
Homoiconicity For End-to-end Machine Learning
with BOSS
Hubert Mohr-Daurat1, Holger Pirk1

1Imperial College London

Abstract
It is common for machine learning applications to have complex operator pipelines, with several steps before and after the
main execution of the core machine learning algorithm. Consequently, data movement between processes has a performance
cost for the execution of the application. In this paper, we propose an end-to-end machine learning framework based on
the principle of homoiconicity: data and code are represented in a single unified syntax. This approach allows the efficient
interpretation of custom operators at the core of a relational database system. We also present the implementation of a data
cleaning framework as an initial milestone. This work is a part of a larger research project to implement BOSS, a novel,
general-purpose relational database system that stores and processes homoiconic data.

Keywords
relational database, homoiconicity, symbolic expressions, machine learning, data cleaning, data imputation

1. Introduction
The core part of any machine learning (ML) pipeline is
the model to be learned during training and executed
during inference. It is, thus, not surprising that this is
the most extensively researched and optimized aspect of
ML applications.
However, the model training and inference is not the

only component of the data processing pipeline that plays
a role in the application’s overall performance. Many
applications move large amounts of data as inputs and
produce large output datasets. This data movement is
costly and, often, principally unnecessary.
In addition, many applications perform internal data

movement for various data operations, such as data aug-
mentation or data normalisation. Some of these steps
involve the usage of dedicated libraries and even systems.

The complexity of such pipelines with multiple layers
increases not only the overhead for data movement but
also the engineering cost of implementation and mainte-
nance of the logic to connect them.
Data cleaning is a particularly interesting example of

such data movement-intensive components in the case
of an ML pipeline. Cleaning the data is necessary be-
cause the model learning and the inference process are
extremely sensitive to the data quality. Input data is
therefore generally cleaned using methods such as im-
puting missing values and searching and fixing incorrect
values (based on common sense, expert knowledge, and
user-defined constraints). Algorithms for these tasks

BICOD’21: British International Conference on Databases, Mars 28,
2022, London, UK
Envelope-Open h.mohr-daurat19@imperial.ac.uk (H. Mohr-Daurat);
hlgr@ic.ac.uk (H. Pirk)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

are integrated into the pipeline, from simple averages or
interpolations to more advanced regression methods.
Consequently, ML pipelines are often complex, dele-

gating these additional data transformations to separate
processes that cause significant data movement during
their execution; to load data into memory, querying and
passing it to the data cleaning component (before or
during querying the data), passing it to the core ML com-
ponent (the learning or the inference) and then again
moving the output data to the application layer, which
consumes the result.
Database Management Systems (DBMS), where the

data lives for any data-heavy processing pipeline, plays
a significant role in the data movement problem with a
high overhead for transferring the data in and out.

Prior research [1] has investigated methods to reduce
the data movement overhead out of the DBMS. With
ad-hoc serialisation protocols and efficient compression
technologies, the overhead is reduced but not eliminated
and can still be significant for large-scale data movement.

Instead of making the data transfer more efficient, an
alternative approach is to reduce the cases where data
movement is needed, e.g. by executing the various data
retrieval and transformation steps in the same process or
by using shared memory when independent processes
are required. However, data movement can rarely be
eliminated due to the additional transformations needed
to match the data layout used by the libraries and appli-
cations used in each layer.

A more radical solution to this problem is integrating
all the layers of data processing steps into a single central
system. This approach is muchmore effective at reducing
the data movement overhead.

The DBMS is a natural starting point for such a central
system. DBMS are designed to store, retrieve and pro-

mailto:h.mohr-daurat19@imperial.ac.uk
mailto:hlgr@ic.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

cess a large amount of data efficiently, taking advantage
of strategies and technologies studied, developed and
improved over several decades.

However, implementing all the desired features in the
DBMS requires new data representations, operators and
logic, which are not standard in typical DBMS. This is
challenging to implement while preserving the advan-
tages of the DBMS (such as the query optimizer).

Implementing the desired features in a database comes
with a trade-off. Implementing them as user-defined
functions (UDFs) is straightforward but has a high over-
head and prevents query optimizations; implementing
them at the core of the DBMS backend is more efficient
but requires significant effort and expert knowledge.

Instead, we propose implementing a more generic ex-
tensible system that is flexible and takes advantage of the
DBMS efficiency to manipulate data. To achieve that, the
DBMS stores as data the executable code that extends
the DBMS functionality. Storing the code as data means
that the code is an integral part of the relational repre-
sentation and can be manipulated by the DBMS kernel.
This method is fundamentally different from UDFs and
triggers, which exist only in the schema and are be re-
trieved and run as a black box at query time. With our
approach, the DBMS handles this custom logic efficiently,
taking advantage of the optimization strategies produced
by DBMS research.
Fundamentally, homoiconicity refers to this idea that

code can be read, modified and stored like data. The
practically most common forms of homoiconic data are
symbolic expressions (s-expressions). An s-expression is
represented as a (potentially nested) list and can, there-
fore, be modified as well as evaluated. For example, ’1
+ 2’ would be represented by the list ’(Plus 1 2)’. Lisp-
like languages use s-expressions to represent all code as
s-expressions and allow Turing-complete programming
[2]. They even allow the representation of unknown
or undefined values in the form of ”Symbols”. Unfor-
tunately, lisp implementations are ill-suited to support
data-intensive applications due to prohibitively high in-
terpretation overhead (see Section 4).

Inspired by these homoiconic languages, we are imple-
menting a DBMS called BOSS for Bulk-Oriented Symbol-
Store. This database stores symbolic expressions in the
form of symbols and complex expressions. However, in
our implementation, the evaluation of the expressions is
performed for a large batch of data at once, thus amortiz-
ing interpretation overhead.

Applied to the ML domain, native operators are imple-
mented in the database only for the basic blocks of the
ML operations (e.g. transformations, activations). Only
the logic of the ML algorithm, less generic, is left to be
implemented in userspace with symbolic expressions.

The benefits of this approach are:

int int symbol

int float

int

batch 1

batch 2
batch 3

C O L U M N S T O R A G E

...

...
...

...

... ...

STORE

1

P A R T I T I O N I N G

1
1 2

STORE

1 + 2

+

STORE

1.5 + (A * 2)

+

A

2 1.5

x

Figure 1: shape-wise partitioning mechanism and storage
representation example.

• ease for the user to implement newML algorithms
and tools by assembling them from operators
using symbolic expression logic with flexibility
while keeping native performance

• with the logic as data paradigm, the approach
opens new possibilities for optimizations, unified
for both the data (as usually handled by the query
optimizer) and for the logic (as usually handled by
the compiler) by exposing the logic as symbolic
data to the database at every level, from query
plan to storage layers.

• symbolic expressions are not used only to express
the logic of the queries. They are also stored in the
database and evaluated efficiently at query time,
whose benefits and implementation are detailed
in the use case in the next section.

2. Storing and Processing
Homoiconic Data

As data cleaning is a data-intensive task, we, naturally,
selected the decomposed storage model (DSM) [3] to rep-
resent (plain) relational data. On top of DSM data, we im-
plemented the BOSS kernel following the X100-model[4]:
BOSS’ query processor partitions data into micro-batches
to keep intermediate results cache-resident. In addition
to plain relational data, however, BOSS needs to process
homoiconic expressions that represent computation ef-
ficiently. Interpreting such expressions usually incurs
significant overhead.

To amortize this overhead, we developed a novel tech-
nique called shape-wise partitioning & decomposition as
shown in Figure 1. First, collections of expressions are
(horizontally) partitioned by shape, i.e., all expressions

that only differ in their base type arguments form a par-
tition. Second, the components of the expressions are
(recursively) decomposed, thus storing base data in a de-
composed form. In Figure 1, e.g., batch 1 stores plain
integers, while batch 2 stores expressions that add two
integers and batch 3 stores expressions that multiply two
integers and add them to a third. As shape-wise partition-
ing ensures homogeneous partitions, entire partitions
can be processed with a minimal number of function
calls (one per subexpression). This ensures highly CPU-
efficient processing.

3. Use case: data imputation
We implemented a data imputation framework in the
context of a project called HyAI1. The project’s overall
goal was to optimize the decisions to charge or consume
hydrogen batteries using machine learning technologies
that model future electricity consumption from the anal-
ysis of many different data sources. Because the batteries
were intended to be deployed in areas where data trans-
ferred from these sources might be unreliable, a robust
imputation framework was implemented in the database
management system so that the user could define custom
and potentially complex imputation logic.

Missing data is commonly handled in database systems
by inserting null values and internally defining an arbi-
trary value as null or using a boolean flag. This method
does not allow to specify why the data is missing and
to let the data cleaning process decide how the value is
imputed. However, there are multiple reasons why data
would be missing. Ideally, the user should be allowed to
specify through code logic the intent and decide how to
handle missing data.
One approach for the user to handle missing values

is by calling the imputation method on the fly before in-
serting the data into the database. However, this method
does not allow the use of future data for the imputation.
For example, both previous and subsequent values may
be needed for the interpolation of time series data.
Alternatively, the user could handle missing values

as part of the query logic by detecting the missing val-
ues and using nested queries or UDFs. However, this
method usually incurs an execution overhead that affects
performance and increases the queries’ complexity.

With the imputation framework that we implemented,
the user stores missing data as complex expressions. The
expressions describes the logic to use for the data impu-
tation, e.g. instead of inserting a ’null’ value, the user
inserts the expression ’(PreviousValue() + NextValue())
/ 2’ to do a simple local average. As presented in the
previous section, this approach provides more flexibility

1<https://www.h2gopower.com/hyai>

0.001

0.01

0.1

1

10

100

1000

HyAI

Q
u

er
y

Ti
m

e
(m

s)

BulkBOSS ImputeDB
Wolfram

0.001

0.01

0.1

1

10

100

1000

10000

100000

0
.0

01

0
.0

1

0.
1 1 2 5 1
0

0
.0

01

0
.0

1

0.
1 1 2 5 1
0

Q1 Q6

Q
u

er
y

Ti
m

e
(m

s)

SF

BulkBOSS

MonetDB

Wolfram

Figure 2: Performance comparison tests for TPC-H Q1/Q6
(relational), and HyAI (imputation). The missing bars for Wol-
fram are caused by the engine running out of memory.

to the user and benefits from the optimizations allowed
by the bulk evaluation method.

4. Evaluation
All the experiments have run on a PC with an Intel i9-
10990K CPU and 32GB RAM DDR4 3600MHz.

To confirm that relational operators in BOSS are per-
forming competitively with state-of-the-art DBMS, we
compared the performance of BOSS with MonetDB using
the TPC-H queries Q1 and Q6 with various scale factors.
The results in Figure 2 shows that BOSS performs on the
same magnitude with MonetDB without an impact from
having to support homoiconicity in our implementation.

Also shown in Figure 2, we compared the handling of
missing data with another implementation, ImputeDB
[5], which has similar functionalities. We evaluated a
dataset from HyAI project (50K rows) where 50% of the
data is missing at random for five columns. Data is im-
puted by taking a random value from data in the same
column. BOSS performs better with a factor of x261. This
result shows that the bulk approach to implementing im-
putation operators is highly efficient. Our method to
evaluate expressions efficiently could also benefit more
advanced imputation techniques.
In addition, the comparison for both relational opera-

tors and missing data evaluation with another backend
based on theWolfram engine shows that our implementa-
tion outperforms by several orders of magnitude the com-
mercial homoiconic engine. It confirms that evaluating
homoiconic data comes with a high cost for interpreting
the expressions, which is solved with the technique we
have implemented in BOSS.

5. Related Work
Data cleaning is a critical aspect ofmany decision-making
and analytics applications, particularly in ML-based soft-
ware. Some solutions have been proposed to automate
the process, such as HoloClean [6], an entire system run

https://www.h2gopower.com/hyai

side-by-side with the DBMS. Alternative solutions have
been proposed to integrate the data cleaning operators
as part of the database query, such as ImputeDB as an
imputation module for the Data Civilizer framework [7].
Both approaches do not allow the user to make deci-
sions during the data cleaning, except for some initial
setup in the case of HoloClean. They differ from our
method, which performs data imputation during query
but is based on the information provided by the user
during data insertion.
Most research on accelerating the ML pipeline and

using a unified data management solution focuses on the
acceleration of the training step. The approach in [8]
has similarities with our work. They propose lambda
expressions as generic user-defined operators, which are
more efficient than usual UDFs. However, lambda expres-
sions are used only in the queries and do not store code
logic in the database. Their focus is primarily on training
and inference and not on data cleaning. Their solution
also differs from ours since they use JIT-compilation to
optimize the evaluation of the expressions.
Tupleware [9] also proposes a similar approach for

their general end-to-end analytic solution by analysing
the code of UDFs and taking advantage of JIT compilation
to find the best pipeline strategy when merging the cus-
tom operator code with the query code. The drawback
is a warm-up overhead before the workload execution,
which is negligible for heavy workloads but can be a
problem when a fast response is required [10] (e.g. visu-
alisation, or high-frequency inference).

In addition, there is research work on integrating ML
operators as part of database kernel ([11], [12], [13]). This
approach is efficient since ML operators are integrated
deep inside the database implementation but require in-
vesting time to implement ad-hoc code for each needed
operator. Similarly, LMFAO [14] propose to represent
ML operators as aggregate queries. This method allows
interesting optimizations but is limited to operators that
can be represented as aggregates. Some research takes
the opposite approach and implements the relational op-
erators in a linear algebra kernel [15]. Finally, another
approach uses a unified intermediate language for both
relational and ML operators ([16], [17]).

6. Conclusion and Future Work
Data movement is a significant performance factor for
modern data processing pipelines: the complexity of data
processing tasks involving steps such as data cleaning,
normalization, model training and visualization already
stresses interfaces and will only increase. To address
this problem, we developed a new data processing sys-
tem architecture around the idea of homoiconicity, i.e.,
the uniform representation of data and code. In this de-

sign, task-specific code can be stored and processed with
the data, thus providing unprecedented extensibility. In
this paper, we have demonstrated the advantages of this
design for handling data imputation.
For the future, we plan to extend the system with ad-

ditional features for data processing pipelines: operators
to support additional data cleaning use cases, algebraic
operators needed for model training and inference and
even domain-specific operators. The system will, further,
benefit from relational components such as query opti-
mization, transactional semantics and data visualization.

References
[1] M. Raasveldt, H. Mühleisen, Don’t hold my data

hostage: A case for client protocol redesign (2017).
[2] J. McCarthy, Recursive functions of symbolic ex-

pressions and their computation by machine, Part
I, CACM (April ’60).

[3] P. Boncz, M. L. Kersten, Monet: A next-Generation
DBMS Kernel for Query-Intensive Applications,
Ph.D. thesis, Universiteit van Amsterdam, 2002.

[4] M. Zukowski, et al., Monetdb/x100-a dbms in the
cpu cache., IEEE Data Eng. Bull. (2005).

[5] J. Cambronero, et al., Query optimization for dy-
namic imputation, PVLDB (2017).

[6] T. Rekatsinas, X. Chu, I. F. Ilyas, C. Ré, HoloClean:
Holistic data repairs with probabilistic inference,
PVLDB (2017).

[7] D. Deng, et al., The data civilizer system, in: Cidr,
2017.

[8] M. Schüle, et al., In-databasemachine learning: Gra-
dient descent and tensor algebra for main memory
database systems, BTW (2019).

[9] A. Crotty, A. Galakatos, K. Dursun, T. Kraska,
U. Cetintemel, S. Zdonik, Tupleware: Redefining
Modern Analytics, arXiv:1406.6667 (2014).

[10] T. Kraska, Northstar: An interactive data science
system, PVLDB (2018).

[11] B. De Boe, et al., IntegratedML: Every SQL De-
veloper is a Data Scientist, in: DEEM@SIGMOD,
2020.

[12] K. Karanasos, et al., Extending Relational Query
Processing with ML Inference, CIDR (2020).

[13] J. Hellerstein, , et al., The MADlib Analytics Library
or MAD Skills, the SQL, arXiv:1208.4165 (2012).

[14] M. Schleich, et al., A Layered Aggregate Engine for
Analytics Workloads, in: SIGMOD, , 2019.

[15] L. Chen, A. Kumar, J. Naughton, J. M. Patel, Towards
linear algebra over normalized data, PVLDB (2017).

[16] A. Shaikhha, et al., Multi-layer optimizations for
end-to-end data analytics, in: CGO@PPoPP, 2020.

[17] S. Palkar, et al., Weld: A Common Runtime for
High Performance Data Analytics (2017).

	1 Introduction
	2 Storing and Processing Homoiconic Data
	3 Use case: data imputation
	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work

