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Abstract
Performance evaluation of Machine Learning systems have been usually limited to performance measures on curated and
clean datasets that may not properly reflect how robustly these systems can operate in real-world situations. One key element
in this understanding of robustness is instance difficulty. The effect of instance difficulty on robustness could be understood
as how unexpected would be that a customary system fails on a particular instance of certain difficulty. In order to provide
further understanding on this issue, we estimate IRT-based instance difficulty for an illustrative set of supervised tasks
and we implement and test perturbation methods that simulate noise and variability depending on the type of input data.
With this, we evaluate the robustness of different families of machine learning models, which we select and characterise
according to their behaviour. The preliminary results of this work in progress allow us to define a novel taxonomy based on
the robustness of the different models and the difficulty of the instances addressed. This study is a significant step towards
exposing vulnerabilities of particular families of machine learning models.
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1. Introduction
The success of AI and specially Machine Learning
(ML) technologies caused these type of systems to
spread across many applications from different domains,
e.g., medical, financial, social or autonomous transport,
among others [1, 2, 3]. These applications form part of
our daily life and shapes our lifestyle. They recommend
us music to listen or people to establish career/social re-
lationships with. They diagnose our health and monitor
our finance. Given this scenario, there is an obvious need
of more robust ML systems.

Robustness is defined by the IEEE standard glossary
of software engineering terminology [4] as: The degree
to which a system or component can function correctly in
the presence of invalid inputs or stressful environmental
conditions. In the context of ML, robustness measures
the resilience of a system towards perturbations in any
of its components (the data, the learning program, or
the framework) [5]. Earlier works [6] assessed model
robustness by perturbing instances in the training set,
test set, or both. A general way to perturb instances is
adding noise, a method that has been extensively applied
in the adversarial ML field for the generation of adver-
sarial examples ([7]). This is why most of the research in
ML robustness focused on measuring the robustness of
systems with adversarial samples [7, 8].
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On the other hand, there are a wide range of factors
that can affect the robustness of a model [9] and the dif-
ficulty of the instances (intrinsic or extrinsic) [10] is one
of the most relevant [11]. Robustness must be based on
knowing where and why the model fails, avoiding highly
unexpected failure, and difficulty is one key element in
this understanding. Therefore, the question we want to
analyse is whether the performance of a particular model
varies equally distributed across difficulties. We may also
analyse model robustness by perturbing data and locat-
ing those examples that are more likely to change their
predicted label under certain amount of noise, i.e., those
instances for which the model is less robust, and hence,
more prone to cause a vulnerability. We can expect that
the more difficult an instances is, the more likely it is to
change their predicted label under minor perturbations.

Estimating the difficulty of instances is another prob-
lem we need to address. We may just calculate the av-
erage error of a set of systems for each instance as a
proxy for difficulty [12]. However, the use of a popula-
tion of systems entails some risks as well. For instance,
if the population contains a non-conformant system (fail-
ing on the easy instances and succeeding in some of the
hard ones), it may lead to very unstable difficulty met-
rics. A solution to this problem was introduced several
decades ago, and it is known as item response theory
(IRT) [13], where difficulty is inferred from a matrix of
items (instances) and respondents (systems), giving more
relevance to conformant systems. In addition, IRT gives
a scaled metric of difficulty that follows a normal distri-
bution and can be compared directly against the ability
of a system.

In this work in progress paper, we present, as a proof of
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concept, an evaluation setting to analyse the robustness
of different ML models empirically, considering the dif-
ficulty of the instances. We also perform a hierarchical
clustering to derive taxonomies of ML models according
to their robustness. The setting is general as we em-
ployed datasets from different domains, a wide set of rep-
resentative ML techniques, and an instance perturbation
function that introduce random noise with no specific
goal. Therefore, it can be adapted to more specific prob-
lems by changing the datasets, models and perturbation
function to the domain of interest. In this general evalu-
ation framework, we measure the robustness of a model
as the agreement modulo instance difficulty between the
output of the model for the original and the perturbed
test sets.

The paper is structured as follows. In Section 2 we
review part of the literature related to the assessment
of robustness in presence of noise, the estimation of in-
stances difficulty and a taxonomy of machine learning
techniques derived from a notion of behavioral similarity.
Section 3 describes the method we developed to assess
model robustness. We apply that method and describe
the experiments in Section 4. Finally, 5 concludes the
paper.

2. Background
In this section we revisit some key concepts related to
model robustness, instance IRT-based difficulty and the
definition of behavioural taxonomies of machine learning
techniques.

2.1. Robustness in a noisy framework
Robustness is one of the properties of ML systems that
characterise their behavior [5], being particularly suitable
for checking whether the system behaves as expected to
changes in the data. A common way to simulate those
changes is injecting noise into the data, given that real
world data often contain some degree of noise [14].

In the literature, there is a large number of approaches
for adding artificial noise to datasets [15, 16, 17]. Usu-
ally, noise is introduced by perturbing the values of the
attribute(s) (attribute noise) or perturbing the class la-
bel (label noise). A general technique for the injection
of attribute noise consists in perturbing the instance at-
tribute(s) value following a well-known distribution (e.g.,
a Gaussian distribution) for numerical attributes, or ran-
domly choosing a different value for categorical attributes
[14, 18, 19]. This is the method usually used in adver-
sarial ML, where adversarial examples are created by
slightly modifying attribute values of examples correctly
classified by the model to craft new instances (ideally
indistinguishable from the original ones) for which the

output of the model changes. Attribute noise has been
also used in different approaches to improve the robust-
ness of models to adversarial examples. For instance, [20]
shows that the injection of noise in the training dataset
results in models more robust to attacks since they are
able to detect the perturbed instances beforehand. Simi-
larly, adding adversarial instances to the training set can
improve the robustness of neural nets [8], and make a
Speech Emotion Recognition system more robust [21].
On the other hand, artificial label noise is useful to simu-
late wrongly annotated instances or other sources of data
corruption. Label noise has been used, for instance, to
evaluate robustness in computer vision applications [22].
Additionally, label noise in the training set can be em-
ployed to enhance the robustness of models, for instance,
by reducing errors derived from overfitting [23].

There has been proposed different ways of assessing
the robustness of a model in noise environments. The
most general method consists in measuring the correct-
ness loss of models with noise in the data, with respect to
the case without noise, regardless of where the noise is
located (training set or test set). For noise in the training
set, the metrics used to quantify the loss are the standard
classification metrics such as accuracy and F-measure
[14] and the Equalised Loss of Accuracy (a metric for
measuring a classifier’s noise robustness [24]). For the
sub-field of adversarial robustness (where noise is used
in the test set to generate the adversarial examples) there
has been used specific metrics such as adversarial accu-
racy [8]. There are other general techniques for evalu-
ating robustness, including mixed integer programming
[25], abstract interpretation [26], and symbolic execution
[27, 28, 29].

In this work, we are interested in studying how the ro-
bustness of a model is affected by the distortion produced
by injecting different levels of noise into test instances
considering the difficulty of the perturbed instances. As
far as we know, instance difficulty has not yet been taking
into account to evaluate the robustness of models.

2.2. Instance difficulty
Difficult instances may cause problems during AI sys-
tem development, especially for models that are trained.
These instances (e.g., usually associated with noise, out-
liers or decision boundaries) have been blamed for over-
fitting, lack of convergence or both. Handling these sort
of anomalies has been addressed in a number of different
ways trying to prevent overfitting. However, these ap-
proaches usually try to identify anomalies or mislabeled
instances but without defining what characterise them.
For instance, in [30] instances that are hard to classify are
identified through instance hardness metrics. These met-
rics try to characterise the level of difficulty of each input
sample following a (populational) empirical definition



based on the classification behaviour over the instances
to be evaluated. If we move out of the field of machine
learning (e.g., on computer vision or NLP-related tasks),
we find an area still to be explored, where the different
works are limited to analysing global image properties
(e.g., salience, memorability, photo quality, tone, colour,
texture, etc.) [31, 32, 33], or, in the case of NLP, they are
based on lexical readability and richness [34, 35].

All the approaches above are specific to a domain
and in many cases also anthropocentric. A completely
different approach is Item Response Theory, a well-
developed subdiscipline in psychometrics [36], only re-
cently brought to AI and machine learning [37, 12, 38, 39,
40]. In IRT, the probability of a correct response for an
item is a function of the respondent’s ability and some
item’s parameters. The respondent solves the problem
and the item is the problem instance itself. We focus
on the dichotomous models where the response can be
either correct or incorrect.

Let 𝑈𝑗𝑖 be a binary response of a respondent 𝑗 to item 𝑖,
with 𝑈𝑗𝑖 = 1 for a correct response and 𝑈𝑗𝑖 = 0 otherwise.
For the basic one-parameter logistic (1PL) IRT model, the
probability of a correct response given the examinee’s
ability is modelled as a logistic function:

𝑃(𝑈𝑗𝑖 = 1|𝜃𝑗) =
1

1 + 𝑒𝑥𝑝(−𝑎𝑖(𝜃𝑗 − 𝑏𝑖))
(1)

The parameter 𝜃𝑗 is the ability or proficiency of 𝑗 and 𝑏𝑖
is the difficulty of 𝑖. If ability 𝜃 equals item difficulty 𝑏𝑖,
then there are even odds of a correct answer (cutting the
curve as exactly 0.5, as the light blue dashed shows in
Fig. 1. For each item, the above model provides an Item
Characteristic Curve (ICC) (see Fig. 1, left), characterised
by difficulty (𝑏𝑖), which is the location parameter of the
logistic function.
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Figure 1: Left: Example of a 2PL IRT ICC curve, with slope
𝑎 = 2 in red and location parameter 𝑏 = 3 in blue. Right:
Example of SCC curves with different abilities.

As all IRT models assume one single parameter for
the respondent, their dual plots (known originally as
person characteristic curves, here renamed as system
characteristic curves (SCC), also follow a logistic func-
tion (see Fig. 1, right). Respondents who tend to correctly
answer the most difficult items will be assigned to high

values of ability. Difficult items in turn are those cor-
rectly answered only by the most proficient respondents.
From this understanding and some common assumptions
(ability and difficulty following some particular normal
distributions), the latent variables can be inferred from a
table of item-respondent pairs 𝑈𝑗𝑖. Some two-step itera-
tive variants of maximum-likelihood estimation (MLE),
such as Birnbaum’s method [41], can be used to infer all
the IRT parameters.

IRT difficulty is characterised by being system-
independent an domain-generic unlike the other metrics
described above [11]. It also has some advantages over
using average performance as a metric of difficulty, in
terms of distribution, stability and predictability, as has
been studied in the literature of IRT.

Figure 2: Dendrogram representing the hierarchical cluster-
ing (18 groups) of ML models. From [42].

2.3. Behaviour-based Machine Learning
families

One classical way of characterising the rich range of
machine learning techniques is by defining ‘families’, ac-
cording to their formulation and learning strategy (e.g.,
neural networks, Bayesian methods, etc.) [43, 44, 45].
However, this taxonomy of learning techniques does not
take into account the intrinsic behaviour of the models
(measured as output agreement), especially considering
predictions in sparse zones where insufficient training
data was available. If we want to characterise the robust-



ness of ML models, we need to analyse a diverse set of
models, as many as possible, under different parameters
as well. In this regard, [42] derived a taxonomy of ML
techniques for classification, where families are clustered
according to their degree of (dis)agreement in behaviour,
i.e., the differences between models on how they dis-
tribute the output class labels along the feature space.
We considered both dense and sparse zones (where train-
ing data is scarce or inexistent), using Cohen’s kappa
statistic [46]. While in dense areas differences between
models may be difficult to find, in sparse areas the algo-
rithms diverge significantly, and unveil the characteristic
behaviour of the trained models using those techniques.

The methodology was based on comparing the be-
haviour of 65 different learning models (including hyper-
parameter variations), performing a pairwise comparison
(based on Kappa) and averaging the results obtained for
75 datasets. For grouping in families, authors applied a
hierarchical clustering so that the models that presented
similar behaviour fell in the same cluster, which is consid-
ered a model family (see the 18 different families obtained
in Figure 2). This method is useful to objectively quantify
how different two models (or model families) are.

3. Empirical Methodology
In this section we describe the experimental methodol-
ogy performed to obtain a taxonomy of classification
algorithms according to their robustness. We start in-
troducing the set of representative datasets and learn-
ing models we have employed. Then, we describe how
we estimate instance difficulty, the approach followed
to introduce noise in the data and, finally, how we de-
fine the taxonomy of ML families. All the data, code,
complete experiments, plots and results can be found in
https://github.com/rfabra/family-robustness.

3.1. Data and Classifiers
In order to estimate IRT-difficulty, we need to find bench-
marks that had instance-wise results of a good number
of models. It is recommended to have at least 10-20 re-
sponses per item [47]. More importantly, we need the
instance-wise results, i.e., a |𝐽 | × |𝐼 | matrix with the per-
formance of each system 𝑗 ∈ 𝐽 for each instance 𝑖 ∈ 𝐼.
Finding experiments not reported in an aggregated way
was not an easy task. As an exception to the instance-
wise result problem, we find platforms such as OpenML
[48], a repository in which AI researchers and practi-
tioners can share data sets and results in as much detail
as possible. The platform also provides several curated
datasets such as OpenML-CC18, fromwhich we address a
set of 3 benchmarks for supervised learning (see Table 1).
The selection is guided by the illustrative character (with

the preliminary objective of testing the effectiveness of
our setting), but is also limited by those benchmarks
where there is a sufficiently large number |𝐼 | of examples
(articles) and |𝐽 | of models (respondents).

Dataset # Instances # Features # Classes

letter 20000 16 26
optdigits 5620 64 10

wall-robot-navigation 5456 4 4

Table 1
List of datasets for the experiments.

Regarding ML models, we employed a set of 18 ML
models from different ML families (see Table 2), derived
in [42]. These 18 model families were obtained from a
pool of 65 models learned and evaluated on a wide range
of datasets for categorisation into different families, as
described in the section 2.3. For each family we selected
a single model, its centroid (i.e., representing the center
of each family cluster), assuming it to be representative
of its family. Thus, we can assume that the 18 selected
models are diverse enough to provide a wide view of how
different model families behave in terms of robustness.

3.2. Estimation of Difficulty
As mentioned in Section 3.1, in order to estimate the
difficulty of the instances, we first check that for each
benchmark selected from OpenML there is at least 10-20
reponses (model evaluations) per item/feature (e.g., we
would need between 640 and 1280 responses for optdigits)
and that they are sufficiently diverse (different architec-
tures or technologies). Next, we obtain their responses
for unseen instances (e.g., we will be using the test folds,
so it is actually test performance, even if we cover the
whole dataset). This will be our |𝐽 | × |𝐼 | matrix 𝑈 with all
binary responses 𝑈𝑗𝑖.

We follow the recommendations from [12] for the ap-
plication of IRT. In practice, for generating the IRT mod-
els, we used the MIRT R package [49], using Birnbaum’s
method, as explained above. The package MIRT (as many
other IRT libraries) output indicators about the goodness
of fit which can be used to quantify the discrepancy be-
tween the values observed in the data (items) and the
values expected under the statistical IRT model. Item-fit
statistics may be used to test the hypothesis of whether
the fitted model could truly be the data-generating model
or, conversely, we expect the item parameter estimates
to be biased. In practice, an IRT model may be rejected
on the basis of bad item-fit statistics, as we would not be
reasonably confident about the validity of the inferences
drawn from it [50]. In the present case, none of the es-
timated models were discarded because of bad item-fit
statistics or inconsistency in their results.

https://github.com/rfabra/family-robustness


Technique Parameters id

C5.0 C5.0
Cond. Inf. Tree mincriterion = 0.05 CI_T
Flex. Disc. Analysis degree = 1, nprune = 17 FDA
Stoch. Grad. Boosting Machine interaction.depth = 2, n.trees = 50 GBM
JRip JRip
K-Nearest Neighbor K = 3 3NN
Learning Vector Quant. size = 50, K = 3 LVQ
MultiLayer Perceptron 1 hidden layer, 7 neurons MLP
Multinomial Log. Regression MLR
Naive Bayes NB
PART PART
Radial Basis Function Network RBF
Regularised Discriminant Analysis RDA
Random Forest mtry = 64 RF
RPART RPART
Part. Least Squares ncomp = 3 PLS
SVM Poly, degree = 2 SVM
RFRules mtry = 64 RFRules

Table 2
List of the 18 models employed for the experiments, along
with the parameters used.

3.2.1. System Characteristic Curves

One of the most powerful visualisation tools that de-
rives from difficulty is what we call system characteristic
curves (SCC) (Fig. 1, right). Inspired by the concept of
person characteristic curve previously developed in IRT,
a SCC is a plot for the response probability (e.g., accuracy,
kappa, etc.) of a particular classifier as a function of the
instance difficulty. For producing the SCC, we divide the
instances in bins according to difficulty. For each bin, we
plot on the 𝑥-axis the average difficulty of the instances
in the bin and on the 𝑦-axis we plot the performance
metric selected.

3.3. Introduction of Noise
We need a method to generate noise, representative and
general enough, so that the experimental results can be
adapted to other noise settings, e.g., to include adversarial
attacks. Hence, we will work directly with noise levels,
assuming that they are mapped from contexts. Noise is
generated randomly by using some well-known proba-
bility distributions, following a similar procedure as in
[16]. Instances are perturbed by changing their attribute
values into a range of possible values. The process to
select among the possible values depends on whether the
attribute is nominal or numerical:

• Numerical attributes: Let 𝜈 be the level of noise
to be injected into a numerical attribute 𝑎𝑡, and 𝜎
the standard deviation of all values of 𝑎𝑡. Then,
a value 𝑥 in 𝑎𝑡 is modified as 𝑥′ ∼ 𝑁(𝑥, 𝜎 ⋅ 𝜈), i.e.,
we follow a normal distribution using 𝑥 as mean
and 𝜎 multiplied by the noise level 𝜈 as standard
deviation.

• Nominal attributes: Let {𝑎𝑡1,...,𝑎𝑡𝑚} be the set
of the 𝑚 possible values of a nominal attribute

𝑎𝑡, and 𝑝 the vector that represents the empiri-
cal distribution of 𝑎𝑡, that is, 𝑝 = (𝑝𝑎𝑡1 , … , 𝑝𝑎𝑡𝑚),
where, 𝑝𝑖 is the frequency of value 𝑖. Consider
we have an instance of value 𝑥 = 𝑎𝑡𝑗 in 𝑎𝑡, we
represent as the vector 𝑡 = (𝑡𝑎𝑡1 , … , 𝑡𝑎𝑡𝑚) with
𝑡𝑎𝑡𝑖 = 0 ∀𝑖 ∈ {1..𝑚}, 𝑖 ≠ 𝑗, and 𝑡𝑎𝑡𝑗 = 1. To in-

sert a noise level 𝜈, we calculate 𝛼 = 1 − 𝑒(−𝜈),
and then compute a new vector of probabilities
𝑝′ = 𝛼 ⋅ 𝑝 + (1 − 𝛼) ⋅ 𝑡. Finally, we use 𝑝′ in order
to sample the new value 𝑥′ of the attribute.

For the experiments, we will generate noisy datasets
(test set) using a noise level 𝜈 = 0.2. We vary the pro-
portion of perturbed instances 𝛿 in each bin, from 𝛿 = 0
(keeping unperturbed the original test set) to 𝛿 = 1 (per-
turbing the whole test set). This is performed under a
5-fold cross validation setting. For each model, we will
compare its predictions on the original test set with the
predictions of each of the noisy test sets, by means of the
Kappa metric, as we describe below.

3.4. Model robustness to noise and
difficulty

We compare the behaviour of ML models from different
families by classifying the same test set from a particu-
lar benchmark, to which we introduce different levels of
noise. The more the behaviour of a model changes under
noise, the less robust it is. This difference in behaviour
can be measured with Cohen’s Kappa metric [46]. More
concretely, given 𝑇 the domain of all data sets we can
create from all possible inputs, a test set 𝑇 ∈ 𝑇, a pertur-
bation function 𝜙 ∶ 𝑇 → 𝑇 to introduce noise into a data
set, the perturbed test set 𝑇 ′ = 𝜙(𝑇 ), the predictions of a
model 𝑀 for the original test 𝑦𝑀 = 𝑀(𝑇 ), the predictions
of a model 𝑀 for the perturbed test 𝑦 ′𝑀 = 𝑀(𝑇 ′) and two
models 𝑀1 and 𝑀2 learned on the same data, the model
𝑀1 is considered more robust than model 𝑀2 if

𝜅(𝑦𝑀1 , 𝑦
′
𝑀1

) > 𝜅(𝑦𝑀2 , 𝑦
′
𝑀2

)

Thus, we employ the Kappa as a measure of similarity
between the predictions of amodel on the original and the
perturbed test sets. It is important to notice that we are
not accounting for the real class label, since adding noise
to the input attributes of an instance implies that the
actual class is probably not the same as it was originally.
Instead, we compare the model predicted labels for the
original test set (without noise) with the ones predicted
for the noisy test sets. Our goal is not to determine the
well-performance of a model to solve a task, but to assess
how the behaviour of the model changes under different
levels of noise applied to instances of different levels of
difficulty. As we want to analyse whether the model
robustness may vary depending on the difficulty of the



instances addressed, we estimated the difficulty of each
instance in the dataset following the procedure described
above. Later, we grouped instances into difficulty bins to
analyse the robustness (to produce SCCs), as explained
above.

Analysing the data from the SCCs for different mod-
els we also derive a ML robustness model taxonomy at-
tending at the different shapes of the SCCs and models’
behaviour. In this regard, for each dataset, we built a ma-
trix where each row represents a model and each column
represent a combination of difficulty bins and proportion
of noisy instances per bin. Each element represents the
similarity (i.e., the kappa metric) between the predictions
of the model for the original test set and the predictions
for each noisy test and bin. By averaging these across all
the datasets, we may perform a hierarchical clustering
with the aim of obtaining different grouping of models
by robustness, showing the similarity between different
ML families, in a data-driven fashion.

3.5. Experimental questions
Once the experimental methodology is clear, we now
want to investigate the relationship between the robust-
ness of the models and the difficulty of the instances, the
latter having been altered with different levels of noise.
For this, we set 3 experimental questions. Q1: How do
difficulties distribute per benchmark for the IRT-difficulty
metric estimated? Q2. Can we see differences in robust-
ness for different models based on the difficulty of the
instances? Q3. Can we group models by robustness?

4. Experiments

4.1. Setup
We employed R language with caret package [51] to
carry out our experiments, i.e., training and evaluation
of the models. All the models were learnt from scratch,
so we did not used any pre-trained model. We used the
MIRT R package [49] for estimating IRT 1PL models. To
feed the IRT method, we obtained the predictions from a
wide variety of models by using OpenML API [52]. In total,
we employed the predictions of (up to) 2000 evaluations
per dataset.

4.2. Results
IRT difficulties are built to approximately follow a nor-
mal distribution with standard deviation 1 but different
locations depending on the dataset. When it comes to
the item difficulty parameters, what you find acceptable
depends very much on the purpose of your test and the
population of interest. For instance, values around 1 are

typical in educational measurement. In health measure-
ment, however, these values are usually much higher and
around 4. In our case, when addressing ML benchmarks,
difficulty values around -3 and 3 are the norm (see [12]).
For this reason, we decided to remove those instances
whose difficulty is out of the range [−6, 6], which are
considered outliers. This happened in all benchmarks
for very easy instances for which all techniques are cor-
rect, never affecting more than 0.1% of the instances.
Figure 3 shows the IRT-difficulty distribution per bench-
mark, with a standard deviation around 1 (as expected).
In terms of location (Q1), the letter benchmark contains
more difficult instances (mean difficulty of −1.50 ± 0.92 )
than the others (−1.92±0.67 for optdigits and −2.36±0.9
for wall-robot navigation). Although the distribution is
generally normally distributed, the wall-robot-navigation
dataset presents a higher number of difficult instances,
skewing the distribution to the right. This may be due to
the diversity of the population of systems used for the
difficulty estimation (similar cases can be observed in
[11]).

letter

optdigits

wall−robot−navigation

−4 0 4
Difficulty

da
ta

se
t

Figure 3: IRT-difficulty distribution per dataset. Benchmarks
sorted by average difficulty.

Regarding Q2, for each technique in Table 2, we com-
pare its predictions on the original test set (for each
dataset in Table 1) with the predictions of each of the
noisy test sets, by means of the Kappa metric. The SCCs
produced (using Kappa values on the y-axis) are shown in
Figure 4. Obviously, Kappa takes values equal to 1 when
the test set is not perturbed (𝛿 = 0), since we are com-
paring the output labels of the different trained model
with themselves. As we increase the amount of perturbed
instances (the same proportion for each bin of difficulty),
we can appreciate differences in the behaviour for the
techniques analysed.

As expected, the most difficult instances are those that
are more sensitive to noise, and this can be seen in terms
of the level of performance of the different techniques for
the most difficult instance bins. This behaviour may indi-
cate that these instances are located close to the decision
boundary or regions with class overlap, so the behaviour
for most techniques is more unpredictable in those re-
gions that in easier ones. In general, we may find some
patterns of behaviour for different sets of techniques.
First, we identify cases where robustness decreases non-
linearly with increasing levels of difficulty. This is the
most common case, but with differences in robustness
variations for different models and datasets (see, e.g., CI_T,
FDA, 3NN, MLP , MLR or SVM). Second, we also see cases
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Figure 4: Kappa vs Difficulty for different models and benchmarks, varying the proportion of instances for each difficulty bin.

where robustness is mostly affected by the noise level
and less by the difficulty of the instances (see, e.g.,NB,
RBF or RDA). Finally, there are cases in which robustness
is barely altered by either difficulty or noise level (see,
e.g., PLS, PART or LVQ).

On the other hand, if we analyse the results at the
dataset level, we see that the behaviour of some tech-
niques changes significantly. For instance, techniques
such as C5.0, CI_T and JRip for the dataset optdigits exhibit
an interesting behaviour. These techniques seem more
prone to change theirs predictions in easy instances than
medium (even hard) instances. Analysing the results in
more detail, we have seen that this is due to the class dis-
tributions in those more easy bins: these bins are usually
composed of many instances of a single class (usually the
majority class), but these instances may be misclassified
as we increase the amount of noise, thus reflecting a drop
in the Kappa value.

This is the case, for instance, with the JRipmodel learnt
on the optdigits dataset. The first bin is composed of 479
instances of the class “6”, without introducing any noise
(𝛿 = 0). After perturbing all the instances (𝛿 = 1), only
256 instances in this bin are predicted of class “6”, which
explains the observed descend in Kappa. If we focus on

the last bin (the most difficult) for this same model and
dataset, we can see that it presents similar behaviour
compared with the first bin. However, this phenomenon
happens for a different reason. In this case, the model
predicts 160 instances of class “1” for 𝛿 = 0, whereas
for 𝛿 = 1, the number of instances predicted of this
class increased up to 244, i.e., this bin tends to absorb the
predictions of class ”1” the more noise is introduced. Both
cases may constitute a robustness flaw for a particular
model.

Finally, for Q3, we derive a taxonomy to group similar
techniques in terms of robustness behaviour consider-
ing difficulty. To measure the dissimilarity between sets
of observations, we employed the Kappa metric com-
puted for each model, aggregated accross all datasets,
difficulty bins, and proportions of perturbed instances 𝛿.
We performed an agglomerative hierarchichal clustering,
employing the euclidean distance and the complete link-
age method as a linkage criteria. The result of applying
the hierarchical clutering is shown in Figure 5. We found
three main clusters. The first cluster show that CI_T, JRip
and C5.0 have very similar behaviour, joining with NB.
The second cluster is composed of the models GBM, RF,
MLR , MLP y FDA, joining with RPART and RFRules at



a higher height. The last cluster shows two subgroups.
The first one consists of PART, SIMPLS and LVQ. The sec-
ond subgroup contains RDA, RBF, 3NN and SVM. These
results show that models from different ML families may
present similar robustness (e.g., the models JRip and CI_T),
despite they come from very different techniques.

Figure 5: Robustness-based taxonomy for different ML fami-
lies.

Overall, we have shown that estimating difficulty for
analysing robustness may be very useful and insightful.
We would need to inspect the test SCCs as an exercise
before selecting and deploying models in real-world situ-
ations. SCCs can thus be used to select the (set of) best
classifier(s) according to the their robustness for different
difficulty ranges. Since we may not know the difficulty
values of these unseen examples in a test/validation set,
we may estimate them in different (an straightforward)
ways such as by averaging the difficulty values of the
most similar examples in the original set [12] or training
a difficulty estimator [11]. We could even do this with
small sets or even for single instances, always running
the difficulty estimator to determine which model to use
for it. If we can predict the difficulty of instances, we
could set a threshold to use the system only for the easy
instances for which it is robust.

5. Conclusions and Future Work
In this work we propose an evaluation setting to analyse
the robustness of different ML models, from different ML
families, when addressing noisy instances attending to
their difficulty. Furthermore, we established a ML model
taxonomy based on the robustness. Our results shown
that there are models affected by noise, instance difficulty,
or both. Some models are more prone to change their pre-
diction when adding noise to the most difficult instances,
while other models also performs similarly with easy
instances. This might be caused by the concentration of

certain instances of a predicted class in easy bins, which
are misclassified after introducing noise. On the other
hand, harder bins may absorb certain classes after intro-
ducing noise. Given this variety in model’ behaviour,
we derived a model robustness taxonomy by perform-
ing a hierarchical clustering to group items that behave
similarly. Our results shown that there are three major
clusters. Within each cluster, we can see very different
models, from different families, behave very similarly in
terms of robustness.

As future work, we will continue to work in this evalu-
ation setting by adding more benchmarks (from different
domains) and perturbation functions in our experiments,
in order to confirm the results obtained. All this will also
add more diversity and generality to our method, thus
providing a better insights into the robustness of ML fam-
ilies. Future work may also include the application of our
framework in specific use cases. We may focus, for in-
stance, on tasks such as object detection for autonomous
vehicles for which we want to evaluate the robustness of
a (set of) sytem(s). To do so, we would need a particular
benchmark(s) for the detection task, a difficulty estimator
for them [11], and a perturbation function to generate
invalid inputs, including noise in the captured images or
different adversarial attacks [53]. By running our setup,
we can potentially analyse which systems(s) are more
robust based on the difficulty of the task (e.g, generating
also a taxonomy based on similarities), and select the
best ones according to the their robustness for different
difficulty ranges. As future work, we are interested in
exploring other alternative setups of our methodology to
gain new insights of the model’s behaviour. For instance,
we could introduce noise by perturbing only the most
relevant attribute/s, instead of all of them, so that we can
assess the robustness of the model in relation to those
attributes. We could also apply other noise injection
methods.

Acknowledgments
This work has been partially supported by the Norwe-
gian Research Council grant 329745 Machine Teach-
ing for Explainable AI, also by the EU (FEDER) and
Spanish MINECO grant RTI2018-094403-B-C32 funded
by MCIN/AEI/10.13039/501100011033 and by “ERDF A
way of making Europe”, Generalitat Valenciana under
grant PROMETEO/2019/098, EU’s Horizon 2020 research
and innovation programme under grant agreement No.
952215 (TAILOR), and INNEST/2021/317 (Project co-
funded by the European Union with the “Programa Oper-
ativo del Fondo Europeo de Desarrollo Regional (FEDER)
de la Comunitat Valenciana 2014-2020”) and the UPV
(Vicerrectorado de Investigación) grant PAI-10-21.



References
[1] J. Grimmer, M. E. Roberts, B. M. Stewart, Ma-

chine learning for social science: An agnostic ap-
proach, Annual Review of Political Science 24 (2021)
395–419.

[2] F. Zantalis, G. Koulouras, S. Karabetsos, D. Kan-
dris, A review of machine learning and iot in smart
transportation, Future Internet 11 (2019) 94.

[3] C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, S. P. Ong,
A critical review of machine learning of energy
materials, Advanced Energy Materials 10 (2020)
1903242.

[4] I. S. C. Committee, et al., Ieee standard glossary of
software engineering terminology (ieee std 610.12-
1990). los alamitos, CA: IEEE Computer Society 169
(1990) 132.

[5] J. M. Zhang, M. Harman, L. Ma, Y. Liu, Machine
learning testing: Survey, landscapes and horizons,
IEEE Transactions on Software Engineering (2020).

[6] H. Xu, S. Mannor, Robustness and generalization,
Machine learning 86 (2012) 391–423.

[7] J. Rauber, W. Brendel, M. Bethge, Foolbox:
A python toolbox to benchmark the robustness
of machine learning models, arXiv preprint
arXiv:1707.04131 (2017).

[8] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytin-
iotis, A. Nori, A. Criminisi, Measuring neural net
robustness with constraints, Advances in neural
information processing systems 29 (2016).

[9] J. Lian, L. Freeman, Y. Hong, X. Deng, Robustness
with respect to class imbalance in artificial intelli-
gence classification algorithms, Journal of Quality
Technology 53 (2021) 505–525.

[10] J. Hernández-Orallo, B. S. Loe, L. Cheke, F. Martínez-
Plumed, S. Ó hÉigeartaigh, General intelligence
disentangled via a generality metric for natural and
artificial intelligence, Scientific reports 11 (2021)
1–16.

[11] F. Martınez-Plumed, D. Castellano-Falcón, C. Mon-
serrat, J. Hernández-Orallo, When AI difficulty is
easy: The explanatory power of predicting irt diffi-
culty, in: Proceedings of the AAAI Conference on
Artificial Intelligence, 2022.

[12] F. Martínez-Plumed, R. B. Prudêncio, A. Martínez-
Usó, J. Hernández-Orallo, Item response theory
in AI: Analysing machine learning classifiers at
the instance level, Artificial Intelligence 271 (2019)
18–42.

[13] R. K. Hambleton, H. Swaminathan, Item response
theory: Principles and applications, Springer Sci-
ence & Business Media, 2013.

[14] D. Ljunggren, S. Ishii, A comparative analysis of
robustness to noise in machine learning classifiers,
2021.

[15] B. D. Ripley, Pattern recognition and neural net-
works, Cambridge university press, 2007.

[16] C. Ferri, J. Hernández-Orallo, R. Modroiu, An exper-
imental comparison of performance measures for
classification, Pattern recognition letters 30 (2009)
27–38.

[17] J. A. Sáez, M. Galar, J. Luengo, F. Herrera, Analyz-
ing the presence of noise in multi-class problems:
alleviating its influence with the one-vs-one decom-
position, Knowledge and information systems 38
(2014) 179–206.

[18] C.-M. Teng, Correcting noisy data., in: ICML,
Citeseer, 1999, pp. 239–248.

[19] X. Zhu, X. Wu, Q. Chen, Eliminating class noise in
large datasets, in: Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML-03),
2003, pp. 920–927.

[20] D. Madaan, J. Shin, S. J. Hwang, Learning to gen-
erate noise for multi-attack robustness, in: Inter-
national Conference on Machine Learning, PMLR,
2021, pp. 7279–7289.

[21] S. Latif, R. Rana, J. Qadir, Adversarial machine
learning and speech emotion recognition: Utiliz-
ing generative adversarial networks for robustness,
arXiv preprint arXiv:1811.11402 (2018).

[22] C. Leistner, A. Saffari, P. M. Roth, H. Bischof, On
robustness of on-line boosting-a competitive study,
in: 2009 IEEE 12th International Conference on
Computer Vision Workshops, ICCV Workshops,
IEEE, 2009, pp. 1362–1369.

[23] J. M. Zhang, M. Harman, B. Guedj, E. T. Barr,
J. Shawe-Taylor, Perturbation validation: A new
heuristic to validate machine learning models,
arXiv preprint arXiv:1905.10201 (2020).

[24] J. A. Sáez, J. Luengo, F. Herrera, Evaluating the
classifier behavior with noisy data considering per-
formance and robustness: The equalized loss of ac-
curacy measure, Neurocomputing 176 (2016) 26–35.

[25] V. Tjeng, K. Xiao, R. Tedrake, Evaluating robustness
of neural networks with mixed integer program-
ming, arXiv preprint arXiv:1711.07356 (2017).

[26] T. Gehr, M. Mirman, D. Drachsler-Cohen,
P. Tsankov, S. Chaudhuri, M. Vechev, Ai2: Safety
and robustness certification of neural networks
with abstract interpretation, in: 2018 IEEE
Symposium on Security and Privacy (SP), IEEE,
2018, pp. 3–18.

[27] D. Gopinath, K. Wang, M. Zhang, C. S. Pasareanu,
S. Khurshid, Symbolic execution for deep neural
networks, arXiv preprint arXiv:1807.10439 (2018).

[28] M. Usman, Y. Noller, C. S. Păsăreanu, Y. Sun,
D. Gopinath, Neurospf: A tool for the symbolic anal-
ysis of neural networks, in: 2021 IEEE/ACM 43rd
International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), IEEE,



2021, pp. 25–28.
[29] G. Katz, C. Barrett, D. L. Dill, K. Julian, M. J. Kochen-

derfer, Reluplex: An efficient smt solver for veri-
fying deep neural networks, in: International con-
ference on computer aided verification, Springer,
2017, pp. 97–117.

[30] M. R. Smith, T. Martinez, C. Giraud-Carrier,
An instance level analysis of data complexity,
Mach. Learn. 95 (2014) 225–256. URL: https://
doi.org/10.1007/s10994-013-5422-z. doi:10.1007/
s10994-013-5422-z.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., Imagenet large scale
visual recognition challenge, International journal
of computer vision 115 (2015) 211–252.

[32] D. Liu, Y. Xiong, K. Pulli, L. Shapiro, Estimating
image segmentation difficulty, in: International
Workshop on Machine Learning and Data Mining
in Pattern Recognition, Springer, 2011, pp. 484–495.

[33] S. Vijayanarasimhan, K. Grauman, What’s it going
to cost you?: Predicting effort vs. informativeness
for multi-label image annotations, in: 2009 IEEE
conference on computer vision and pattern recog-
nition, IEEE, 2009, pp. 2262–2269.

[34] B. Richards, Type/token ratios: What do they really
tell us?, Journal of child language 14 (1987) 201–209.

[35] D. L. Hoover, Another perspective on vocabulary
richness, Computers and the Humanities 37 (2003)
151–178.

[36] S. E. Embretson, S. P. Reise, Item response theory
for psychologists, L. Erlbaum, 2000.

[37] F.Martínez-Plumed, R. B. C. Prudêncio, A.Martínez-
Usó, J. Hernández-Orallo, Making sense of item
response theory in machine learning, in: ECAI
2016 - 22nd European Conference on Artificial
Intelligence, 2016, pp. 1140–1148. doi:10.3233/
978-1-61499-672-9-1140.

[38] F. Martínez-Plumed, J. Hernández-Orallo, Dual
indicators to analyse AI benchmarks: Difficulty,
discrimination, ability and generality, IEEE Trans-
actions on Games 12 (2020) 121–131.

[39] J. P. Lalor, Learning Latent Characteristics of Data
and Models using Item Response Theory, Ph.D. the-
sis, Doctoral Dissertations, 1842, 2020.

[40] Z. Chen, H. Ahn, Item response theory based en-
semble in machine learning, International Journal
of Automation and Computing 17 (2020) 621.

[41] A. Birnbaum, Statistical Theories of Mental Test
Scores, Addison-Wesley, Reading, MA., 1968.

[42] R. Fabra-Boluda, C. Ferri, F. Martínez-Plumed,
J. Hernández-Orallo, M. J. Ramírez-Quintana, Fam-
ily and prejudice: A behavioural taxonomy of ma-
chine learning techniques, in: ECAI 2020, IOS Press,
2020, pp. 1135–1142.

[43] J. Hernández Orallo, C. Ferri Ramírez,
M. Ramírez Quintana, Introducción a la Min-
ería de Datos, Pearson Prentice Hall, 2004.

[44] P. Flach, Machine learning: the art and science of
algorithms that make sense of data, Cambridge Uni-
versity Press, 2012.

[45] M. Fernández-Delgado, E. Cernadas, S. Barro,
D. Amorim, Do we need hundreds of classifiers
to solve real world classification problems?, The
journal of machine learning research 15 (2014)
3133–3181.

[46] R. Landis, G. Koch, An application of hierarchical
kappa-type statistics in the assessment of majority
agreement among multiple observers, Biometrics
(1977) 363–374.

[47] B. D. Wright, M. H. Stone, Best test design, Mesa
press, 1979.

[48] J. Vanschoren, J. N. Van Rijn, B. Bischl, L. Torgo,
OpenML: networked science in machine learning,
ACM SIGKDD Explorations Newsletter 15 (2014)
49–60.

[49] R. P. Chalmers, mirt: A multidimensional item
response theory package for the r environment,
Journal of statistical Software 48 (2012) 1–29.

[50] A. Maydeu-Olivares, Goodness-of-fit assessment
of item response theory models, Measurement: In-
terdisciplinary Research and Perspectives 11 (2013)
71–101.

[51] M. Kuhn, Building predictive models in R using
the caret package, Journal of Statistical Software,
Articles 28 (2008) 1–26. URL: https://www.jstatsoft.
org/v028/i05. doi:10.18637/jss.v028.i05.

[52] J. N. van Rijn, B. Bischl, L. Torgo, B. Gao,
V. Umaashankar, S. Fischer, P. Winter, B. Wiswedel,
M. R. Berthold, J. Vanschoren, OpenML: a collabo-
rative science platform, in: Machine Learning and
Knowledge Discovery in Databases, Springer, 2013,
pp. 645–649.

[53] B. J. Petit, B. Stottelaar, M. Feiri, F. Kargl, Remote at-
tacks on automated vehicles sensors: Experiments
on camera and lidar black hat europe, 2015.

https://doi.org/10.1007/s10994-013-5422-z
https://doi.org/10.1007/s10994-013-5422-z
http://dx.doi.org/10.1007/s10994-013-5422-z
http://dx.doi.org/10.1007/s10994-013-5422-z
http://dx.doi.org/10.3233/978-1-61499-672-9-1140
http://dx.doi.org/10.3233/978-1-61499-672-9-1140
https://www.jstatsoft.org/v028/i05
https://www.jstatsoft.org/v028/i05
http://dx.doi.org/10.18637/jss.v028.i05

	1 Introduction
	2 Background
	2.1 Robustness in a noisy framework
	2.2 Instance difficulty
	2.3 Behaviour-based Machine Learning families

	3 Empirical Methodology
	3.1 Data and Classifiers
	3.2 Estimation of Difficulty
	3.2.1 System Characteristic Curves

	3.3 Introduction of Noise
	3.4 Model robustness to noise and difficulty
	3.5 Experimental questions

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusions and Future Work

