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Abstract
Troubleshooting in the telecommunication industry is a time-consuming task, often involving text understanding, which is
challenging to automate due to its domain/company-specific features. This work aims to build a model to retrieve solutions
for newly reported problems in automated and quick ways. To this end, we present BERTicsson, a BERT-based model that
uses two main stages for (i) retrieving a shortlist of candidate answers for new problems and (ii) raking them accordingly.
We study the performance of BERTicsson using Ericsson’s troubleshooting dataset and show that it significantly improves
the accuracy of the recommended answers compared to non-BERT models, such as BM25.
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1. Introduction
Troubleshooting in modern telecommunication systems
is a slow process [1]. Many failures lead to service down-
time or other forms of harm to the customer experience;
thus, they must be quickly detected, categorized, and
resolved. Usually, when engineers observe a fault in a
running system that they cannot solve on site, they create
a Trouble Report (TR) to track the information regarding
the detection, characteristics, and an eventual resolution
of the problem [2].

Figure 1 shows a typical troubleshooting process that
has six steps. The process starts by detecting a problem in
step 1, followed by reporting it as a TR during steps 2 and
3. Then, this TR is analyzed and corrected in steps 4 and
5, and finally, the proposed solution is verified by engi-
neers in step 6. Steps 4 and 5 often involve understanding
textual data in TRs, which can be challenging to auto-
mate due to its domain-specific and company-specific
features. Moreover, the text may contain many abbre-
viations, typos, tables, and numerical data, making the
process more difficult. However, with today’s impressive
development in machine learning, specifically in Natural
Language Processing (NLP), we can shorten the process
by analyzing historical TR data and infer a solution to
new problems faster and more accurately.

In this work, we tackle the problem of retrieving so-
lutions in the troubleshooting process in an automated
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Figure 1: The steps of a troubleshooting process.

way using NLP models. To this end, we present BERTics-
son, a multi-stage model to automate steps 4 and 5 of the
process in Figure 1. BERTicsson is a recommender and
text-ranking system based on BERT [3] that receives a
history of TRs (i.e., old problems and their solutions) and
newly reported problems as input and returns a ranked
list of recommended solutions to each problem. Both
TRs and new problems description are given in natural
language.

Upon receiving input data, BERTicsson initially cleans
them at the pre-processing stage, and then, through the
Initial Retrieval (IR) stage, it retrieves a candidate list
of answers relevant to the problem. Finally, at the Re-
Ranker (RR) stage, it ranks the candidate list provided
by the IR stage concerning the problem. In the IR stage,
BERTicsson uses Sentence-BERT [4], a variant of BERT,
to make a representation of the problems and answers,
and in the RR stage, it takes advantage of monoBERT [5],
a two-input classification BERT model.

We use Ericsson’s 4th Generation (4G) and 5th Gener-
ation (5G) TR dataset through the experiments and show
that BERTicsson provides a high accuracy while keeping
the latency low. We compare BERTicsson with BM25 [6],

mailto:nuria.marzo.i.grimalt@ericsson.com
mailto:serveh.shalmashi@ericsson.com
mailto:forough.yaghoubi@ericsson.com
mailto:leif.jonsson@ericsson.com
mailto:payberah@kth.se
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


a popular ranking model, and show that BERTicsson im-
proves the Recall of the recommended answers by around
65%.

2. Background
We define the text-ranking problem as generating an or-
dered set of texts retrieved from a corpus of documents
in response to a query for a particular task. This section
reviews some of the pre-BERT and BERT techniques for
text-ranking.

2.1. Pre-BERT Text-Ranking Methods
Before the appearance of BERT [3], the Exact Match-
ing (EM) [7] and neural information retrieval tech-
niques [8, 9, 10, 11] have been the primary text-ranking
methods. EM solutions mainly rely on the term frequency
and document frequency, where the former shows the
number of times that a term occurs and the latter shows
in how many documents it appears. A query and a docu-
ment have a high score if they both use the same terms.
Indeed, this limits the algorithm’s applicability and its
performance in case of having vocabulary mismatch prob-
lem [12], i.e., when the query and the documents use
different words to refer to equivalent things.

The pre-BERT neural information retrieval methods
are divided into two main architectures: representation-
based approaches and interaction-based approaches. A
representation-based model learns a dense vector repre-
sentation of the query and the documents independently.
Then, it computes the similarity between the representa-
tions using cosine similarity or inner product and ranks
the documents accordingly for the given query [8, 9]. On
the other hand, an interaction-based model focuses on the
interaction between each query’s and document’s terms,
and a similarity matrix is created. This matrix undergoes
further processing to extract a similarity value [10, 11].

2.2. BERT-based Text-Ranking Methods
BERT [3] is a language embedding model that learns con-
textual representations of words in a sentence. BERT is
pre-trained on a large corpus of text in an unsupervised
setting, with two different learning objectives: Masked
Language Modeling (MLM) and Next Sentence Prediction
(NSP). In MLM, some words in the input sentence are
hidden from the model, and the model should predict
the original word of the masked token based on the con-
text of the other non-masked words in the sentence. In
NSP, BERT receives two sentences, A and B, as input,
and it should predict whether sentence A is followed by
sentence B.

Recently, several variations of BERT have appeared.
For example, RoBERTa [13] removes the NSP pre-training

Figure 2: A multi-stage architecture.

task and uses dynamic masking by changing the masked
tokens during the training epochs, ALBERT [14] reduces
the number of parameters of the original BERT model by
implementing the cross-layer parameter sharing, Distil-
BERT [15] uses distillation to pre-train BERT, and ELEC-
TRA [16] pre-trains a discriminator that has to distin-
guish if the sentences forwarded to the model have a
replaced token or not.

The first attempt of using BERT for text-ranking adopts
the BERT architecture to make a relevant score between
the query and a document [17]. The input to this model
is a query and a document, and the output is a contextual
embedding of them, which is used for deriving the simi-
larity score between them. BERT-based models, however,
present some limitations, as they only accept sequences
of less than 512 tokens, which limits the length of input
text. They also present high complexity and are slow in
text-ranking tasks.

Traditional text-ranking approaches have one-stage
architecture. However, the state-of-the-art models follow
a multi-stage architecture (Figure 2), usually formed by
two main stages: (i) an Initial Retrieval (IR) stage that
extracts a candidate set of text, and (ii) a Re-Ranker (RR)
stage that creates a ranked list of the candidate set. The
IR stage is fast, allows the model to discard easy candi-
dates, and passes a smaller set of documents to the RR
stage. The RR stage is slow, but as the input of docu-
ments is significantly smaller, it maintains low latency.
The number of documents that pass from IR to RR can
be defined in different ways, such as keeping a certain
number of documents with the highest scores or keeping
a fixed percentage of all documents.

3. BERTicsson
We aim to make a model for retrieving accurate solutions
to newly reported problems in telecommunication with
low latency. To this end, we present BERTicsson (Fig-
ure 3), a recommender and text-ranking model that is
composed of three stages: (i) the pre-processing stage
that cleans the input TRs (i.e., the new problems (queries)
and the corpus of documents), (ii) the Initial Retrieval
(IR) stage that retrieves a top-𝐾 candidate list of docu-



Figure 3: BERTicsson architecture.

ments with answers relevant to the query, and (iii) the
Re-Ranker (RR) stage that ranks the top-𝐾 candidate list
provided by the IR and outputs the final list of ranked
documents. In the rest of this section, we present these
three stages in depth.

3.1. Pre-Processing Stage
The pre-processing stage prepares the data for the IR and
RR stages. The input TR is a newly reported problem
and corpus of documents containing telecom/company-
specific language, and the output is the query and the
documents ready to be given to the IR and RR stages.

The pre-processing stage has five steps:

1. Tokenizing text: it tokenizes input text using a
customized tokenizer that recognizes company-
specific and domain-specific language.

2. Detecting abbreviations: it detects and tags abbre-
viations and acronyms.

3. Replacing abbreviations: it replaces the tagged
telecom abbreviations and acronyms with the
complete words. In the case of multiple sugges-
tions for a given abbreviation, it picks the sug-
gestion which is most related to radio networks,
which have been manually labeled.

4. Removing numerical data: it removes any numer-
ical tokens as they do not provide any helpful
information to the model.

5. Handling special tokens: it removes extra spaces,
new lines, and gaps between words as well as any
punctuation signs.

The IR stage gets the pre-processed query and docu-
ments, and after analyzing them, creates a top-𝐾 candi-
date list of the most relevant documents (answers) to the
query. The candidate list should have all relevant docu-
ments to the query (if possible); however, the order of the
documents in the candidate list is not important at this
stage, meaning that the documents with the most rele-
vant answers do not need to be at the top positions of the
list. The IR stage should have low latency to quickly man-
age a large amount of data. We use Sentence-BERT [4] to
build this stage. Sentence-BERT is a representation-based
model that creates dense vectors 𝑄 and 𝐷 as embeddings
for the query 𝑞 and the document 𝑑, respectively (Figure

Figure 4: The IR stage architecture.

Figure 5: Sentence-BERT architecture.

4). It then uses cosine similarity to compute the similarity
between the 𝑄 and 𝐷 as below:

𝑆(𝑄,𝐷) =
𝑄 ·𝐷

‖𝑄‖ · ‖𝐷‖
=

∑︀
𝑖 𝑄𝑖𝐷𝑖√︁∑︀

𝑖 𝑄
2
𝑖

√︁∑︀
𝑖 𝐷

2
𝑖

(1)

Sentence-BERT internally uses a Siamese network [18]
that consists of two neural networks with shared weights.
Each of these two branches has two layers: a BERT layer
and a mean pooling layer (Figure 5). The Sentence-BERT
receives two sentences as input: query 𝑞 and document
𝑑. First, it tokenizes 𝑞 and 𝑑 and forwards the tokens to
the BERT layer to create a contextual embedding of each
token. Next, the BERT layer output is given to the mean
pooling layer to create the fixed-size representation of
each sentence. Once we have the representations of 𝑞 and
𝑑, denoted by 𝑄 and 𝐷, respectively, we use Equation 1
to measure their similarity value. The similarity value
will correspond to the ranking score and be used to create
the top-𝐾 candidate list.

We can use any of the BERT models in Sentence-BERT;



Figure 6: The RR stage and the monoBERT model.

however, we use DistilRoBERTa [15] in our implemen-
tation. Sentence-BERT behaves differently in the train-
ing and inference phases. During the training phase, it
receives a batch of pairs of relevant queries and docu-
ments, and it then adjusts its weight to represent queries
and documents similar if they are relevant to each other.
However, this is a time-consuming task; thus, after the
training phase, we store the representation of all the doc-
uments (only the documents, not the queries). Therefore,
at the inference phase, we only need to compute each
query’s representation and compare it with the stored
representation of the documents, which is fast.

3.2. Re-Ranker Stage
The RR stage receives a query 𝑞 and the top-𝐾 candi-
date documents relevant to 𝑞 and returns the final list
of top-𝑁 ranked documents, such that 𝑁 ≤ 𝐾 (Fig-
ure 3). In this stage, we use monoBERT [5] (Figure 6).
The input to monoBERT is composed of a query 𝑞 and
a document 𝑑, and the special tokens [SEP] and [CLS] in
form of “[CLS]𝑞[SEP]𝑑[SEP]”. Once monoBERT tokenizes
the input sequence, it forwards them to the internal BERT
to create the contextual embeddings for all the tokens.
Next, it forwards the embedding of the [CLS] token to a
single linear layer that outputs a scalar value indicating
the probability of the document 𝑑 being relevant to the
query 𝑞.

We choose monoBERT for the RR stage due to its high
accuracy. However, the main drawback of monoBERT is
its latency. To overcome this issue, we limit the length
of the candidate list passed through the IR stage (it just
sends the top-𝐾 candidates of documents to the RR rather
than the whole list of documents). Moreover, as Figure
6 shows, we use ELECTRA [16] inside monoBERT in
our implementation. The training phase of RR is time-
consuming, as monoBERT receives pairs of queries and
documents from the whole corpus of the documents to
update its weights to classify correctly relevant pairs
and non-relevant pairs. However, monoBERT receives a
query in the inference phase and only the top-𝐾 relevant
candidates. Thus, it classifies the pairs formed by the
query and each document in the candidate list.

Figure 7: The Observation field.

Figure 8: The Answer field.

4. Implementation
In this section, first, we describe the structure of the
dataset (TRs) and the input and output of the model and
then present the training and the inference process.

4.1. Data
To train and test BERTicsson we use the Ericsson trou-
bleshooting dataset consisting of finished 4G and 5G
radio networks TRs over the past year. The language
of these TRs is telecom/company-specific, which is very
different from a general-domain text. Generally, each TR
in the dataset has the following fields:

• Heading/Subject: A short sentence that gives a
summary overview description of the problem.

• Observation: A longer text describing the ob-
served behavior of a problem, including any use-
ful information for its solution (e.g., logs and con-
figuration).

• Answer: A longer text that contains the resolution
given to the fault as well as the reason for the
fault.

• Faulty Product: It is a specific code of the prod-
uct on which the fault is reported. In our imple-
mentation, we create an extra field, called Faulty
Area, from the product name that is mapped to
the Faulty Products. By studying historical TRs,



Figure 9: An example of the Observation field of a TR.

Figure 10: Diagram of the input to the text ranking system.

we can create some Faulty Areas and map the
products to these Faulty Areas. This way, we can
reduce the hundreds of products to a few areas
that provide extra valuable information to the
query.

We extract these fields from TRs and apply further
changes (as explained in the pre-processing section) to
create the model input. Figure 9 shows an example of
the Observation field of a TR. TRs can have different
lengths. For example, Figures 7 and 8 show the length of
the Observation and Answer fields in the dataset after
being tokenized. As explained in the Background section,
BERT models have a limitation in the length of the input
of 512 tokens, and as we see in Figures 7 and 8, most of
the Observations and the Answers in TRs are less than
512 tokens. However, if they are longer than 512, we
truncate them to give them to our model.

BERTicsson also receives TRs of reported new prob-
lems that we need to create queries based on them. As Fig-
ure 10 shows, we form a query by concatenating different
fields of the TRs: the Observation, the Heading/Subject,
and the Faulty Area, which is a synthetic field that we
build from the Faulty Product.

4.2. Training
The IR and RR stages are supervised-learning models. We
train these stages separately as each requires different
training types. Both stages contain a BERT model in
their structure, i.e., the IR stage has Sentence-BERT, and
the RR stage uses monoBERT. In the IR stage, we take
a model pre-trained using the MSMARCO dataset [19]
that includes search queries and passages from a search
engine. The model is available in the Hugging Face open-

source transformers library [20]. Then, we fine-tune it to
work with telecom/company-specific data. The training
set is composed of the query and document pairs (𝑞, 𝑑),
which are input into the model in batches of 𝑚 samples,
{(𝑞𝑖, 𝑑𝑖)}𝑚𝑖=1. After making the embedding of each query
𝑞 and document 𝑑, denoted by 𝑄 and 𝐷, respectively, the
model minimizes the negative log-likelihood for softmax
normalized scores:

ℒ(𝑄,𝐷) = −
1

𝑚

𝑚∑︁
𝑖=1

⎡⎣𝑆(𝑄𝑖, 𝐷𝑖)− log

𝑚∑︁
𝑗=1,𝑗 ̸=𝑖

𝑒𝑆(𝑄𝑖,𝐷𝑗)

⎤⎦
(2)

where 𝑆(𝑄𝑖, 𝐷𝑗) is the cosine similarity between the
embedding of the query 𝑞𝑖 and the answer 𝑑𝑗 (Equation 1).
We use the Multiple Negative Ranking loss function [21],
and train the model for eight epochs using a learning
rate of 6 · 10−5 with a linear warm-up.

In the RR stage, similar to the IR stage, we use a pre-
trained model available in the Hugging Face library [20],
and fine-tune it for the ranking task. To make the RR
training set, first, we need to define the positive and neg-
ative samples. For each query 𝑞𝑖 in the training data, the
document 𝑑𝑖 is positive if it contains the correct solu-
tion for the problem in 𝑞𝑖. All the other documents 𝑑𝑗
(𝑗 ̸= 𝑖) in the dataset are negative samples, i.e., they are
not correct answers for 𝑞𝑖.

To create the RR training set, in addition to the posi-
tive document for each query 𝑞, we select three random
negative samples. Thus, the training set for the RR is
composed of a query 𝑞 and its correct document pair,
and 𝑞 and three non-relevant documents pairs, which
are input into the model in batches. Then, we compute
a similarity score for each pair in the batch and use a
binary classification to indicate if a pair of a query and
a document is relevant or non-relevant. Finally, the la-
bels (i.e., relevant or non-relevant) and the batch scores
are given to a Binary Cross-Entropy loss function that
is minimized during the training process. We train the
model for four epochs using a learning rate of 2 · 10−5

and a linear warm-up.

4.3. Inference
The inference phase corresponds to when the model re-
ceives a query and outputs a ranked list of documents.
When a fault is detected, a TR is submitted, and we extract
the Observation, the Heading, and the Faulty Product
from it. The Faulty Product is then mapped to the corre-
sponding Faulty Area. Then, we concatenate these fields
to form the query (Figure 10). Note that we store the
representation of all the documents in the corpus after
the training phase. So, during the inference time, the IR
stage only needs to compute the representation of the
new query, which is a quick process.



Once the representation of the new query is computed,
the IR stage computes its similarity with the different
documents and generates a candidate list of top-𝐾 doc-
uments for the RR stage. When the RR stage receives
the top-𝐾 candidate list and the query, it processes them
and creates the final ranked list; the 𝑁 recommended
documents to a new TR. At the inference time, we must
limit the computations of the RR as much as possible, as
it is a time-consuming stage. The IR stage that outputs
a candidate list allows this to happen, as the RR stage
processes only 𝐾 answers instead of the whole corpus.
If 𝑀 is the total size of the corpus of answers, we need
a candidate list with a length of 𝐾 ≪ 𝑀 . That way, by
having the two stages and pre-saved representations of
all the 𝑀 documents, we only need to do one forward
pass through a BERT model at IR for the query, and 𝐾
times at RR for each candidate document, a total of 𝐾+1.
However, if we do not use the IR stage, the number of
forwarding passes through BERT would be 𝑀 for each
query, which is much greater than 𝐾 + 1.

5. Evaluation
In this section, we study the performance of BERTicsson.
First, we introduce the metrics we use in the experiments
and then study the performance of the IR and RR stages
separately, and finally, we evaluate the performance of
the whole model. We use the dataset described in the
previous section to train the model and test the model
using 15% of all data points. Since we test the model
using the TR dataset, we know the correct document
(answer) for each problem (query) in the dataset, and
we can also check if this document is placed in a high
position in the resulting recommended list. We assume a
binary relevance between a query and a document, i.e.,
whether the document is relevant or not.

5.1. Evaluation Metrics
We evaluate BERTicsson using three metrics: Recall@K,
Mean Reciprocal Rank (MRR), and Normalised Discounted
Cumulative Gain (nDCG). The Recall is the fraction of
relevant documents for a query in the entire corpus re-
trieved in the ranked list. Recall@K is the Recall at a
cutoff 𝐾 . However, the Recall does not consider graded
relevance or the positions in the ranking. The Reciprocal
Rank (RR) captures the appearance of the first relevant
document, which is the multiplicative inverse of the rank
of the first correct document. For example, if the first
relevant document appears at position 3, then RR is 1/3.
MRR is the average of RR of results for a set of queries.
nDCG shows the usefulness of a document based on its
position in the ranked list, meaning that the earlier a
document appears in the ranked list, the more useful it

Table 1
Different BERT models in Sentence-BERT.

BERT model DistilBERT RoBERTa DistilRoBERTa

Recall@1 27.2% 26.5% 28.3%

Recall@3 39.3% 37.8% 39.7%

Recall@5 45.8% 44.0% 46.2%

Recall@10 54.4% 53.6% 55.2%

Recall@15 59.4% 58.8% 60.5%

is. These last two metrics will help us evaluate how well
correct answers are placed in the ranking.

5.2. Initial Retrieval Stage Results
To evaluate the performance of the IR stage, we conduct
four experiments: (i) comparing three BERT models in
Sentence-BERT, (ii) evaluating the impact of including
the Faulty Area to the query, (iii) comparing the
performance of Sentence-BERT with BM25 [6], and
(iv) studying the relationship between the IR cosine
similarity score and the ranked lists. In all these
experiments, we use Recall@K as the evaluation metric.

Different BERT models in Sentence-BERT.
Sentence-BERT is composed of a BERT model
and a pooling layer. Here, we compare the performance
of Sentence-BERT using different BERT models. In
particular we consider DistilBERT [15], RoBERTa [13],
and DistilRoBERTa [15]. Table 1 shows the Recall@K of
the IR stage using different BERT models in Sentence-
BERT. As we see, the difference in performance is small;
however, DistilRoBERTa performs slightly better than
the others. Therefore, in the rest of the experiments, we
use DistilRoBERTa in Sentence-BERT.

Having Faulty Area in the query. Here, we evaluate
the performance of the IR stage in two cases: (i) making
the query by concatenating the Heading and the Obser-
vation, and (ii) making the query by concatenating the
Faulty Area, the Heading, and the Observation. These
cases are applied both in the training and inference phase.
Table 2 shows the results of this experiment, and as we
see, including the Faulty Area in the query significantly
improves the Recall@K of the IR stage. It confirms that
adding more information to the query (in form of the
Faulty Area) helps the model to recognize which type of
answers will work best for a query.

Sentence-BERT vs. BM25. In the third experiment, we
compare the performance of the IR stage in making the
candidate list in two cases of using Sentence-BERT [4]
and using BM25 [6], which is a popular EM method. Here,
we use the Okapi BM25 implementation. As we see in
Table 3, Sentence-BERT outperforms BM25 by improving



Table 2
Using different fields in the query.

Query
Heading

+ Observation

Faulty Area + Heading

+ Observation

Recall@1 28.3% 30.2%

Recall@3 39.7% 43.1%

Recall@5 46.2% 49.0%

Recall@10 55.2% 58.2%

Recall@15 60.5% 64.0%

Table 3
BM25 vs. Sentence-BERT in the IR stage.

Initial Retriever BM25 Sentence-BERT

Recall@1 18.2% 30.2%

Recall@3 23.7% 43.1%

Recall@5 26.6% 49.0%

Recall@10 31.0% 58.2%

Recall@15 33.3% 64.0%

Figure 11: Mean and standard deviation of the cosine similarity
scores in the IR along with the ranked list length.

the Recall@1 by around 65% (from 18.2% by BM25 to
30.2% by BERTicsson).

The IR similarity scores and the ranked list. This
experiment evaluates how the cosine similarity scores
change along with the length of the top-𝐾 ranked list.
We plot the mean and the standard deviation of all the
queries in our test set in Figure 11. Here, the X-axis
shows the length of the candidate list (i.e., 𝐾 in top-𝐾),
and the Y-axis shows the similarity value. As we see, the
similarity score decreases rapidly in the first positions
in the ranked list, and it decreases more slowly from
position 20. Given this result, we consider 𝐾 = 15 is a
reasonable length for the candidate list, so the IR stage
sends the top-15 documents to the RR stage.

5.3. Re-Ranker Stage Results
We conduct three experiments to study the performance
of the RR stage: (i) comparing different BERT models
in monoBERT, (ii) studying the impact of the RR stage
on improving the performance of the IR stage, and (iii)

Table 4
Different BERT models in monoBERT.

BERT models ELECTRA DistilRoBERTa Ensemble Model

Recall@1 36.6% 34.1% 37.1%

Recall@3 48.5% 47.3% 48.6%

Recall@5 53.5% 52.3% 54.0%

Recall@10 59.8% 59.6% 60.3%

Recall@15 64.0% 64.0% 64.0%

MRR 0.44 0.42 0.45

studying how the RR similarity scores change along with
the ranked lists. To evaluate these, we use the Recall@K,
the MRR, and the nDCG.

Different BERT models in monoBERT. In the RR
stage, we use monoBERT [5], and here, we study the
performance of monoBERT, in case of using three
different BERT models: ELECTRA [16], DistilRoBERTa
[15], and an ensemble of ELECTRA and DistilRoBERTa,
where we combine the scores of these two models by
computing their average. Table 4 shows the results,
and as we see, ELECTRA has a better performance
than DistilRoBERTa. Although DistilRoBERTa is a
faster model compared to ELECTRA, we need a more
accurate model in this stage. Therefore, in the rest of
the experiments, we use ELECTRA in monoBERT. We
also see that the ensemble model outperforms the other
models; however, the improvement is not significant
enough while requiring more computational resources.

The impact of the RR stage. The RR stage receives
a top-𝐾 candidate list from the IR stage, and then it
re-ranks them, such that the correct document climbs
to the top of the list. Here, we study how the RR
stage improves this ranking. To do so, we compare the
position of the correct document in the candidate list
in two cases: (i) after the IR stage and (ii) after the RR
stage. In this experiment, we set 𝐾 = 15. As we see in
Table 5, the RR stage improves the MRR by 12% and
nDCG by 9%, and increases the Recal@K (for small 𝐾);
meaning that although we get the correct document
from the IR stage, the RR stage improves the rank-
ing by pushing the correct document to the top positions.

The RR similarity scores and the ranked list. Here,
we study how the RR similarity scores change along with
the ranked list. In Figure 12, we plot the mean and the
standard deviation of all the queries in our test set. There
are only 15 ranking orders in the Figure 12 as the can-
didate list forwarded to the RR stage is the top-15 list.
We need to decide how many documents we want to
show as the top-𝑁 recommendations in output. Since
the scores decrease uniformly and the variance is very
high, we decided that a reasonable number of top-𝑁 rec-



Table 5
The impact of RR stage.

After the IR stage After the RR stage

Recall@1 30.2% 36.6%

Recall@3 43.1% 48.5%

Recall@5 49.0% 53.5%

Recall@10 58.2% 59.8%

Recall@15 64.0% 64.0%

MRR 0.39 0.44

nDCG 0.44 0.48

Figure 12: Mean and standard deviation of the similarity scores
in the RR stage along the ranked list.

ommended answers is 𝑁 = 5, as it includes the top-5
highest similarity scores, and it is a reasonable number
of recommendations to show to an engineer.

5.4. Latency Results
In this part, we evaluate the latency of BERTicsson by
conducting two tests: (i) studying the latency of the IR
and the RR stages and (ii) studying the impact of the
candidate list length on the accuracy and the latency of
the model.

Latency of the two stages. In this experiment, we study
the latency of the IR and the RR stages in the inference
time. During the inference, we have the pre-computed
representations of the corpus of documents, so the IR
stage only needs to compute the representation of the
query. We compute the latency of each stage by averaging
the time each takes to find the top-𝐾 (𝐾 = 15) relevant
documents to a query.

As we see in Table 6, it takes 28𝑚𝑠 on average for the
IR stage to make a candidate list and 550𝑚𝑠 on average
for the RR stage to get the final list of ranked documents.
If we only use the RR stage without the IR stage, then the
RR stage needs to process all documents instead of just
the top 𝐾 ; thus, the latency of the model would increase
to minutes just for one query. The latency of the RR
increases proportionally to the length of the candidate
list. By keeping the candidate list small, we can maintain
this low latency. Moreover, if we compare the two IR
approaches (i.e., Sentence-BERT and BM25), we see that
BM25 does not reduce latency as good as Sentence-BERT.

Table 6
Latency of the two stages. The size of the candidate list is of 15
documents.

Stage The IR stage The RR stage

Model Sentence-BERT BM25 monoBERT

milliseconds/query 28 125 550

Table 7
Latency and accuracy of the method by using different length of
candidate lists.

Candidate list length 𝐾 = 15 𝐾 = 50 𝐾 = 100

milliseconds/query 578 1940 3820

MRR 0.44 0.455 0.46

Latency vs. accuracy. In this experiment, we study
the latency of BERTicsson for different candidate list
sizes (i.e., different 𝐾 in top-𝐾). We compare MRR, as
a measure of accuracy, with the latency of the whole
model (the IR stage latency + the RR stage latency). As
we see in Table 7, for larger 𝐾 , the increase in accuracy
is minor compared to the increase in latency, which goes
from 0.578𝑚𝑠 with 𝐾 = 15 to 3.82𝑚𝑠 with 𝐾 = 100.
Therefore, the top-15 is a reasonable size that provides a
good accuracy while keeping the latency low.

5.5. Consistency of Similar TRs
In the last experiment, we evaluate if BERTicsson can
produce similar ranking lists for similar TRs expressed
differently. There is a high probability that different cus-
tomers raise different TRs for the same underlying prob-
lem individually. The problems are written in different
words and lengths but point to a similar or equal prob-
lem. We call these TRs, duplicate TRs. We want to check
if BERTicsson can recommend the same documents to
duplicate TRs. To this end, we compute the ranked lists
for all the duplicate TRs, and consider two cases: (i) the
model performs well by having the correct document is
in the top-15 list, and (ii) the model fails. By analyzing
the ranked list of the model for the cases that it performs
well, we see that the correct document is ranked at a
similar position in 70% of them.

We also try to identify duplicates by checking which
document they rank at the top of the list regardless of
whether it is correct. If we take all the duplicate TRs,
we can check if the document they rank on top is the
same as their duplicates. Of all the duplicate TRs in the
test set, we can identify at least one duplicate in 40% of
the samples. We have to keep in mind that we have not
given the model any indication of similar TRs. So, if the
model can find duplicate TRs without explicit training, it
means that it has learned the domain-specific company



language and can make inferences about it.

6. Related Work
Many BERT-based text-ranking models have been devel-
oped over the past years, such as EPIC [22], ColBERT
[23], and ANCE [24]. They all use BERT in diverse ways
to rank documents concerning a query and present their
results with general-domain data. One of the popular
applications of text-raking is bug analysis and resolution,
which is studied well in literature [25]; however, there is
not much work on using BERT for it.

Companies like Ericsson have developed some solu-
tions for automating bug resolution using an ensemble
of different pre-BERT techniques (such as LSTM and
LDA) [26]. However, these solutions do not consider
the latency of the process as part of their performance
metric. Another example of an ensemble of pre-BERT
techniques is [27], where the authors formulate the prob-
lem as a non-convex optimization problem and solve it
using a heuristic solution with a focus on accuracy. Con-
sequently, their approach leads to a sub-optimal solution.

There are also many multi-stage BERT-based ap-
proaches for text-ranking. Some examples are duoBERT
[5] or DeeBERT [28]. They present the results using
general-domain data. However, to the best of our knowl-
edge, none of them consider domain-specific tasks like
automating the resolution of telecom TRs.

7. Conclusions
In this work, we present BERTicsson, a BERT-based
model for analyzing Trouble Reports (TR) to retrieve
solutions for newly reported problems. BERTicsson re-
ceives a dataset of existing TRs and, after pre-processing
data, trains the model in two stages: Initial Retrieval
(IR) stage and Re-Ranker (RR) stage. The IR stage uses
Sentence-BERT to create a candidate list of answers for
a problem (query), and the RR stage uses monoBERT to
rank the candidate list according to the problem. We
compare BERTicsson with BM25, a popular Exact Match-
ing model, and show that BERTicsson can recommend
the best possible solutions to a new error report from
Ericsson with higher accuracy and lower latency, given
the difficulty of the domain-specific data. Moreover, the
model is consistent as it recommends the same answers
to similar TRs expressed differently.
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