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Abstract
The impending information storage crisis is coming. Typical archival storage mediums must be replaced
and re-written via expensive processes every 3-5 years. Exponentially increasing global data creation
demands innovation in the methods we use to store this data. DNA oligos/origami offer a novel way
to store information that is more durable, higher density, and scalable. With DNA information storage
pipelines in their infancy, many areas of developmental progress are underway. One such area that
requires attention is the back-end decoding and processing of the stored information. As the building
material of DNA provides a continued and increasing scope to be used as the next-generation information
storage medium, significant challenges arise. One such challenge is the cost-barrier to producing
real microscopic images of folded DNA origami structures, which can amount to many thousands of
pounds/dollars even if your institution is equipped with a well-resources bioengineering laboratory.
Another barrier is time; real images can take weeks or months to produce. We therefore present a method
for generating synthetic datasets for origami-based DNA information storage systems using a custom
GAN pipeline. We find a customised ProjGAN the best performer for generating microscopy-based
synthetic images of data stored in DNA origami structures. The work presented here therefore acts
a useful tool for the further development of computational and back-end decoding pipelines for DNA
origami information storage, that can now be developed without the aforementioned barriers. With
DNA origami storage methods already here and many advancements on the horizon we are excited to
present our synthetic data generation tool.
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1. Introduction

The collection and use of data have played a crucial role in modern society and continues
to become more important. As of 2021, it is estimated that the total volume of data created
and consumed worldwide is 74 trillion terabytes per year and this trend continues to grow
exponentially [1]. As the rate of data creation and consumption increases rapidly, it is important
to think about how we can store this data. Currently, the most common storage mediums are
hard drives, magnetic tape and solid-state or flash storage. These are all categorised into silicon
and alloy-based hardware, which have negative economic and environmental ramifications
[2]. With our growing data demands, these methods of storing data are becoming ever less
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viable. Therefore, we must find alternatives to keep up with our growing data requirements.
In recent times the viability for DNA (deoxyribonucleic acid) as an alternative solution to the
incoming cold-storage crisis has increased. As present, two main systems of DNA information
storage exist; Oligo-based storage [2] and DNA origami storage [3], where the former uses
base-pair encoding to store information in sequences, and the later encodes the information
within the folded DNA nanostructure. Technologies and computational pipelines for decoding
data stored in oligos has been well developed [4][5][6], whereas the same cannot be said for the
decoding of information stored in DNA origamis or nanostructures. DNA origami consists of
folded nanostructures via self-assembly, following some architectural design with a scaffold
and staples, for genesis work see [7][8]. Images of folded nanostructures are shown in figure 1,
where dots (accumulated DNA strands or gold-nanoparticles) represent bit locations within the
encoding architecture of the structure. NB. our work on this is incomplete and publication is
upcoming. Although there are multiple ways of storing data within the origami, the general
premise is that the dots represent bit locations in a designed fashion [3].

Figure 1: TEM images of real DNA origami with
encoded data, produced within our re-
search group at Imperial College Lon-
don. From left to right there are one,
two and three dots of information rep-
resenting active bit locations.

Generative Adversarial Networks (GANs)
have become an exciting field of research
within deep learning and generative mod-
elling. GANs are models that contain two
networks, known as the generator and dis-
criminator, that are pitted against each other
in a zero-sum game. The discriminator is a
binary classifier denoting whether a sample
is either one originating from the data or one
produced by the generator.

In an effort to aid the development of com-
putational pipelines for decoding data stored
in folded DNA origamis we present a method
for generating synthetic datasets for DNA
origami data storage. We are able to produce
such a method due to the recent advancements in GANs [9][10] and general machine learning,
thus enabling us to fine-tune a computational method to produce usable and trainable data
specific to DNA origami nanosturctures.

2. Method

In order to produce a large and diverse enough dataset of images to be used to train GANs we
produce a python script that mimics photoshop manipulation of dot/bit locations onto a base
image. Each image is 135 x 90 pixels. The dataset is composed of 10 classes, with each class
corresponding to the number of dots contained within the image. There are a total of 100,000
images with 10,000 images for each class. Such a dataset could be replaced with real DNA
images although this is unlikely at present due to the bottlenecks in throughput that currently
imaging techniques, TEM/AFM, contend with. This data therefore provides the GAN training
set.



The original GAN [9] uses two fully connected networks with ReLu activations for their
architecture. The images produced by this implementation are not as refined as they need to be
for our use case. We therefore must consider other GAN architectures and methods. DCGAN
employs convolutions in the layers for both generator and discriminator in addition to batch
normalisation and leaky ReLu activations. Utilising the capabilities of CNNs, the architecture
proposed by Radford et al. [11] perform particularly well in tasks related to images. However,
in some instances this architecture suffers from mode collapse. In an ideal scenario, a GAN
should produce a variety of distinct outputs. However, the generator may occasionally produce
especially good outputs which causes the generator to learn to produce only a small set of
outputs. The best strategy for the discriminator is to reject this small range of outputs. However,
the discriminator can be held at a local minima. This creates a scenario, known as mode collapse,
in which the generator only optimises for a particular discriminator and produces similar
outputs at each iteration. The cause of this scenario is usually a weak discriminator, where the
discriminator remains at a local minima and fails to improve, leading to the generator becoming
”lazy” and producing a less varied output. Arjovsky et al. [12] propose WGAN, which uses the
Wasserstein Distance rather than the Jensen-Shannon Divergence for computing the losses for
the generator and discriminator. The use of the Wasserstein loss is used to train the generator
and discriminator, with the aim to increase the distance between scores for real and fake images.
Discriminator Loss: 𝐸[𝐷(𝑥)] − 𝐸[𝐷(𝐺(𝑧))], Generator Loss: −𝐸[𝐷(𝐺(𝑧)). This loss means that
larger scores correlate to fake images and lower scores to real images. Larger scores on real
images incur a large penalty on the discriminator, which encourages the production of lower
scores on real images. In turn, a larger score on fake images incurs a small loss for the generator,
thus encouraging the production of higher scores on fake images. By utilising the Wasserstein
loss, the discriminator can train optimally without being impeded by vanishing gradients, which
ensures that it does not get trapped at a local minimum. The discriminator would be able
to reject the generator output if it was continually producing a singular output, forcing the
generator to adapt and produce a varied output. Miyato et al. [13] integrated hinge loss into
their networks and in doing so, improved the overall performance of their networks. They
used the following equations for loss: Discriminator Loss: 𝐸[min(0, −1 + 𝐷(𝑥)] − 𝐸[𝐷(𝐺(𝑧))],
Generator Loss: −𝐸[𝐷(𝐺(𝑧))]. Conditioning on GANs utilises auxiliary data for contextual
information to improve performance and output. The resulting network has two advantages: 1.
The networks converge faster, as the additional information gives some basis for a distribution
that the networks can fit upon. 2. The additional information can be used to control the output
of the generator. i.e. using the labels to determine the class output of the generated sample.
The cGAN utilises class labels from the data and concatenates them to the latent vector for
generators and images for discriminators [10]. This helps the two networks learn on additional
data, which improves the quality of the images produced. Expanding on the conditioning used in
cGANs, the Projection Discriminator [14] seeks to condition the discriminator using a projection
rather than via concatenation. In PyTorch, this exists in the form of an embedding layer which
allows the discriminator to condition more accurately using a projection rather than a vector of
labels. We perform conditional batch normalisation (CBN), �̂�𝑖 = 𝛾(𝑥𝑖 − 𝜇)/𝜎 + 𝛽 where 𝜇 and
𝜎 are the mean and standard deviation of a batch and 𝛾 and 𝛽 are hyper parameters used for
conditioning, to replace batch normalisation layers within our generator to enable conditioning
[15]. The exploration of GAN architectures results in our final architecture presented in figure



2.

Figure 2: Custom GAN architecture for symthetic DNA origami information storage data generation.
The generator feeding into the discriminator resulting in a prediction.

Figure 3: The architecture inside a Gen Block featuring a conditionally batch-normalised 2-convolutional
layer and a 1-convolution.

The generator feature map size is defined to be 256. The generator itself is composed of a
fully connected linear layer and then 4 generator blocks Figure (3), with the generator block
only having one convolutional layer and a Tanh activation. The generator block is inspired
by the residual block found in ResNet [16], with the skip connection passing through a 1 ×
1 convolution. The rest of the block contains two 3 × 3 convolutional layers that employ



conditional batch normalisation for conditioning and ReLu as activations.

Figure 4: The architecture inside a Disc Block.

The discriminator feature map size is defined to be 128. The discriminator is composed of 4
discriminator blocks (Figure 4) and a final linear layer. The discriminator also has an embedding
layer used on the data labels and this is used to provide conditioning to the network. Like the
generator, the discriminator is built using our defined discriminator block. The discriminator
block also uses skip connections to mitigate the effects of vanishing gradients. The structure of
the block remains similar to the generator block, however the activation and average pooling
layers are before and after the skip connection.

3. Results

For our GAN experimentation, we tested 4 models: DCGAN, WGAN, HingeGAN (WGAN
with hinge loss), and ProjGAN (HingeGAN conditioned using a projection discriminator and
conditional batch normalisation). With the exception of DCGAN, the other GANs are trained
using iterations rather than epochs. There are 10,000 iterations for generator training with 5
discriminator training iterations for each generator iteration. An iteration is equivalent to one
mini-batch from the data loader. The DCGAN is trained for 25 using binary cross-entropy loss.

The images displayed in Figure 5 are samples from the generator of each GAN variant. The
samples in DCGAN and WGAN appear to be randomly generated noise. From these generated
images, we can see that ProjGAN produces an image that approximates the dataset most
convincingly. Looking at the output of HingeGAN, the image suggests that the generator is
making improvements to produce realistic images but hasn’t improved enough, leaving the
blue line at the bottom. We can hypothesise that 10,000 iterations was not enough to allow



Figure 5: Sample images produced by the generators of different GAN-types at iteration 10,000. top-left
- DCGAN, top-right - WGAN, bottom-left - HingeGAN, bottom-right - ProjGAN.

HingeGAN to converge and produce more realistic images. The output could also suggest that
HingeGAN has experienced a form of mode collapse, where the discriminator is weak and is
stuck at a local minima. The images produced by the DCGAN and WGAN could be a sign of
mode collapse but they are more likely to indicate that the discriminator is too good. This
prevents the generator from improving and causes the network to stagnate and produce random
noise.

Figure 6: Evolution samples of ProjGAN: left - interation 0, middle - interation 5000, right - iteration
10,000.

Figure 6 depicts the intermediate outputs of ProjGAN over 10,000 iterations. We see that by
iteration 5,000, the generator is starting to produce some images that resemble the data but are
lacking fully-fledged features. By the 10,000th iteration, we see that the generator has produced
many samples that look as though they are from the original data. Given that ProjGAN produces
images that are effectively indistinguishable from the authentic DNA images, there was no
reason to continue with further iterations.
Figure 7 shows comparisons between samples generated by ProjGAN and a collection of

specimens from the dataset. The fake images appear to be slightly more blurry than their real
counterparts. Furthermore, the dots within the fakes are not as prominent as in the real images.



Figure 7: ProjGAN image sample at convergence where left - real, right - fake.

Table 1
FID scores of GAN architecture performance

Model FID
ProjGAN 124.55
HingeGAN 520.99
WGAN 373.65
DCGAN 305.40

Finally, there are a few distinct blemishes in some of the fake images that indicate that they
are not part of the data. From our visual comparison, we determined that the ProjGAN model
performed better than the other architectures. To get a more conclusive perspective of this
performance gap, we used an FID score to measure the quality of the generated images against
the original data. We calculated the FID score using a PyTorch implementation of the metric
and sampled 10,000 images each from the generators and the dataset. The results for the FID
score are found in Table 1.

4. Discussion

From the analysis of the FID scores we see that ProjGAN has the lowest FID score of all of the
tested models, reinforcing our conclusion that it is the best-performing model. An interesting
observation we can make from the FID scores, is that of the HingeGAN. Subjectively, the images
generated by the HingeGAN appear to be more similar to the data than the images produced
by DCGAN and WGAN. However, when observing the FID score, the HingeGan produces the
highest score with 520.99 over 100 points above DCGAN and WGAN and over 300 points for
ProjGAN. We could justify this by inspecting images from the data, such as when looking at
the real samples found in Figure 7. Another observation we have made is that when compared
to the generated images, we would expect that DCGAN and WGAN would receive higher FID
scores than they did in practice. We hypothesise that this is because the images sampled from
the data have backgrounds that resemble noisy images. As the background occupies much of
the image, the FID calculation may have deemed this to be similar to random noise found in



generated images and led to a lower FID score.
Previous work has concluded that GANs have the greater potential in producing higher

quality realistic images than that produced by variational autoencoders (VAEs) [17]. This can
be justified by the fact that the objective for VAEs optimises on the variational lower bound, an
approximation of the true distribution of the data. Whereas there is no such bound that exists
for GANs, as the approach is optimising for a zero-sum game, giving GANs greater potential in
learning the data’s underlying probability distribution. For these reasons, we have opted to use
GANs to generate synthetic data sets in the final method.
The requirements for our method of generating synthetic data are that you must possess

real-DNA origami images, but only a small number of them. With the knowledge that real DNA
origami images are timely and costly to produce, your information storage pipeline should be
somewhat operational before executing our method, although it is feasible to produce synthetic
datasets with purely synthetic data, the hyperparameters of the GAN are likely needed to be
tweaked.

5. Conclusion

A pipeline like the one described in this paper is a useful tool for the advancement of compu-
tational pipelines within the DNA origami information storage fields. The method’s design
architecture and implementation flexibility allows for groups and researchers working on differ-
ent designs/implementations to make use of our resource. Our intention is to use the synthetic
data generated in this article to train further networks that are needed in our DNA origami
information storage pipeline. The training images used for the GAN are non-authentic insofar
as they are pixel manipulations of real/authentic images, therefore the training data is based
off authentic DNA images, but not at scale. The method outlined here helps to overcome that
specific barrier for a time where large sets of authentic full images are available, which we
predict would become available in the near future.

With the data storage crisis incoming, new systems are under development to utilise DNA as
a novel storage medium. The potential for DNA to succeed traditional digital storage systems is
strong, where DNA origami/nanostructure databases is one of the front runners. Due to the
costs of fabrication to many research groups and industry partners, our method for generating
synthetic datasets provides a way to further the development of back-end computational
pipelines without these initial barriers.
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6. Appendix

The following tools can be found at www.dnastoragetools.com with links from https://dnastor-
age.doc.ic.ac.uk/. The Git repository will remain private until future works are published.
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