OrientDB defines several built-in indexes like
Hash- and SB-Tree [9] for fast lookup and sequential
record access. The indexes can be set as UNIQUE (i. e., not
allowing for duplicate keys), which is also guaranteed in
distributed setups. Composite keys allow for searches in
multiple indexes at the same time. In addition, custom
indexes can be specified, configured and loaded into the
system. For instance, fulltext and geospatial indexes are
provided that way through the Lucene search engine.

There can be up to two billion indexes per database,
without limitations regarding the number of indexes per
class (cf. 64 indexes per collection in MongoDB).

Transactions, Storage Compared to many other
NoSQL databases, OrientDB supports ACID transactions
with isolation levels READ COMMITTED (default, dis-
tributed) and REPEATABLE READS (single instance). Dur-
ing the commit of a transaction, records are physically
stored using its main storage entity (i. e., cluster). Each
cluster is split in pages, which contain system informa-
tion (e. g., checksum for integrity / recovery) and record
data (i. e., paginated storage). On disk, the data is stored
in variable size data files as shown in Fig. 3. The RIDs are
mapped through a fixed size, append-only cluster position
map through cluster pointers (i. e., page identifier, record

position in page). When deleting a record a “tombstone”
is referenced that will be cleaned by compaction.

For data and index recovery a write-ahead log (WAL)
is written. In case of indexes, the storage can be config-
ured to recover without the need to rebuild indexes. To
reduce disk access, the paginated storage has a two-level
disk cache, consisting of a W-TinyLFU [10] read cache
and WOW [11] write cache. The read cache specifies a
main cache with segmented LRU eviction policy [12] and
least-frequently used (LFU) cache admission policy based
on the approximate TinyLFU data structure [10] that is
combined with a window cache (for new items) based
on a least-recently used eviction without an admission
policy (i. e., admitting every new item). Together this al-
lows for fine-grained locking and better cache hit-ratios
compared to other replacement policies. The write cache
maintains a queue of short lived pages. The read cache
asks the write cache to load data from disk. If the data
is not in the write cache’s queue, it will be loaded from
disk. Since OrientDB is developed in Java, an off-heap
memory pool is used for file cache allocations to avoid
JVM garbage collection performance penalties.

Summary OrientDB uses ACID transactions for
change operations on its single multi-model storage. The
data is queried through extensible index capabilities,
while data is accessed through a RID mapping to data
pages on disk (i. e., mostly independent of the database
size).

3. System architecture,
Distribution / Replication

In this section we introduce the general system architec-
ture and deployment / distribution options for horizontal
scaling (cf. differentiator (4)). In the architecture we lo-
cate the introduced single, multi-model data and storage
components from Sect. 2 (cf. differentiators (1)—(3)).

3.1. Component architecture

The main deployment unit of OrientDB is the ODB Server
shown in Fig. 4. The server accepts local OSQL and re-
mote JDBC and REST calls. In addition, specialized inte-
gration like graph / Gremlin is available through modules
provided by the open source community. The official
database administration tool is OrientDB studio, which
uses the REST API. While business applications usually
use JDBC and REST, other clients use OrientDB’s binary
protocol to access the server. Besides data import and mi-
gration tools like ETL, Neo4j (community projects) and
teleporter (relational data migration tool). OrientDB’s
active open source community contributed several lan-
guage bindings / connectors for Python, .Net, Node]S that
complement the standard Java, JDBC, and REST drivers.
Subsequently, we briefly introduce internal layers that
were recently significantly reworked: multi-model API,
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Figure 4: OrientDB architecture

database, and storage layers. The distribution layer will
be discussed in Sect. 3.2.

Multi-model APl  OrientDB originally started out with
separate document and graph APIs. From version 3.0,
the access to the database layer is managed by a unified,
multi-model API that we introduced in Sect. 2.2. The
new API makes use of the data model from Sect. 2.1 to
give a combined perspective on multi-model data. The
old document and graph APIs as well as access via Tin-
kerPop 2.x is deprecated and support for TinkerPop 3.x
was added (cf. Graph API/ Gremlin).

Database layer The OSQL optimizer and execution
are part of the database engine. The incoming OSQL
statements are transformed into logical, physical plans
that leverage the indexes from Sect. 2.3 (cf. Appendix A).

Regarding security, OrientDB supports authentication
through Kerberos and LDAP integration, database en-
cryption and a sophistiacated security concept reaching
from clients over server down to record-level.

Storage layer The storage components, introduced in
Sect. 2.3 are seamlessly integrated into the ODB server to
support full ACID transactions with disk-based storage.
Despite the exception of Lucene (text, spatial), which are
kept in their native storage, built-in and custom indexes
operate on the same ODB storage.

3.2. Distribution / Replication
The ODB server can be deployed in different (distributed)
setups that allow applications to scale OrientDB from
small to larger installations, as shown in Fig. 5: (1) em-
bedded, (2) standalone, (3) replicated, and (4) mixed.
OrientDB can be embedded into one application (1), ei-
ther completely in-memory (e. g., for testing / CI) or with
local storage (e. g., for simple micro-services). Multiple
applications can start with a single, standalone OrientDB
instance (2) that can be evolved from the embedded one

(1) Embedded (2) Standalone

Figure 5: Distribution and replication

(cf. variant (1)) and scaled-out to several OrientDB in-
stances through replication. Embedded instances can
provide replicas, and thus run in a mixed deployment (4).

A seamless evolution or scaling is possible through a
Raft-based [13] auto-discovery mechanism that identi-
fies OrientDB instances, stores the runtime cluster con-
figuration and synchronizes certain operations between
nodes. After nodes have been added to the distributed
system, OrientDB uses a variant of Fast Paxos [14, 15]
to support distributed transactions (i. e., fast rounds, but
bigger quorums than in classic Paxos). In that way, Ori-
entDB supports multi-leader replication, which allows
several nodes to perform change operations (insert, up-
date, delete). To avoid quorum nodes lagging behind and
requiring expensive quroum rounds to catch up (espe-
cially after failure), each node records change operations
per transaction as persistent version counters. In case
a node missed some operations, it can easily detect that
by comparing the local version with the one in the next
received message and catch up by direct synchroniza-
tion with another replica (similar to [16]). With that,
OrientDB supports distributed, unique indexes and fault-
tolerance without slowing down a quorum.



4. Experiments

In this section we conduct a preliminary performance
assessment of OrientDB compared to the databases in
Tab. 1, i. e., well-established NoSQL databases (MongoDB,
Redis), and one extended RDBMS (Postgres/JSON), using
the well-known YCSB benchmark [17].

4.1. Setup, Limitations

The YCSB benchmark is an open-source, NoSQL database
benchmark with a broad coverage of database systems
(including all selected databases from Tab. 1). The bench-
mark features several workloads of JSON documents that
cover important operations like read, insert, update and
read-modify-write as well as configuration parameters
for scale-factors (e. g., number of records and fields per
record, field length).

Setup For our measurements, we run all workloads
(A-F) and use the default parameters (e. g., single user
and record, records with 10 fields of length 100). We set
the number of documents per workload to five million
records, operation count to 500k and the batch size to
10k. If a workload requires an index, a hash index is set.

Out of the multitude of polystore and multi-model
NoSQL systems, we decided to choose MongoDB as one
of the leading document stores, Postgres/JSON as one
of the mostly used RDBMS with multiple NoSQL exten-
sions, and Redis, as a representative key-value store (cf.
Tab. 1). For all databases we benchmarked the latest
server versions available, for which we updated the Ori-
entDB driver to version 3.1.3 and added support for the
scan operations in workload E°.

All measurements are conducted on two Intel X5650
CPUs with 2.67GHzs (12 cores), 24GB RAM, Windows 10
operating system, and JDK 1.8.

Limitations YCSB originally targeted key-value stores,
and thus only works with “flat” key-value pair JSON doc-
uments (i. e., no nesting, arrays). However, even wide-
column and document stores provide YCSB drivers, due
to the lack of open source benchmark alternatives. Re-
cently, MongoDB tried to adapt their workloads to TPC-C
[18], but had to admit that neither YCSB nor TPC-C suf-
ficiently address their workloads.

Since OrientDB is an MMDMS, one could expect a
suitable multi-model benchmark. In fact, there are poly-
store benchmarks (e. g., PolyBench [19]) and at least one
multi-model benchmark (UniBench [20]), but none of the
benchmarks is available as open-source (e. g., for database
driver development).

Due to the lack of more suitable benchmarks and the
rather simple nature of YCSB’s data sets and workloads,

YCSB OrientDB 3.1.x port, visited 11/2021: https://github.com/
brianfrankcooper/YCSB/pull/1468

the results are considered preliminary, but give inter-
esting insights into relative rather than their absolute
performance, which we consider valuable.

4.2. Preliminary results

The preliminary results of our benchmark runs are shown
in Fig. 6 as time per request in p seconds (lower bar is
better) for MongoDB (short mdb), OrientDB (odb), Post-
gres/JSON (pgqj), and Redis (rds), which we briefly discuss

for each workload and concurrent user scaling.

Workload A: Update-heavy, read The first workload
is a combination of 50% read and upgrade operations with
a Zipfian record selection. Fig. 6a shows that this key-
value store workload is best for Redis, while OrientDB is
slightly better for read operations compared to MongoDB
and Postgres. The update performance is similar for the
three non key-value stores.

Workload B: Mostly read, update Similarly, Redis
dominates the read-heavy workload with 95% read oper-
ations with Zipfian distribution in Fig. 6b. The focus on
read operations leads to better results for OrientDB and
Postgres, which have slightly slower update compared
to read operations.

Workload C: Read-only The Zipfian read-only work-
load underpins the previous observations on read oper-
ations for OrientDB and Postgres, which gain ground
on Redis, shown in Fig. 6c. Hereby, OrientDB might
profit from its WTinyLFU read cache implementation
that keeps a mix of LRU and heavily read older records
in memory and its physical RID mapping.

Workload D: Read latest Consequently, the 95% read
and 5% insert workload for reading the latest inserts
shows a similar read performance for all databases. Un-
like for the similar update case of workload B, OrientDB
is slightly behind MongoDB and Postgres, while Redis
shows similar results to its update performance.

Workload E: Short-ranges In this scan operation
dominated workload, the inserts (again only 5%) are sim-
ilar to that of workload D. The scans, however, show
best performance for Postgres and worst for Redis, while
MongoDB and OrientDB are closely left in-between.

Workload F: Read-modify-write For the combined
r-m-w workload, all databases perform similar to the
previous workloads, with Redis on top, then OrientDB
with slightly faster read performance than MongoDB and
Postgres, but similar update and r-m-w time.

Concurrent user scaling Since the results for work-
loads A-F were for a single user, and thus can be con-
sidered as baseline performance, we now briefly study
workloads B and F for 64 concurrent users in Fig. 7.
MongoDB and Postgres perform slightly better for read
operations than OrientDB and Redis in both workloads,
while MongoDB shows the fastest updates, followed by


https://github.com/brianfrankcooper/YCSB/pull/1468
https://github.com/brianfrankcooper/YCSB/pull/1468
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Figure 7: YCSB workloads B, F (single instance, 64 users)

Redis and OrientDB (cf. Figs. 7a and 7b). Notably, for
read and update operations, MongoDB’s performance
remains similar to the single user benchmarks. Redis and
OrientDB are factors of 5-10 slower than their single user
performance and Postgres even beyond that for update
and r-m-v workloads.

4.3. Discussion

While it is not surprising that all single user YCSB work-
loads were best for the key-value store Redis, we made
two notable observations: (1) good single instance scal-
ing of MongoDB from one to 64 users, (2) OrientDB with
competitive results compared to “best-in-class” document
and key-value stores.

Firstly, the slightly better update and insert perfor-
mance of MongoDB and Redis could be explained by
their slightly more relaxed ACID guarantees (e. g., with
single-document focus, compare-and-set operation fo-

cus). For single user workloads, MongoDB seems to have
additional overhead (i. e., MongoDB’s hash index is actu-
ally a B-tree, cf. [21]) that amortizes for multiple users
in a single database instance (cf. observation (1)). Sec-
ondly, despite being implemented in Java, OrientDB’s
unified data model and query capabilities on one single
persistence, combined with proven database technology
(e. g., W-TinyLFU buffer cache) and off-heap memory us-
age make it competitive to the other databases in our
experiments (cf. observation (2)).

5. Conclusions

This paper gives the first comprehensive description of a
recently revamped OrientDB, a commercially successful
NoSQL, open source MMDMS. While more and more
database systems strive to become multi-model data plat-
forms, OrientDB early on addressed NoSQL multi-model
key differentiators, such as (1) a single, unified data model,
(2), SQL-like, multi-model query and operations, (3) a sin-
gle, multi-model ACID-transacted store, and (4) a seam-
less scaling. Although OrientDB is one of the earliest
NoSQL MMDMSs, we showed that it is competitive com-
pared to “best-in-class” document and key-value stores.

While multi-model data platforms are on a rise, we
found that future work should consider standardized,
open benchmark initiatives for MMDMSs as well as for
single NoSQL areas like document stores (similar to YCSB
for key-value). For OrientDB in particular, there are sev-
eral areas of future improvements like adding all custom
indexes to the ODB storage, and further improving trans-
acted change operation performance.
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A. OSQL query model

The new OSQL query model from OrientDB version 3.0.x
is sketched in Fig. 8. OSQL is defined based on aJavaCC’
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Figure 8: OSQL query model

grammar, which is used to generate an OSQL parser
that creates a query AST. To speed up the generated
JavaCC parser, recurring queries are cached (i. e., logical
plan cache). Several AST-level optimizations are applied
(e. g., task push-down, index look-ups on link chains) that
(partially) rewrite the AST (e. g., JSON path / chain dot
notation becomes a set of sub-queries).

An execution planner creates an execution plan from

the (optimized) AST, using pre-defined execution steps.

The resulting physical plan itself is “executable” in the
sense that its steps (e. g., fetch data, project, filter) and is
cached (physical plan cache).

(optimized) (steps / tasks)
Parser cache Plan cache




	1 Introduction
	2 Multi-model data
	2.1 Data definition
	2.2 Querying data
	2.3 Persisting data

	3 System architecture, Distribution / Replication
	3.1 Component architecture
	3.2 Distribution / Replication

	4 Experiments
	4.1 Setup, Limitations
	4.2 Preliminary results
	4.3 Discussion

	5 Conclusions
	A OSQL query model

