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Abstract
Understanding whether a particular dataset and task are well represented by a deep learning model can be as crucial as
the model’s prediction accuracy in many applications. Currently, best prediction performance for large, modern datasets
is often achieved by complex and difficult to interpret deep learning models. As deep learning model size and complexity
increases compared to the size of the training dataset, the capacity of the model to overfit to inappropriate features and
perform poorly or unreliably also increases. Unreliability may not be obvious in traditional performance measures during
evaluation so it is important to also consider how well the model is representing the current data distribution. There has
previously been little work focusing on measuring this space. We introduce several measures that we collectively name
FERM: A FEature-space Representation Measure for determining how well the current feature space representation models
the current data distribution and task. We compared our new measures and potential candidates from other related research
areas. We demonstrated that our new method, along with two others, have excellent potential to be used for measuring how
well a trained model is currently representing a dataset and task. These findings have many implications for deep learning
research and applications, including, evaluating when the current model is no longer representing new data well to reduce
the frequency of computationally expensive retraining of models, assessing for hard to evaluate failure modes such as model
biases that result in particular input samples being poorly represented, guidance on the best hyperparameters to use when
updating models with limited new data.
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1. Introduction
With the successes of deep learning in the past decade
when applied to modelling large well formed and stable
data distributions, recent focus has turned to modelling
datasets that are:

1. Not well formed because they are very different
to the source dataset in the case of some transfer
learning applications.

2. Not stable over time in the case of online learning
tasks.

3. Are difficult to model as they have long tailed
distributions including rare minority classes for
example or other non-standard distributions.

With this new focus comes the obvious question of
how to evaluate whether an existing trained deep learn-
ing model is representing the current data distribution
well. Several works have looked at related problems,
including:
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• transferability, being how well a model trained
on a related source task is likely to perform when
fine-tuned on a target task [1, 2, 3, 4]

• analysis of deep learning feature spaces and how
those produced by pretrained models differ from
those with random initialisation [5, 6, 7].

As far as we are aware there is no research that has
looked at evaluating specifically how well a particular
deep learning model model represents a data distribution
for a particular task.

A successful measure of this kind will have important
implications for many challenges in modeling real world
data that is continuously changing, has too few training
examples to learn from random initialisation, or has a
non-standard distribution. This measure could be used
to reduce the frequency of computationally expensive
retraining of models to incorporate new data, flag pre-
dictions that cannot be relied upon because of biases in
the model training, and provide guidance on the best
hyperparameters and other settings required to achieve
optimal performance on new data while not decreasing
the performance on old data.

We make the following contributions:

1. New evaluation measures for determining how
well the current feature space representation mod-
els the current data distribution and task.
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2. A thorough comparison of our new measures and
potential candidates from other related research
areas.

2. Related Work
There have been limited previous investigations into mea-
sures of how well the data is being represented by a deep
learning model. There are however many potential meth-
ods that could be adapted for this purpose from other
fields including:

1. Recent methods designed for measuring the
"transferability" of a pretrained deep learning
model [2, 1, 3]. The logic for this being that how
well modelled a source dataset is would likely
be strongly correlated with how transferable the
current model is. If the pretrained model weights
produce a poorly modelled feature space transfer
learning is likely to perform poorly with those
weights.

2. Methods designed for measuring how well clus-
tered a high dimensional space is. The logic here
is that a well modeled feature space for classifi-
cation is one where the data points are well clus-
tered and separated into their classes in feature
space ready to be classified by the final classifica-
tion algorithm. There are many clustering mea-
sures that fail in high dimensional spaces or with
high number of classes which mean that they are
not useful for many deep learning feature spaces.
However, there are several that do work well in
these spaces [8].

3. Adapting methods designed to measure distance
in high dimensions. A major problem with mea-
suring the feature space is the high dimension-
ality. We propose a new method of measuring
clustering based on the Fisher Score [9] that is
commonly used as a clustering measure in two
dimensions. We replace the Euclidean distance
measure in the Fisher Score with cosine similar-
ity, which is known to be an effective distance
measure in high dimensions, along with other
adaptations.

Several research areas that are related to measuring
the feature space are outlined below.

2.1. Exploring the feature space in deep
transfer learning

Several methods have been proposed for analysing the
feature space from a pretrained model applied to a

new target dataset in transfer learning [5, 6]. How-
ever these methods are focused on analysing how pre-
trained weights stabilise and improve training on the
target dataset, and prevent over fitting. They do not look
at how well fixed weights represent the current target
dataset without fine-tuning and thus when and how to
perform fine-tuning.

2.2. Exploring and visualising the deep
learning feature space

There are many methods that work on visualising either:

• the feature activations within a deep neural net-
work [10, 11]

• the final feature space [12, 13, 14, 15]
• the predictions and their accuracy [16, 17].

While some of these methods, particularly those in
item two above, do result in a projection of the feature
space into a lower dimensional visualisation that would
be easier to measure, they focus on visual inspection
rather than on measurement. They also don’t analyse
the loss of information, and thus intra-class separation,
by projecting from a high dimensional space to a low
dimensional space that can be visualised.

2.3. Interpreting Model Predictions
There has been a large amount of work done in inter-
preting model predictions and producing measures and
visualisations that show how much a prediction should
be trusted [18, 17]. These models focus on analysing and
interpreting the importance of input features, rather than
the final learned feature space.

2.4. Metric Learning
Metric learning techniques aim to find a feature embed-
ding space that optimises some predefined distance met-
ric given pairs of examples that are classified as either
the same or different [19, 20, 21]. This problem has been
well studied. Our problem is the opposite in that we al-
ready have an embedding space and we wish to find a
metric that measures how well our current embedding is
separating our current samples into the same and differ-
ent classes or clusters. There may be some potential to
repurpose scores designed for the metric learning space,
however we leave this to future work as we have focused
on the most promising closely related measures in this
work.



3. Methodology

4. Notation
• 𝑥 ∈ 𝒳 where 𝑥 is an input and 𝒳 is the domain
• 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} where 𝑋 is the set of in-

puts
• 𝒴 is the finite set of labels
• 𝐶𝑘 = {𝑥𝑘,1, 𝑥𝑘,2, ..., 𝑥𝑘,𝑚𝑘} is the set of inputs

that belong to class 𝑘 with 𝑚𝑘 samples, and thus
𝐶1 ∪𝐶2 ∪ ...∪𝐶𝐾 = 𝑋 where 𝐾 is the number
of classes

• 𝜃 is the trained model, which can be decomposed
as 𝜃(𝑥) = ℎ(𝑤(𝑥))

• 𝑤 is the feature extractor that maps an input 𝑥 to
a representation (or embedding) 𝑟 = 𝑤(𝑥)

• 𝑟 is the feature representation
• ℎ is a classifier (or head) that takes the represen-

tation 𝑟 as input and returns a probability distri-
bution over 𝒴 .

• ℛ𝑖 = {𝑟𝑖,1, 𝑟𝑖,2, ..., 𝑟𝑖,𝑚} = 𝑤(𝐶𝑖) is the fea-
ture representation of the inputs in a class, pro-
cessed by the feature extractor 𝑤

• We define 𝑃 (𝐴,𝐵) as a function that operates
on two sets, 𝐴 and 𝐵, and gives the unordered
set of all unique pairs from 𝐴 and 𝐵. That is,

𝑃 (𝐶1, 𝐶2) ={(𝑥1,1, 𝑥2,1), (𝑥1,1, 𝑥2,2), ...

, (𝑥1,𝑚𝑘 , 𝑥2,𝑚𝑘−1), (𝑥1,𝑚𝑘 , 𝑥2,𝑚𝑘 )}

• We can also say that, when 𝐴 = 𝐵, 𝑃 (𝐴,𝐴) =
𝑃 (𝐴) and instead gives the unordered set of
unique pairs, excluding pairs with itself. That
is,

𝑃 (𝐶𝑘, 𝐶𝑘) = 𝑃 (𝐶𝑘) ={(𝑥𝑘,1, 𝑥𝑘,2), (𝑥𝑘,1, 𝑥𝑘,3), ...

, (𝑥𝑘,𝑚𝑘−1, 𝑥𝑘,𝑚𝑘 )}

4.1. Scoring the feature space
The aim of this work was to quantify how well con-
structed a feature space is by creating or finding a mea-
sure that gives high scores when the feature space is well
formed and low scores when the feature space is mal-
formed. Here, we think of a well formed feature space
as one where there is high similarity/tight clustering
within a class (intra-class) and low similarity/sparse clus-
tering between classes (inter-class). Figure 1 shows a well
formed 1,500 dimensional feature space reduced using
T-SNE into the normalised top-2 representative dimen-
sions so it can be visualised. Note that the data points
from all classes are grouped tightly within their class and
mostly well separated from other classes.

The motivation for a score that measures how well
constructed the feature space is, is three-fold:

Figure 1: A well formed feature space. Each class is numbered
and allocated a different colour. Class centroids are labelled.

1. It would allow for the detection of when re-
training is needed. When the input data distri-
bution slowly changes, re-training or updating
of the model is required. Human monitoring of
model inputs to detect domain shift would be time
consuming, require expert knowledge, and may
not be possible for a human to judge at all in the
case of highly complex high dimensional input
spaces. Furthermore, it is not computationally ef-
ficient to constantly update the model with every
new sample or even at frequent regular intervals.
As a result, it is useful to quantify domain shifts
in order to batch update the model.

2. It may quantify how to perform transfer learning.
Using a trained source model with a target dataset,
a well formed feature space would likely mean
that the model is easier to be re-trained for the
target task and needs lower learning rate, momen-
tum and higher weight regularisation. Whereas a
malformed feature space will likely mean that ef-
fective transfer learning will be harder to achieve
and require more precise attention to finding suit-
able hyperparameters [22, 23].

3. It would also allow for detection of when a model
should not be relied upon to predict particular
data points that are too far removed from the
standard data distribution the model has been
changed on. For example facial recognition mod-
els performing poorly on minority races [24].

4.2. Proposed scores
See Section 4 for a list of mathematical notation used in
this report.

4.2.1. Proposed score

We propose several scores that use cosine similarity to
quantify the level of inter-class similarity vs intra-class
similarity. We expect that a well formed feature space as



shown in Figure 1 should have high intra-class similarity
and low inter-class similarity.

Our measure is based on adapting the Fisher Score [9]
which is known to perform poorly in high dimensions,
by replacing the Euclidian distance with cosine similarity
which is known to perform well in high dimensions.

Cosine similarity is defined as:

𝑆𝑐(𝑎, 𝑏) = cos∠(𝑎, 𝑏) =
𝑎 · 𝑏

‖𝑎‖‖𝑏‖ =
𝑎⊺𝑏

√
𝑎⊺𝑎

√
𝑏⊺𝑏

(1)

where 𝑎 and 𝑏 are vectors, · is the inner dot product, and
‖ · ‖ is the magnitude of the vectors.

We define our first FERM:

FERM 1 =

1

𝐾

∑︁
𝑘=1

2
𝑚2

𝑘
−𝑚𝑘

∑︀
𝑟𝑖,𝑟𝑗∈𝑃 (𝐶𝑘)

𝑆𝑐(𝑟𝑖, 𝑟𝑗)

1
𝑚𝑘(𝑛−𝑚𝑘)

∑︀
𝑟𝑖,𝑟𝑗∈𝑃 (𝐶𝑘,𝑋∖𝐶𝑘)

𝑆𝑐(𝑟𝑖, 𝑟𝑗)

(2)

The intuition is quite simple: the numerator is the sum
of cosine similarities of all unique pairs in a class, nor-
malised by the number of unique pairs (i.e., an average).
The denominator is the sum of cosine similarities of all
unique pairs between samples in the class and samples
out of the class, normalised by the number of unique
pairs (i.e., an average). This provides a ratio of intra-class
similarity and inter-class similarity. This ratio is then
averaged across all classes, resulting in FERM 1.

We can then define our second FERM:

FERM 2 =∑︀
𝑘=1

2
𝑚2

𝑘
−𝑚𝑘

∑︀
𝑟𝑖,𝑟𝑗∈𝑃 (𝐶𝑘)

𝑆𝑐(𝑟𝑖, 𝑟𝑗)∑︀
𝑘,𝑙 𝑘<𝑙

1
𝑚𝑘𝑚𝑙

∑︀
𝑟𝑖,𝑟𝑗∈𝑃 (𝐶𝑘,𝐶𝑙)

𝑆𝑐(𝑟𝑖, 𝑟𝑗)

(3)

The intuition is similar to the first FERM. The numerator
remains the same after incorporating the out sum (an
average of cosine similarities of all unique pairs in a class,
across all classes), but the denominator is now an average
of cosine similarities of unique pairs between samples in
the class and samples out of the class that has not yet been
accounted for. Although, in the first measure, only the
unique pairs of samples in and out of a class are averaged,
further repeating this (the outer sum) results in double
counting across classes. FERM 2 prevents this double
counting.

We define our third FERM through the use of a cen-
troid in terms of cosine similarities, a so called ‘angular
centroid’. In the same way that the average Euclidean
distance of one point to several other points can be rep-
resented as the distance of that one point to a Euclidean
centroid of points, the average angle between one point
and several other points can be represented as the an-
gle between that one point and an ‘angular centroid’ of
points. The centroid for a class 𝑘 is defined as:

𝐺𝑘 =
1

𝑚𝑘

∑︁
𝑟𝑖∈𝐶𝑘

𝑟𝑖
‖𝑟𝑖‖

(4)

This can be interpreted as normalising all samples to the
unit hyper-sphere, then finding the centroid point on
the unit hyper-sphere by adding all normalised samples
together and normalising the combined vector. We can
then define our third FERM:

FERM 3 =∑︀
𝑘=1

2
𝑚2

𝑘
−𝑚𝑘

∑︀
𝑟𝑖,𝑟𝑗∈𝑃 (𝐶𝑘)

𝑆𝑐(𝑟𝑖, 𝑟𝑗)∑︀
𝑘,𝑙 𝑘 ̸=𝑙

1
𝑚𝑘(𝐾−1)

∑︀
𝑟𝑖∈𝐶𝑘

𝑆𝑐(𝑟𝑖, 𝐺𝑙)

(5)

The numerator term is still the same, but now the de-
nominator is the average of cosine similarity of samples
within a class to the centroids of other classes.

Using the same notation above, we can then define our
fourth FERM:

FERM 4 =∑︀
𝑘=1

2
𝑚2

𝑘
−𝑚𝑘

∑︀
𝑟𝑖,𝑟𝑗∈𝑃 (𝐶𝑘)

𝑆𝑐(𝑟𝑖, 𝑟𝑗)∑︀
𝑘,𝑙 𝑘 ̸=𝑙

1
𝐾−1

𝑆𝑐(𝐺𝑘, 𝐺𝑙)

(6)

This further simplifies the calculation of the denominator
to a comparison of the centroid of a class to the centroids
of other classes.

For all FERMs a higher score means better clustering.
As each individual FERM score and thus the numerator
and denominator are within the bounds [−1, 1], a posi-
tive score above 1.0 reflects more intra-class similarity
compared to inter-class similarity.

4.3. Data sets
We have selected the following datasets.

4.3.1. Source Dataset

ImageNet 1K (ImageNet) [25] A general image
dataset containing 1,000 common image classes with at
least 1,000 total images in each class for a total of just over
1.3 million images in the training set. We use ImageNet
as the source dataset for all our experiments.

4.3.2. Target Datasets

Caltech-256 (Caltech) [26] Pictures of objects be-
longing to 256 categories, with at least 80 images per
category. The Caltech dataset is a general image clas-
sification dataset similar to ImageNet but with orders
of magnitude fewer training examples. It is generally
considered to be the most similar target dataset to Ima-
geNet and fixed weights pretrained on ImageNet tend to
perform about as well as fine-tuned weights [22, 23].

FGVC Aircraft (Aircraft) [27] Contains 100 different
makes and models of aircraft with 6,667 training exam-
ples and 3,333 test examples. The Aircraft dataset is a fine-
grained image classification dataset that is very different



from ImageNet. Fixed weights pretrained on ImageNet
perform extremely poorly on this dataset [22, 23].

Stanford Cars (Cars) [28] Contains 196 different
makes and models of cars with 8,144 training examples
and 8,041 test examples. The Cars dataset is also a fine-
grained image classification dataset that is very different
from ImageNet and fixed weights pretrained on ImageNet
also perform extremely poorly on this dataset [22, 23].

Describable textures (DTD) [29] Consists of 3,760
training examples of texture images jointly annotated
with 47 attributes. While the DTD dataset is conceptually
very different to ImageNet recent results have shown that
fixed weights pretrained on ImageNet perform reason-
ably well on this dataset compared to fine-tuned weights
[22, 23].

The ratio of the fixed features to fine-tuned results for
a model pretrained on ImageNet are shown in Table 4 for
all datasets.

5. Experiments
We performed two sets of experiments:

1. Conducting experiments to compare the effec-
tiveness of our score along with candidate scores
from other fields in measuring how well a model
trained on the ImageNet 1K source dataset repre-
sents a particular known and stable target dataset.
We use datasets where it is well known how well
fixed pretrained ImageNet 1K weights perform on
them so they make a good basis for comparison.

2. Using the above measures to detect ‘corruption’
or domain shift in the feature space.

We further elaborate on each goal in the corresponding
Sections 5.1 and 5.2 below.

In addition to our proposed measures, we explored sev-
eral other clustering measures. These were chosen by re-
viewing [8] and removing clustering scores that were not
stable as dimensionality increased (large perturbations
or outliers), and similar in score between overlapping-
clusters and well separated-clusters:

• Silhouette score [30]
• Davies Bouldin score [31]
• Calinski Harabasz score [32]
• Dunn score [33]
• RS index [8]
• Point Biserial Index [34]
• 𝐶

√
𝐾 index [35].

We also investigated recent transferability scores that
have been shown to perform well when measuring how
well transfer learning will perform on a particular target
dataset:

• H-score [2]
• LEEP [1]
• OTCE [3].

5.1. Stable target datasets
For each experiment we used the Inception v4 architec-
ture [36] pretrained on ImageNet 1k. Using this model,
we compared the different FERMs on the different tar-
get data sets: Aircraft, DTD, Cars, and Caltech-256. We
also used ImageNet 1k as a target data set to determine a
baseline score for each measure.

During this evaluation, two pipelines were constructed:
one that utilises transformations of the data, and one that
does not. When determining how well classes are clus-
tered together, a forward pass of the unaltered data was
initially used, providing us with the exact feature repre-
sentation of that sample. During a standard deep learning
training process, samples are randomly flipped, scaled,
resized, and rotated. These samples incur a loss if classi-
fied incorrectly, and so we expect the model to still learn
to classify those samples correctly. Therefore it is likely
that the feature representation of these randomly trans-
formed samples are still able to be represented in a well
formed feature space. Assuming the model adequately
classifies the transformed data, a measure that is robust
to these transformations (that is, does not change much
in the presence or absence of transformations) would be
better than one that is not, as it would allow us to use
this during the training process.

We explored the four proposed FERMs on the five
target data sets (including ImageNet 1k) with the two dif-
ferent pipelines (with or without transformations). Each
transformation experiment was also repeated five times,
as the transformations are random.

5.1.1. Results

Comparisons between different FERMS across the differ-
ent target data sets with and without transformations
can be seen in Table 1. Note that results with transforma-
tions are reported as means and standard deviations as
the experiments were repeated. The datasets in all tables
are listed in order of the ratio of the performance of fixed
features pretrained on ImageNet to the best fine-tuned
model performance, using results from [22, 23] as a proxy
for how well formed the feature space is.

With and without transformations ImageNet consis-
tently scored highest, followed consistently by Caltech
except with FERM 4. For FERM 1 and 2 Aircraft and Cars
score much lower than ImageNet and Caltech and DTD
is in between. This is the same ordering as our proxy for
a well formed feature space.



Table 1
Different FERM measures with and without transformations on different target tasks. Source task is ImageNet, source model is
trained Inceptionv4. Higher measure is better. FF/FT is the ratio of fixed feature results to fine-tuned results for an Inceptionv4
model pretrained on ImageNet. This is used as our proxy for how well formed the current feature embedding is. Standard
deviation in brackets. Standard deviations of 0.00 were hidden for brevity.

Target task FF/FT FERM 1 FERM 2 FERM 3 FERM 4
Transformations False True False True False True False True
Aircraft 0.633 1.11 1.08 1.14 1.11 1.04 0.97 0.97 0.88
Cars 0.677 1.22 1.16 1.22 1.16 1.06 0.98 (0.01) 0.93 0.83 (0.01)
DTD 0.946 1.33 1.31 1.36 1.34 0.91 0.89 0.63 0.61
Caltech-256 0.987 1.61 1.47 1.61 1.47 1.27 1.10 1.02 0.84
ImageNet 1k 1.0 1.82 1.82 1.81 1.81 1.47 1.47 1.21 1.21

Table 2
Different transferability measures without transformations
on different target tasks. Source task is ImageNet 1k, source
model is trained Inception v4. Higher measure is better.

Target task LEEP OTCE H-score

Aircraft -4.59 0.26 53.09
Cars -5.25 0.32 160.41
DTD -3.83 0.28 41.77

Caltech-256 -5.49 0.31 152.64
ImageNet 1k -6.84 0.00 360.00

Table 3
Different transferability measures with transformations on
different target tasks. Source task is ImageNet 1k, source
model is trained Inception v4. Standard deviation in brackets.
Standard deviations of 0.00 were hidden for brevity.

Target task LEEP OTCE H-score

Aircraft -4.59 0.28 (0.01) 49.76 (0.13)
Cars -5.26 0.34 158.95 (0.12)
DTD -3.83 0.29 41.42 (0.05)

Caltech-256 -5.51 0.34 131.00 (0.37)
ImageNet 1k -6.84 0.00 360.00 (0.00)

Further results showing the comparison with all addi-
tional clustering measures and transferability scores can
be seen in Tables 2 to 5.

5.1.2. Discussion

We know that fixed features pretrained on ImageNet 1k
perform well on Caltech-256, moderately well on DTD,
and poorly on Aircraft, and Cars [22, 23] as shown by
our ratios of fixed features to fine-tuned performance
in Table 1. We use this as a proxy for a well formed
feature space and expect a good score to reflect the same
knowledge, that is, a low score for Aircraft and Cars, a
moderate score for DTD, a high score for Caltech-256,
and a very high score for ImageNet.

Our results with and without random transformations

to the data suggest that FERM 1, and 2 seem to be able
to consistently do this. It seems that FERM 1, and 2
have potential as a way to measure how well formed the
feature space is for a particular trained model and target
task.

Of the transferability measures, LEEP is the only score
that consistently ranks ImageNet 1k and Caltech-256 as
most transferable, in the presence and absence of trans-
formations, however it ranks DTD as least transferable
in both cases, which is incorrect. Given the scores are in
the same order as the number of classes in the dataset it
seems likely that it’s affected by the number of classes.
H-score also seems to be strongly affected by the number
of classes, as the scores are close to being proportional
to the number of classes in the target dataset.

Of the clustering measures, Silhouette score, Davies
Bouldin score, Point Biserial Index, and 𝐶

√
𝐾 index

seem to also consistently rank ImageNet 1k and Caltech-
256 as the most transferable, in the presence and absence
of transformations. However only Silhouette score ranks
DTD as moderately transferable compared to the oth-
ers. Point biserial may also be strongly affected by the
number of classes, as the scores are again close to be-
ing proportional to the number of classes in the target
dataset.

In summary when looking at only stable target datasets
our proposed scores FERM 1 and 2 as well as the clus-
tering measure Silhouette score are good candidates for
measuring how well formed the feature space is for a
given trained model and target task.

5.2. Detecting and quantifying domain
shifts

We attempted to detect and quantify incremental domain
shifts. As it is hard to concretely quantify different levels
of domain shift, we reduce the problem down into de-
tecting levels of ‘corruption’. ‘Corruption’ is defined as
the presence of the target data set mixed into the source
data set, where the source data can be thought of as no
domain shift, whilst the target data set can be thought of



Table 4
Different clustering measures without transformations on different target tasks. Source task is ImageNet 1k, source model is
trained Inception v4

Target task Silhouette Davies Bouldin Calinski Harabasz Dunn RS Point biserial 𝐶
√
𝐾

Aircraft -0.12 6.79 20.71 0.08 1.61 243.95 0.10

Cars -0.10 4.29 5.75 0.21 1.61 1146.63 0.07

DTD -0.04 4.65 9.07 0.09 1.81 248.99 0.14

Caltech-256 0.09 3.10 18.22 0.12 1.61 2334.25 0.06

ImageNet 1k 0.11 2.88 40.68 0.00 1.55 9823.30 0.03

Table 5
Different clustering measures with transformations on different target tasks. Source task is ImageNet 1k, source model is
trained Inception v4. Standard deviation in brackets. Standard deviations of 0.00 were hidden for brevity.

Target task Silhouette Davies
Bouldin

Calinski
Harabasz

Dunn RS Point biserial 𝐶
√
𝐾

Aircraft -0.13 (0.01) 7.79 (0.06) 10.86 (0.17) 0.06 (0.01) 1.75 280.96 (1.35) 0.10

Cars -0.10 4.52 (0.03) 3.87 (0.11) 0.20 (0.02) 1.70 (0.01) 1218.97 (14.44) 0.07

DTD -0.04 4.85 (0.02) 8.48 (0.10) 0.09 (0.02) 1.82 250.41 (2.05) 0.14

Caltech-256 0.03 3.59 (0.01) 12.65 (0.12) 0.00 1.70 2267.21 (18.45) 0.06

ImageNet 1k 0.11 2.88 40.68 0.00 1.55 9823.30 0.03

as complete domain shift. This can be then quantified by
the percentage of target data in the source data set.

We again started with an Inception v4 model pre-
trained on ImageNet 1K. We then incrementally shifted
the domain by either adding target data to the evaluation
set or removing source data from the evaluation set. The
source samples are derived from the ImageNet 1k valida-
tion set, whilst the target samples are derived from the
training set of Aircraft. The Aircraft dataset was used in
this case as it was the most poorly represented by the
pretrained model in our previous experiments. Each time
we added more ’corruption’ we used all measures from
our previous experiments to measure the feature space.

Specifically, we created the evaluation set by randomly
choosing 200 classes from ImageNet 1k, and then ran-
domly choosing the same number of samples across the
classes. Aircraft was combined with this in a similar
way, that is, randomly choosing the same number of sam-
ples across all 100 classes. The union of both creates the
evaluation set.

The feature representation of a sample is defined as
𝑟𝑖 = 𝑤(𝑥𝑖), where 𝑤(·) is the feature extractor from the
trained source model. We expected that as the level of
corruption increases (as more of the source data set is
replaced by the target data set), the clustering of classes
in the feature space degrades; features in the new class
are not clustered well, and thus the overall clustering
score should decrease.

Another way we approached the problem is by looking
at transferability measures. Since measures of transfer-
ability are largest when the source task is the same as
the target task, we hypothesized that at 0% corruption
(i.e., there is no domain shift) transferability scores will
be high, and will slowly degrade with increasing levels
of corruption.

5.2.1. Results

For each different combination of source and target
dataset we ran the experiment 10 times as the selection
of the examples for each class was random. The classes
chosen from ImageNet were fixed to allow for a fixed
comparison. The change in each of the different scores
as the domain shifts to the target data set of Aircraft can
be seen in Figure 2. The scores have been normalised
between 0 and 1. Although several of these were repeated
and averaged, we did not plot the error bars as they are
largely uninformative, as seen in Section 5.1.1.

5.2.2. Discussion

We expect a measure that is good at detecting domain
shift to start with a normalised score of 1 (or 0 if inversely
proportional) with no domain shift, and incrementally
decrease to 0 (or increase to 1) as the domain is com-
pletely shifted. We also would like the measure to be
monotonically decreasing (or increasing). The results in
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Figure 2: Scores as domain shifts from ImageNet 1k to Aircraft. Only 200 randomly selected classes of ImageNet 1k were used.
Percentages are aircraft as a portion of the whole dataset

Figure 2 show that only Point Biserial Index seems to be
almost entirely monotonically trending. Ignoring the last
point (0 samples of ImageNet 1k), H-score seems to have
strong potential to detect domain shift however more
investigation is required to see why the final point is so
far out of sequence.

RS index, Davies Bouldin score, and Silhouette score
seem to also have sections of monotonic trend. Further
work is required to make a strong claim in the ability of
these measures to detect and quantify domain shift.

The results of our FERMs are particularly interesting.
If the points where there is only one example per class
of either Aircraft or ImageNet are excluded (second from
the left and right on the graph) the trend is almost mono-
tonic from all ImageNet examples to all Aircraft examples.
Also the point where the score reduces significantly from

the original ImageNet score is approximately at the point
where the dataset has shifted to the extent that its com-
position is more than 50% of the target dataset. The
experiments with only one example from each class of
either the source or the target dataset can be thought of
as just adding noise, as intra-class distances cannot be
measured with only one example for each class. Thought
of in this way it is useful that our measure is strongly
sensitive to this situation.

More extensive work should be done to compare our
methods with the Point Biserial Index, and H-score across
a broader range of domain shift applications.



6. Conclusion
We have created a selection of new scores for evaluating
how well a particular dataset is being represented by the
current model weights and architecture. We have per-
formed extensive experiments to compare our new scores
with measures from other fields that could have potential
to be reused for this purpose. We compared the efficacy
of these measures on both measuring how well exist-
ing model weights are representing a new stable target
dataset, and detecting domain shift. The result of these
experiments indicate that this new method, along with
two others, have excellent potential to be used for mea-
suring how well a dataset is currently being represented
by a model.

Measures for this purpose have not been investigated
before and our results have strong implications for the
wider deep learning community. These measures have
the potential to be used to:

1. Detect domain shift and predict the best response
in terms of model retraining.

2. Detect when an existing model has biases that
make it unreliable for use on rarer data.

3. Predict the optimal way to train or retrain a model
with limited training examples for a new or chang-
ing target dataset.

There are a great many examples of ways these mea-
sures could be useful as an important part of an overall
evaluation of a model, some of these are:

• Uncovering and quantifying biases in models. For
example how well is a model that is trained on
mostly Caucasian faces likely to perform in iden-
tifying faces from other races.

• Quantifying how well prediction models based
on historical data are representing data from the
last few years that has changed due to COVID
and other modern challenges. Once quantified
these measures could also give guidance on how
to update models to better incorporate modern
data.

• Highlighting when models are performing well
on training and test data, but overfitting a poor
representation that will not generalise well to
new data. A classic example being the snow in
the foreground being used to classify a husky
versus a wolf in [17].
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