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Abstract
Chart figures usually convey the key message in a multimodal document. Understanding charts automatically and making

charts more accessible becomes indispensable in the information era. In this paper, we study the chart summarization

problem in which the goal is to generate sentences that describe the salient information in a chart image. To obtain training

examples, we leverage image-caption pairs in multiple scientific areas. We create a dataset of single-chart images from

research papers in PubMed Central (PMC) and arXiv. Most recent vision-and-language works focus on natural images.

Several challenges in structured images such as charts are under-explored. One key property of charts is that the text

components (e.g., legends and axis names) carry important information. In our proposed model, we not only use a standard

visual encoder but also a text encoder to encode a chart image. The visual and textual representations are connected to a

large pre-trained language decoder via pre-embedding and cross-attention approaches, respectively. Experimental results

show that the proposed model is significantly better than an image captioning baseline.
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1. Introduction
Information graphics, such as line charts and bar charts,

are essential and common components of a document.

Charts are usually used for visually summarizing im-

portant information that a document intends to convey.

Moreover, as shown in the study of Carberry et al. [1],

information graphics in magazines and newspapers of-

ten convey messages that are not repeated in the text.

Therefore, summarizing the primary message in a chart

is an important step towards understanding a multimodal

document. Potential applications of chart summarization

include indexing information content for a search engine,

making charts accessible for individuals with eyesight

impairments, and simplifying information dissemination

of technical visual info to a layperson.

We have seen the success of image captioning works

recently, which can be viewed as generating summaries

for an image. However, this research has mostly focused

on natural images while other types of images (e.g., struc-

tured images shown in Fig. 2) are under-explored. On

the other hand, abstractive text summarization models

also have been greatly improved due to the development

of neural network models. However, these models only

look at the text component in a document. In this work,

we focus on the less-studied yet important task of ‘chart

summarization’, where we want to generate a salient sum-
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mary for structural charts. First, to obtain a large quantity

of summaries of chart images, we leverage captions in

scientific articles. Unlike magazines or newspapers, in

which image captions could be less descriptive, captions

in scientific papers tend to be more detailed and verbose.

We build a chart summarization dataset from the papers

in arXiv and PubMed Central (PMC) by assuming that

captions are salient summaries of chart figures. Image

captions in these data sources are written by the cor-

responding paper’s authors, and hence would be more

natural in the language format. Since these articles also

contain figures other than charts, we create crowdsourc-

ing tasks to select single-chart images and collect these

charts’ detailed types (e.g., line chart, bar chart, etc.).

Different from the traditional captioning for natural

images, there are two main challenges from the language

perspective when the target images are charts: (1) Be-

sides visual content, charts usually also contain text (e.g.,

legends and axis titles) which carries significant infor-

mation of components in charts. (2) Charts are likely

to be used in some specific domains, thus the language

generation model may suffer from rare-word issues.

To address these two challenges, we first use an opti-

cal character recognition (OCR) model to detect the text

boxes in the charts. An OCR embedding layer is proposed

to encode these extracted texts with their position infor-

mation into vectors, and these vector representations

are treated as another input to the language decoder

through cross-attention mechanism. Secondly, to endow

the decoder with domain-specific knowledge, we use a

large pre-trained language decoder instead of training it

from the scratch. The chart information is connected to
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Figure 1: Pipeline of datasets creation. We first sample scientific papers from arXiv and PubMed Central, and then extract
image-caption pairs by parsing the source LaTeX or XML files. Finally, crowdsourcing is applied to annotate whether an image
contains a single chart and the corresponding chart type.

this pre-trained language decoder via two approaches:

pre-embedding and cross attention. We empirically find

that using pre-embedding for visual content and cross-

attention for OCR representations gives the best results.

We apply our models on our collected datasets of two

scientific domains. We conduct both metric-based auto-

matic evaluation and human-annotated qualitative eval-

uation. Experimental results show that our model with

the integration of OCR and pre-trained language model

significantly outperforms the baseline image captioning

model. We also show the ablation studies that illustrate

the effectiveness of our proposed methods.

2. Related Work
Most work on understanding chart images involves chart

type classification. Savva et al. [2] classify given chart

images into 10 chart categories using an SVM classifier

with visual bag-of-words and text-region features. With

a similar model, Ray Choudhury and Giles [3] proposed

a binary classifier to determine whether an image is a

line chart. Siegel et al. [4] experimented with CNN-based

models for classifying images they extracted from schol-

arly articles. In order to identify chart figures for training

our summarization model, we build a binary classifier

to identify common charts (e.g., line charts, bar charts,

scatter plots, etc.).

There is a line of works on interpreting text compo-

nents in chart images [5, 6, 7, 8, 9, 4, 10, 11, 12, 13]. One

of the applications here is to recover visual encodings for

purposes of indexing and search. For example, Poco and

Heer [14] proposed an end-to-end text analysis pipeline

that identifies text elements in a chart image, determine

their bounding box, and classifies their role in the chart

(e.g., x-axis label, x-axis title, legend title, etc). They also

proposed a CNN model that classifies the type of graph-

ical mark (e.g., bars or lines). We simply use a general

purpose OCR tool for recognizing text in chart images

and focus more on the text generation model. These bet-

ter text analysis models could potentially improve our

model performance, which we leave for future investi-

gation. Kahou et al. [10] introduce FigureQA, a visual

reasoning corpus of question-answer pairs over synthetic

chart images. Instead of answering questions on the syn-

thetic charts, we aim at directly summarizing real chart

images.

There are some earlier works on chart summarization.

Elzer et al. [15] proposed SIGHT, a system that summa-

rizes bar charts for visually impaired users. The system

identifies one of the twelve message categories that can

be conveyed by a bar chart and produces a logical form.

This logic representation is then translated into natural

language via templates. Demir et al. [16] built on top of

SIGHT. The proposed system first identifies an additional

set of propositions that may reflect some information in

a bar chart by rules. These propositions are then orga-

nized and structured by a bottom-up planner. Finally, a

surface realizer is applied to produce natural language

summaries.

Greenbacker et al. [17] built a corpus of human-written

English summaries of line graphs. They selected 23 line

graphs and asked annotators to summarize the most im-

portant information in each graph. As this process is

difficult to be scaled up, we take the captions of chart

images in scientific papers to represent the summaries

instead. Greenbacker et al. [18] further used this cor-

pus and proposed an abstractive summarization system

for line charts. The system uses a Bayesian network to

classify the intents of line segment, and then rules are

applied to identify additional important informational

propositions conveyed by the line graph. The sets of

intents and prepositions are pre-defined from the study

on the corpus. They left the final step of generating natu-

ral language summary from prepositions as future work.

Therefore, no evaluation results were shown.

A common challenge of these earlier works is that



they are limited to a fixed set of propositions and need

to convert the selected propositions to natural language.

Instead of using a pipeline with hand-crafted intents and

propositions, we propose to leverage an end-to-end neu-

ral network, which has been shown to be powerful in

generating coherent and grammatical sentences in the

context of image captioning and abstractive text summa-

rization.

Another thread of related works is (natural) image cap-

tioning, which tries to generate descriptions for natural

images. Vinyals et al. [19] first illustrate the end-to-end

encoder-decoder architecture and Xu et al. [20] extends it

with attention modules. Ranzato et al. [21] use reinforce-

ment learning to eliminate exposure bias but requires a

large amount of data to reduce the high variance. An-

derson et al. [22] take object-level information to enable

fine-grained visual understanding. However, we empiri-

cally found that the detection features for natural image

do not work well for charts (structural images). Previous

vision-and-language pre-training, e.g., VLP [23] and OS-

CAR [24], use pre-trained vision-and-language model to

improve image captioning but requires a large in-domain

corpus and heavy pre-training.

3. Datasets Creation
We create our datasets based on image-caption pairs that

appear in public scientific papers. Different from the

figures in magazines or newspapers where the captions

could be less descriptive, figure captions in scientific ar-

ticles tend to convey the key message of figures. The

assumption here is that captions written by the paper

authors could represent the most salient information in

the figures, therefore could serve as summaries of the

corresponding figures. The overview of our datasets cre-

ation pipeline is shown in Figure 1. We consider two data

sources: arXiv
1

and PMC.
2

ArXiv is a free distribution

service and an open-access archive for scholarly articles

in the fields such as physics, computer science, and math-

ematics. PMC is a free full-text archive of biomedical

and life sciences journal literature at the U.S. National

Institutes of Health’s National Library of Medicine. We

take articles in the Open Access Subset.
3

These two data

sources are chosen because they both provide structural

data in addition to the PDF files. That is, we can obtain

image-caption pairs by parsing the LaTeX source files

provided by arXiv or the XML files provided by PMC. We

write our own LaTeX parser for the arXiv data, and use

a public PubMed parser
4

for parsing XML information.

Although we can extract lots of image-caption pairs,

1
https://arxiv.org/

2
https://www.ncbi.nlm.nih.gov/pmc/

3
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

4
https://github.com/titipata/pubmed_parser

most of the figures in these papers are not charts. Hence,

to be able to train and evaluate the proposed chart sum-

marization model, we need to identify which figures are

charts. In this work, we focus on the common 5 chart

types, including line, bar, scatter, pie, and area charts

(Figure 2). Moreover, we further focus on the simplest

case where images only contain a single chart. Figures

with multiple charts or with any non-chart component

will be considered as negative images in this work. In the

following sections, we describe how do we obtain single

chart and chart type annotations.

3.1. PubMed Central Data
For PMC data, we create a crowdsourcing task to anno-

tate whether a given image contains single chart. We ran-

domly sample 50,000 images from the papers published

from 2011 to 2019. For each image, we ask annotators

whether it is a single chart figure. If the answer is yes, the

annotators are required to select a chart type from line,

bar, scatter, pie, area, or other chart. Since this task is

pretty simple, we ask two annotators to label each image

in the first round. In most cases, two annotators agree

on the labels. More specifically, the Fleiss’ kappa scores

for “whether it’s a single chart” and “chart type” tasks

are 0.56 and 0.73 respectively, which shows significant

agreement
5

.

If there is a disagreement on either single chart label

or chart types, we further ask the other three annotators

to perform a second round of annotation on these im-

ages. Finally, majority vote is applied to resolve conflicts

among all five annotators. We note that single charts

with “other” chart type are considered negative images

in our experiments.

Among 50,000 images, we obtain 7,397 positive images

(single chart), including 3681 line charts, 3088 bar charts,

478 scatter charts, 125 pie charts, and 25 area charts. The

positive ratio of the charts is about 13%. This low ratio is

because most of the figures in scientific articles are non-

chart figures (e.g., model architecture diagrams). In this

work, we only use chart types in analyzing model perfor-

mance. That is, chart type information is not included

explicitly in model training.

3.2. ArXiv Data
We also build another dataset from the arXiv data. We

take papers in Computer Vision, Computation and Lan-

guage, Machine Learning, Artificial Intelligence, and Neu-

ral and Evolutionary Computing fields from 2008 to 2020.

Because of the copyright issue, we cannot put arXiv im-

ages on a public crowdsourcing platform. Instead, the

authors went through and annotated 2000 randomly sam-

pled figures with the same crowdsourcing interface that

5
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Figure 2: Example charts with the corresponding chart types
from the PubMed Central dataset. The dataset we build con-
tains the most common 5 chart types.

we use for annotating PMC data. This results in 370

single chart images.

4. Methodology
In this section, we introduce the proposed models and

training strategies for the chart summarization task. In

this chart summarization task, the model needs to gener-

ate a sequence of words {𝑤𝑖} for describing the contents

in a chart 𝑥. We start with introducing the basic cap-

tioning model. To enhance in-image text understanding

and endow external knowledge, we incorporate an OCR

encoder and a pre-trained language decoder. Lastly, we

propose a simple semi-supervised learning and domain

adaptation approach using a chart classifier.

4.1. Base Model
Our base model is adopted from the attentive encoder-

decoder model for image captioning proposed in Xu et al.

[20]. A ResNet-101 [25] visual feature extractor encodes

the chart into a 7× 7× 2048 dimensional feature map,

where each vector in the feature map corresponds to a

grid region of the image. Feature maps are then flattened

to 49× 2048 feature sequences {𝑓𝑖}.

{𝑓𝑖}49𝑖=1 = ResNet (𝑥)

At each decoding step 𝑡, the LSTM [26] language decoder

outputs the hidden outputs ℎ𝑡 and cell 𝑐𝑡 by reading

the previous word 𝑤𝑡−1 and states (ℎ𝑡−1, 𝑐𝑡−1). The

attention module (denoted as Attℎ→𝑓 ) then attends to

the feature sequence {𝑓𝑖} with the hidden output ℎ𝑡 as

a query. The context 𝑓 𝑡 and the hidden vector ℎ𝑡 are

merged into an attentive hidden vector ℎ̂𝑡 with a fully-

connected layer:

𝑤̃𝑡−1 = embedding (𝑤𝑡−1)

ℎ𝑡, 𝑐𝑡 = LSTM(𝑤̃𝑡−1, ℎ𝑡−1, 𝑐𝑡−1)

𝑓 𝑡 = Attℎ→𝑓 (ℎ𝑡, {𝑓𝑖})

ℎ̂𝑡 = tanh(𝑊1[𝑓 𝑡;ℎ𝑡] + 𝑏1)

The probability of generating the 𝑘-th token at time step

𝑡 is the softmax over a linear transformation of the atten-

tive hidden ℎ̂𝑡. The loss ℒ𝑡 is the negative log likelihood

of the ground truth token 𝑤*
𝑡 :

𝑝𝑡(𝑤𝑡,𝑘) = softmax𝑘

(︁
𝑊w ℎ̂𝑡 + 𝑏w

)︁
ℒ𝑡 = − log 𝑝𝑡(𝑤

*
𝑡 )

4.2. Text Understanding
Different from natural image captioning, the summariza-

tion of charts heavily relies on the understanding of text

inside the images. However, the ResNet visual encoder

(in Section 4.1) is insensitive to the text in the images (as

shown in Singh et al. [11] as well) thus we need to build a

pipeline to extract the text information from the images.

Specifically, we first use the Tesseract [27] to extract a

sequence of 𝑚 texts text𝑗 with their positions pos𝑗 from

the image 𝑥.

{(text𝑗 , pos𝑗)}
𝑚
𝑗=1 = OCR(𝑥) (1)

Since the characters in charts are usually in small font

and sometimes blurred with the chart content, the copy

mechanism [28, 29] that directly brings the text into final

summarization does not provide good results. We instead

use the shallow text embedding layer to project the OCR

text to dense vector representations that denoises the

OCR detection results. We also encode the position of

the OCR along with the text representation since the

spatial information indicates the properties of the text

(e.g., in the legend, in the title, or inside the chart):

𝑔𝑗 = Embtext(text𝑗) +𝑊pos pos𝑗 (2)

These OCR representations are treated as another view

of the charts and the language decoder simultaneously

attends to the OCR information {𝑔𝑖} and visual image

features {𝑓𝑗}. The final hidden output ℎ̃𝑡 is calculated

based on the concatenation of the visually attended vec-

tor 𝑓 , the OCR attended vector 𝑔, and the hidden state

ℎ𝑡.

𝑓 = Attℎ→𝑓 (ℎ𝑡, {𝑓𝑖}) (3)
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Figure 3: Illustration of the proposed chart summarization model. We have two branches of image encoding: (1) the visual
branch via the ResNet and fixed-length transformer (2) the text branch via the OCR system and the OCR embedding layer.
The output of these two branches are then fused into the pre-trained language decoder by pre-embedding (concatenation)
and cross-attention layer, respectively. The grey boxes are neural networks.

𝑔 = Attℎ→𝑔(ℎ𝑡, {𝑔𝑗}) (4)

ℎ̃𝑡 = tanh(𝑊2[𝑓, 𝑔, ℎ𝑡] + 𝑏2) (5)

We next replace the original attentive hidden ℎ̂𝑡 with this

OCR-enhanced hidden output ℎ̃𝑡 (in Sec. 4.1) in succeed-

ing decoding steps.

4.3. Pre-trained Language Decoder
When summarizing charts in news or scientific papers, a

faithful description of the chart contents also relies on

external knowledge, and hence a pre-trained language

decoder might help the generation. As shown in Figure 3,

we illustrate our model which integrates a pre-trained

language decoder GPT-2 [30].
6

As described in the pre-

vious section, we have two image encoders (i.e., ResNet

encoder and OCR text encoder) to process the image con-

tent and image text respectively. The ResNet encoder

maps the features into a squared feature map (the purple

vector blocks in Figure 3) where each vector corresponds

to a part of image content. We will view this feature map

as a sequence of vectors (as in Eq. 1) in the following pro-

cedures. The OCR encoder (Eq. 4.2) maps the chart into a

sequence of recognized words and their positions on the

chart. The OCR embedding layer (Eq. 2) adds the word

embedding and the position encoding into one vector for

each OCR entry (the yellow vectors in Figure 3).

In order to connect these visual and textual infor-

mation from the image to the language decoder, we

adopt two ways: appending pre-embeddings and adding

cross-attention layers. The pre-embedding approach is

to concatenate the sequence of visual vectors before

the word embeddings thus the language decoder will

take this concatenation as input (e.g., the concatenation

6
The method could also be applied to other pre-trained lan-

guage decoders such as XLNet [31], T5 [32], and BART [33].

of red blocks and blue blocks in Figure 3). The cross-

attention approach adds cross-attention layers [34] in-

side the language decoder to fuse visual information. The

cross-attention layers contain residual short-cut connec-

tions thus the decoder still benefits from the pre-trained

weights with these additional layers.

As shown in Figure 3, we use the pre-embedding ap-

proach for the features from the visual image content

(i.e., from the ResNet encoder) and use the cross-attention

layers for the OCR texts. The idea of this specific design

is that the generation would be led by the image content

and will use the OCR information to generate concrete

words. We empirically find that it is the best combina-

tion to fuse information into the language decoder, and

we show the comparison in Section 6.2. In detail, the

length of the ResNet feature map is 49 and the order of

the features is not aligned with the positional encoding

in the pre-trained language decoder. We thus do not di-

rectly append it before the word embedding but use a

fixed-length transformer to map it to a sequence of 10

vectors (the red blocks in Figure 3; we only draw 3 vec-

tors for simplicity). The fixed-length transformer is built

by transformer decoder layers [34] with only positional

embedding (without word embedding). We use only 1

layer in our experiments.

4.4. Semi-Supervised Learning and
Domain Adaptation

Although we can extract abundant image-caption pairs,

most figures in scientific articles do not contain a chart as

we discussed in Section 3. If we want to reserve enough

human-annotated examples for the metric-based evalu-

ation purpose, that leaves very little data for training,

especially for the arXiv domain in which we only have

hundreds of single-chart images. Therefore, we leverage

semi-supervised learning techniques to take advantage



PMC (Supervised) PMC (Semi-Supervised) arXiv (Domain Adaptation)

BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr

Base Model 1.66 11.35 2.77 2.76 2.09 11.05 2.91 4.49 3.55 14.10 3.79 8.99
+ OCR 1.97 11.77 3.09 6.00 2.53 11.95 3.50 7.98 4.78 15.88 4.68 15.88
+ GPT-2 3.19 11.66 3.68 1.57 4.47 12.46 4.32 10.30 5.89 14.32 4.92 32.34

Table 1
Results on the PubMed Central (PMC) and arXiv datasets. Supervised: training images are human-labeled single chart images.
Semi-Supervised: training images also include the positive images from the proposed chart classifier. Domain Adaptation:
the chart classifier trained on the PMC domain is applied on arXiv domain to obtain training data for the summarization
model. The best results are marked in bold.

of large unannotated data and use domain adaption to

transfer to other datasets. Both of these two methods

rely on a chart classifier that we will introduce first.

Chart Classifier. The key component in getting more

training examples is a classifier that can identify single-

chart images. We take the ResNet [25] as the visual back-

bone and use a binary linear classifier after the mean-

pooled features. Instead of freezing the backbone model

as in the previous works [20], we fine-tune the classi-

fier with a small learning rate, 10−4
. We find that this

standard classifier reaches good results (see Appendix

for details).

Semi-Supervised Learning. In the semi-supervised

learning setup, we have labeled data (Section 3) and we

want to improve the performance from the unlabeled

data. The unlabeled data contains both charts and non-

chart images (e.g., model figures in scientific publications

and natural images in news). Including these non-chart

images in training data will introduce noise and thus

lead to an increment in training time. To provide clean

data in semi-supervised learning, we filter the unlabeled

data with our chart classifier and train the summarization

model based on the filtered data. In this way, we increase

the amount of data and the coverage of topics.

Domain Adaptation. Different from semi-supervised

learning, domain adaptation focuses on transferring the

labeled dataset into another domain. Naïve transferring

without training on the target domain would under-fit

the target distribution and we empirically show its in-

effectiveness in Appendix. To solve this issue, we use

a similar approach to the semi-supervised learning that

trains the proposed summarization model on the dataset

created by the chart classifier. More specifically, since

we have much less labeled charts in the arXiv domain,

we treat it as the target domain whereas PMC data is the

source domain. We train the chart classifier on the PMC

data, and apply it on the images from arXiv papers to

obtain large amount of single-chart images.

5. Results
In this section, we evaluate our proposed methods on

our collected datasets of two domains: PMC and arXiv.

We start with describing the experiment setups and show

results with both automatic metric-based evaluation and

human evaluation.

5.1. Experimental Setup
Data Setup. The supervised learning setup is conducted

on our annotated PMC dataset. We randomly sample

1,000 charts as the test set and split the remaining charts

into training (5,819) and validation (646) sets with a ratio

of 9:1.

In order to increase the number of training examples,

we apply the proposed semi-supervised learning tech-

nique (Section 4.4). The single-chart classifier is based on

the ResNet-101 model and is fine-tuned on our datasets.

We use the 50,000 human-labeled images (7,465 positives)

from PMC data to build this binary classifier. After the

model converges on the training set, we calibrate the

classifier to optimize the recall with an precision over

99% on the validation set. Since we have lots of images,

we can afford a lower recall for high-quality positive

examples. We then use this classifier to filter the unla-

beled images in the PMC data to augment the training set.

More specifically, besides the 50,000 images we used in

the crowdsourcing task, there are 137,928 remaining arti-

cles in our PMC collection from the year of 2011 to 2019.

After applying the chart classifier, we obtain 13,637 single

chart images which could serve as additional training

examples for the summarization model.

For domain adaptation, we take charts and captions

from arXiv as the target domain. As described in Sec-

tion 3, we have manually annotated 370 single-chart

images in this domain, which are served as the test set.

We use the same chart classifier in the previous semi-

supervised learning setup to annotate 140,000 arXiv im-

ages. This results in 22,044 positive examples. We split

this 22,044 examples into training data (19,840) and vali-

dation data (2,204) with a ratio of 9:1.

Model Setup. For the base model, we use a ResNet-101



model from the Torchvision [35] library
7

. We resize the

image into 224× 224 and the backbone model maps it

to a 7 × 7 × 2048 vectors. We sort the OCR-extracted

texts by their confidence and only keep the top 20 texts

for post-processing. Since we want the image position

to be related to the OCR position. We do not apply ran-

dom resize and cropping but directly resize the chart into

224 × 224. For the pre-trained GPT-2 [30] model, we

downloaded the small GPT-2 model from Hugging Face’s

Transformer [36]. The GPT-2 implementation has sup-

port of cross-attention layers as in Vaswani et al. [34]

and we use it to attention to the OCR features. For the

fixed-length transformer, we use 1 layer with the same

architecture as the GPT-2 model but do not apply the

causal attention mask. More implementation and hyper-

parameter details can be found in Appendix.

5.2. Metric-based Evaluation
In order to conduct efficient evaluation, we take the au-

tomatic language metrics to evaluate our model. We

report the BLEU [37], ROUGE-L [38], METEOR [39], and

CIDEr [40] as in previous image captioning papers. As

shown in Table 1, we compare our proposed models (in

Section 4.2 and Section 4.3) with the baseline captioning

model (in Section 4.1) on both PMC and arXiv datasets.

The model with OCR text encoder is strictly better than

the baseline captioning model for every metrics, which

indicates that the in-chart text understanding is very

important for generating good summarization for scien-

tific charts. The integration of the pre-trained language

model (GPT-2) further enhances the performance over

the OCR encoder results. The pre-trained decoder shows

more improvement on the semi-supervised setup since

the model needs enough data to learn the weights in the

fixed-length transformer and the cross-attention mod-

ules, which bridge the vision encoder and the language

decoder.

Note that the CIDEr score of the +GPT-2 model is lower

than the +OCR model on the PMC dataset under the su-

pervised setup. We find that this is due to the size of

data. The smaller size of the PMC data makes the learned

model have a stronger bias towards the original GPT-2

generation. Namely, although the model would gener-

ate more fluent sentences (reflected on the high BLEU

score), it is biased towards the GPT-2 prior by leverag-

ing mostly common words. This bias is captured by the

CIDEr metric’s over-weighting protocol. However, under

the semi-supervised setting, the CIDEr score is higher

with GPT-2 because of the adequate amount of data. This

also demonstrates the usefulness of the proposed semi-

supervised approach.

7
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Baseline Final Model Equally Equally Bad
Better Better Good Bad

PMC 20 70 3 7
arXiv 37 50 2 11

Table 2
Human study on the results with 100 pairwise comparisons.

BLEU ROUGE-L METEOR CIDEr

All 4.47 12.46 4.32 10.30
Line Chart 4.44 12.70 4.28 10.18
Bar Chart 4.77 12.30 4.71 7.14
Scatter Chart 5.96 16.63 5.39 40.78

Table 3
Results regarding different types of charts.

5.3. Human Evaluation
In order to get a faithful evaluation, we conduct a human

evaluation on 100 randomly sampled examples for PMC

and arXiv. The human evaluation is conducted by the

authors and their colleagues (4 in total) since this task

requires a certain expert knowledge. We use both base

captioning model and our final model (with OCR encoder

and GPT-2 decoder)
8

to generate two summaries. Each

image with the generated summaries from the two mod-

els is annotated by all 4 annotators. We randomly shuffle

the order of these two summaries and only show the A/B

labels to the human annotators. The human annotators is

asked to choose one from the four options: “Both Good”,

“Both Bad”, “A wins”, and “B wins”. As shown in Table 2,

our proposed model significantly outperforms the base-

line model for both datasets. Moreover, we find that our

annotators have a high agreement on which generated

sentence is better since this scientific summarization is

mostly about facts and salience.

6. Analysis
In this section, we provide the fine-grained analysis to

illustrate the effectiveness of each component in the pro-

posed pipeline. We first demonstrate the results for dif-

ferent chart types and cross-domain evaluation in Sec-

tion 6.1. In Section 6.2, we empirically show the advan-

tage of our pre-embedding and cross-attention combina-

tion.

6.1. Different Chart Categories
During our data collection, we also let the annotators to

select the type of the chart (Figure 2). In this paper, we

8
The PMC model is with the semi-supervised setup.
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Pre-Embed Cross-Att BLEU ROUGE-L METEOR CIDEr

None None 1.91 10.59 3.01 0.52
Concat None 2.88 11.92 3.79 4.78
None Concat 3.64 12.07 3.69 2.91
Img OCR 4.47 12.46 4.32 10.30
OCR Img 4.46 12.12 4.08 11.18
Concat Concat 3.61 12.18 3.76 2.79

Table 4
Comparison of different approaches of connecting the image
content and the language decoder.

aim for a general chart summarization model that does

not rely on the details of each chart type. We here analyze

the performance of the proposed model on each chart

category with our final model trained on PMC (Semi-

Supervised). In Table 3, we show the results of the most

common three chart types (i.e., “Line”, “Bar”, “Scatter”)

that have sufficient amount of data (513 for Line, 400

for Bar, and 57 for Scatter) to support automatic metric-

based evaluation. Although the line charts contribute the

most to the training and test data, the BLEU score is the

lowest compared to the results of bar charts and scatter

charts. The reason might be that the image features

produced by convolutional neural networks (CNN) are

insensitive to the properties (e.g., trending, crossings) of

the curved lines. At the same time, the CNN could capture

the local intensity of points thus show higher results for

scatter chart. According to this observation, we think

that using visual encoder that are specifically designed

for understanding the curved lines in chart might be a

promising future direction.

6.2. Pre-Embeddings and
Cross-Attention Layers

In Section 4.3, we discuss two ways to connect the visual

information to the language decoder: the pre-embedding

approach and the additional cross-attention layers. In

Table 4, we show the results of different combinations on

PMC (semi-supervised) dataset. “Img” and “OCR” indi-

cates using the image output and OCR representations as

the input to the pre-embedding approach and the cross-

attention layers. “None” means that we do not use input

and thus excludes the parameters. “Concat” means that

we concatenate the output of image and OCR representa-

tions together and use it as the input. We can see that the

our approach (Img for Pre-Embed and OCR for Cross-Att)

is comparable to its reverse (OCR for Pre-Embed and Img

for Cross-Att) and is much better than other alternatives.

6.3. Chart Classification Performance
In both the semi-supervised learning and domain adap-

tion setup, we use a classifier to identify single-chart im-

ages from lots of automatically extracted image-caption

pairs. Since the images filtered by the classifier will be

further used as data augmentation, we take the 𝐹1 score

as the main metric to balance the precision and recall.

We start with the frozen ResNet-101 [25] features with

an additional linear classifier. This setup achieves 90% 𝐹1

score. After fine-tuning the backbone model on our data,

the model achieves an 𝐹1 score of 94.9%. We also tried

adding other neural modules (e.g., attentive modules and

detection branches) and enhanced visual backbones but

we do not observer a significant result improvement on

the test set.

When we use this classifier in the semi-supervised and

domain adaptation setups, we calibrate the classification

threshold to maintain a precision over 99% since we have

lots of unannotated images. Under this precision level,

we achieve a recall of 59.8% and precision of 99.2%. We

kept the same classification threshold and test it on our

annotated arXiv test split. The precision and recall are

93.4% and 65.7%, respectively.

7. Conclusions
In this paper, we propose datasets and models for summa-

rizing scientific charts, a specific type of structured im-

ages. We construct datasets from PMC and arXiv by lever-

aging crowdsourcing and the figure captions in the pa-

pers. To enable better understanding text components in

charts and to endow the model with external knowledge,

we propose to use an OCR encoder and a pre-trained

language decoder on top of a standard image captioning

model. In our experiments, we show the effectiveness of

our models in terms of both automatic evaluation metrics

and human evaluation.
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A. Implementation Details
The supervised learning setup is conducted on our an-

notated English PMC dataset in Sec. 3. We kept 1,000

charts in the test set and split the the remaining charts

into training(5,819)/validation(646) with a ratio of 9:1.

We train our model on the training set and tune the hy-

perparamters on the validation set. The test set is only

used to report results. We train for 200 epochs on this

small dataset. All our code are written in PyTorch and

all experiments converge in 4 5 hours on 1 Titan V GPU.

For the base model, we use a ResNet-101 model from

the Torchvision [35] library
9

. We resize the image into

224 x 224 and the backbone model maps it to a 7 x 7 x

2048 vectors. We use 512 dimensions for the LSTM and

256 dimensions for the word embedding. The attentive

hidden states has the same size as the hidden states (512
dimensions). We use an Adam [41] with a fixed learning

rate of 10−4
. The batch size is 64.

For the OCR model, we sort the ocr texts by their

confidence and remove the empty text. We kept the top

20 ocr texts for post-processing. We use 512 dimensions

for the OCR feature representations (yellow blocks in Fig.

3). Since we want the image position to be related to the

OCR position. We did not do random resize and cropping

but directly resize the chart into 224 x 224.

For the pre-trained GPT-2 [30] model, we downloaded

the small GPT-2 model (124M parameters) from Hugging

Face’s Transformer [36]
10

. The GPT-2 implementation

has support of cross-attention layers as in Vaswani et al.

[34] and we use it to attention to the OCR features. For

the fixed-length transformer, we use 1 layer with the

same architecture as the GPT-2 model but do not apply

the causal attention mask. We use an Adam [41] with

weight decay of 0.01 following the practice in Devlin

et al. [42]. We do not use weight decay for the layer

normalization layer and bias. We use a linear warmup

with a peak learning rate at 10−4
. The first 5% steps are

warmup steps. The batch size is 64.

In order to increase the number of training examples,

we apply the proposed semi-supervised learning tech-

nique. The single-chart classifier is based on the ResNet-

101 model and is fine-tuned on our datasets. We use the

50,000 human-labeled images (7,465 positives) from PMC

data to build this classifier. The training, validation, and

test sets have 5,819, 646, and 1,000 data point, respec-

tively. The data split is the same as the above supervised

learning setup. After the model converges on the train-

ing set, we calibrate the classifier to optimize the recall

with an precision over 99% on the validation set. Since

we have lots of images, we can afford a lower recall for

high-quality positive examples.

9
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We then use this classifier to filter the unlabeled im-

ages in the PMC data to augment the training set. More

specifically, besides the 50,000 images we used in the

crowdsourcing task, there are 137,928 remaining articles

in our PMC collection from the year of 2011 to 2019. After

applying the chart classifier, we obtain 13,637 single chart

images which could serve as additional training examples

for the summarization model. The hyper-parameters of

the summarization model is the same as the ones used

in the supervised setup. For the models trained on this

dataset, we use a max sequence of 80 and train for 100

epochs. The other hyperparameters are same as the small

supervised PMC data for each model.

For domain adaptation, we take charts and captions

from English arXiv as the target domain. As described

in the dataset section, we have manually annotated 370
single-chart images in this domain, which are served as

the test set. We use the same chart classifier in the previ-

ous semi-supervised learning setup to annotate 140,000

arXiv images. This results in 22,044 positive examples.

We split this 22,044 examples into training data (19,840)

and validation data (2,204) with a ratio of 9:1. The summa-

rization model is trained on the training data, tuned on

the validation data, and finally evaluated on the manually-

annotated test set. For the models trained on this dataset,

we use a max sequence of 40 since the captions in arXiv

are much shorter. Since we halve the max sequence, we

train for 200 epochs thus roughly keep the same compu-

tational resources for both datasets.

B. Details of Data Collection
The crowdsourcing task is conducted on Appen

11

. There

are 2263 distinct annotators from 50 countries. Since the

task is to classify image types, it doesn’t require native

English speakers. The top 5 countries are Venezuela

(53%), USA (23%), Egypt (8%), Colombia (2%), and Peru

(1.4%). We paid one cent per judgement (image). For the

first round of annotation tasks, the Fleiss’ kappa scores

for “whether it’s a single chart” and “chart type” tasks are

0.56 and 0.73 respectively, which shows pretty significant

agreement.

C. Additional Analysis

C.1. Cross-Domain Transferability
To illustrate the need of domain adaption led by the chart

classifier (in Sec. 4.4), we show the low cross-domain

transferability of models in this section. Each row in

Table 5 indicates the results of our final model trained on

the designated dataset while each line in the Table indi-

cate the evaluation results on the test set. The model does

11
client.appen.com
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PMC arXiv

BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr

PMC 4.47 12.46 4.32 10.30 0.06 8.19 1.93 0.63
arXiv 0.22 10.11 3.25 1.43 5.89 14.32 4.92 32.34

Table 5
The transferability of our captioning model across different domains. The columns indicate the training dataset while the
rows indicate the testing dataset. The PMC training data is augmented with filtered charts (in Sec. 4.4) and the arXiv training
data is built by the chart classifier. All test data are human-annotated.

not transfer well between different domains, probably be-

cause the different figuring and captioning conventions

from different communities. The different topics also

introduce diverging vocabularies.

D. Ethical Considerations
The technique developed in this paper would help auto-

matic summarize news, articles, and publications where

charts are involved in. It would also help visually im-

paired people to understand the content of the charts. It

would fail in cases when the OCR detector miss the key

information of the charts and would lead to unfaithful

summarization of the chart. Since we use a pre-trained

language decoder in our final model, the generated sum-

marization might be biased towards the pre-training do-

main of the language decoder. Regrading the dataset

collection, we have resolved all legal and licenses issue

for the PMC dataset before showing them to annotators.

More specifically, we only use articles with CC BY li-

censes from the Open Access Subset of PMC data. For

arXiv data, we annotate a small test set by the authors.
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