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Abstract
Component-based architectures are commonly used in industry to manage the increasing complexity

of systems. In such architectures, components interact with each other to achieve the desired func-

tionality. They do so by providing and consuming services to and from each other over their defined

interfaces. Interfaces play a key role in managing complexity by abstracting away from implementation

details and describing only externally observable behavior. To describe the behavior of an interface and

analyze them for correctness, formalisms, such as finite state machines and Petri nets, are commonly

used. However, components usually have multiple interfaces and their behavior may depend on each

other. Most approaches so far have focused on fully specifying the behavior of a component as a single

state machine. We consider partial specification of dependencies between interfaces, expressed as a set

of functional constraints. In this paper, we present and formalize three commonly occurring functional

constraints. Algorithms are proposed to generate Petri nets satisfying each of these constraints.

1. Introduction

Systems are becoming increasingly complex, making them challenging to develop, maintain, and

evolve over time [1]. This complexity is usually managed by taking a component-based approach

to achieve modularity [2, 3] by decomposing the system into asynchronously communicating

components. The components provide or consume services to and from each other over interfaces
to realize the functionality of the system. An interface specification must capture, next to a list

of events, also the externally observable behavior by abstracting away from implementation

details. It is common practice in industry to define interfaces in natural text, interface description

languages (IDLs), or in code (header files), focusing mostly on the static structural aspects, e.g.

a list of possible events. Some domain-specific languages (DSLs) exist, such as Component

Modelling and Analysis (ComMA) [4] and Dezyne [5], which capture both the structural and

behavioral aspects of an interface.

Capturing behavioral aspects of an interface, usually as protocol state machines, has many

benefits in a component-based approach. For instance, the behavioral description can be used

as contracts between teams allowing them to work independently, or as contracts to external

suppliers. They may also be used to generate code stubs, or even online test clients or offline test

scenarios to check if the implementation conforms to the specified contracts. Furthermore, since
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interfaces describe the expected interactions between components of a system, it is valuable

to check their correctness at design time, e.g. if the interactions are free from deadlocks,

livelocks, and unbounded behavior. This allows design errors to be detected early during system

specification rather than later during integration and testing, reducing cost.

A component typically has multiple interfaces, and it is quite common that the behavior

of one interface on a component depends on the state of another. Such dependencies may be

captured as functional constraints defined over states and transitions of one or more protocol

state machines. For example, a transition in one interface may or may not happen if another

interface is in a particular state. Another example could be that a transition in one interface must

be followed by a sequence of transitions in other interfaces. Most work in literature have focused

on defining the complete behavior of a component as one or more state machines. In practice,

defining the complete behavior of a component is usually not possible, due to complexity and

limited knowledge of the implementation. Instead, we focus on the fact that interfaces serve as

abstractions of the underlying component implementation by allowing for non-determinism,

e.g. the response to an initialization request may be either a success or fail, but we do not say

when one or the other is possible. Our goal is to exploit this level of abstraction to capture

partial specifications of a component as functional constraints over one or more interfaces.

The three main contributions of this paper are: 1) A formalization of three types of commonly

occurring functional constraints, namely enabling, disabling, and causal sequence constraints.
The formalization describes how each constraint should limit the behaviour of a set of P/T nets,

each corresponding to a protocol state machine in an interface. 2) A set of assumptions on

specific constraints to avoid creating problematic specifications. 3) A method to represent and

incorporate these functional constraints into an existing Petri net representation of component

interfaces, in our case generated from a ComMA specification, which enables absence of dead-

lock, livelock, and unbounded behavior of dependent interfaces to be verified using reachability

analysis. The method is accompanied by proof sketches, showing that the results produced by

the method satisfy the properties defined in the formalization. Throughout the paper, a case

study of a vending machine is used as a running example to demonstrate the approach.

The rest of the paper is organized as follows. Section 2 presents related work, while Section 3

introduces relevant preliminaries, as well as the vending machine case study that is used as a

running example. In Section 4, a formalization of the three types of constraints is presented.

This is followed by a series of assumptions about the behaviour of a given specification, showing

that some specifications of constraints may cause termination issues. Section 5 continues by

presenting for each type of constraint, an algorithm encoding the constraint, as well as proof

sketches showing that the algorithm produces a Petri net that complies with the properties

defined in Section 4. Finally, conclusions are drawn in Section 6.

2. Related Work

The main goal of this work is to synthesize, for each specified constraint, additional Petri

net constructs between existing nets (each describing an interface protocol state machine) to

constrain the space of possible behaviors in their reachability graph. The challenge is to ensure

that such a graph correctly encodes the specified constraints. Based on such a reachability
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graph, it is possible to verify properties, such as absence of deadlocks, livelocks, and unbounded

behavior, at design time.

Since model checking monolithic models describing a system is typically infeasible due to

state space explosion, a compositional approach is usually taken. Both [6] and [7] propose such

an approach. The work in [8] considers another compositional approach based on interface

compliance to ensure that the behavior of the whole is guaranteed to be correct, i.e. absence

of deadlocks, livelocks and unbounded behavior. In constrast to the work presented in this

paper, all the above approaches focus on fully specifying the behavior of a component as a state

machine. The latter goes even further to generate production code from such models. The work

in [9] is similar to the work presented in this paper in the sense that a partial specification is

translated to a formal specification language in order to do verification. This specification is

given in UML-RT [10], and is translated to a CSP [11] model to verify deadlock-freedom.

There are also several works [12, 13, 14] that propose correct by construction methods to

design component-based systems. Such an approach avoids the drawbacks of having to model

check large models. However, there are two main differences to the approach proposed in this

paper. Firstly, they propose design methods that guarantee certain properties by construction,

such as absence of deadlocks and livelocks. The second difference is once again in the focus on

fully specifying the behavior of a component, as opposed to partial specifications considered in

this paper.

In conclusion, no method currently exists to encode commonly occurring functional con-

straints over interfaces of a component for design-time analysis.

3. Preliminaries

This section introduces the preliminaries for this work. Firstly, Section 3.1 starts off with the

introduction of ComMA, the modelling and analysis framework in which the component and

interfaces specifications are defined. Secondly, relevant Petri net concepts are introduced in

Section 3.2, followed by a description of how ComMA interfaces are currently represented as

Petri nets.

3.1. ComMA Component and Interface Specification

Component Modelling and Analysis (ComMA) [4] is a supporting tool for modelling and analysis

of interfaces in component-based systems. It provides a family of domain-specific languages

for specification of structure and behavior of component interfaces and their constraints from

which documentation, analysis, and monitors can be generated[15]. ComMA is available as an

open-source tool under the name Eclipse CommaSuite
1
.

The behaviour of an interface is specified in ComMA as a protocol state machine. Figures 1a

and 1b show two example interfaces, a Service Interface and a User Interface, that belong

to a vending machine component that is used as a running example in this paper. Figure 1a

shows an interface with three states: Off, Operational, and Error. Through this interface, a

technician may turn the machine on or off, and may restock the machine with LoadProduct.

1

https://www.eclipse.org/comma/
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The machine may also go out of order from any state, in which case it can be reset. Figure 1b

shows an interface with the following three states: Uninitialized, Ready and Empty. Initially,

the interface is in the Uninitialized state. After initializing, it is in the ready state. Here,

an Initialized or ResetDone message can be sent, depending on whether the machine was

initialized after a Reset or a SwitchOn. If the machine is out of products, it will go to the

Empty state, and can go back to the Ready state if the machine is restocked.

(a) Protocol of the Service Interface (b) Protocol of the User Interface

1. LoadProduct shall only happen if the User interface is in the Empty state

2. Order shall not happen if the Service interface is in the Error state

3. SwitchOn shall be followed by Initialize followed by Initialized

4. SwitchOn shall only happen if the User interface is in the Uninitialized state

5. Reset shall be followed by Initialize followed by ResetDone

6. Reset shall only happen if the User interface is in the Uninitialized state

(c) Functional constraints on the service and user Interface

Figure 1: Vending machine example.

A ComMA component specification describes how events on one interface depend on events

of other interfaces. These component specifications are referred to as functional constraints.
Functional constraints are of three types. Firstly, the enabling constraint, which defines an

additional enabling condition for transitions that depends on the current state of one or more

other interfaces. For our vending machine, constraints 1, 4 and 6 in Figure 1c are enabling

constraints. Secondly, the disabling constraint, which defines a disabling condition for transitions

that depends on the current state of one or more other interfaces. In Figure 1c, this is constraint

2. Lastly, the causal sequence constraint requires that when certain transitions on one interface

are fired, they are always followed by a sequence of transitions from other interfaces. In our

vending machine example, constraints 3 and 5 fall under this category.
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3.2. Petri Nets

A Petri net is a tuple 𝑁 = (𝑃, 𝑇, 𝐹 ), where 𝑃 is the set of places; 𝑇 is the set of transitions such

that𝑃∩𝑇 = ∅ and𝐹 is the flow relation𝐹 ⊆ (𝑃×𝑇 )∪(𝑇×𝑃 ). We refer to elements from𝑃∪𝑇
as nodes and elements from 𝐹 as arcs. We define the preset of a node 𝑛 as

∙𝑛 = {𝑚|(𝑚,𝑛) ∈ 𝐹}
and the postset as 𝑚∙ = {𝑛|(𝑚,𝑛) ∈ 𝐹}. A finite sequence over a set 𝑆 with length 𝑛 ∈ N is

denoted by 𝜎, where 𝜎 is a function 𝜎 : {1, .., 𝑛} → 𝑆. We denote the set of all finite sequences

over 𝑆 by 𝑆*
. We say that a function 𝑚 : 𝑆 → N over some set 𝑆 is a bag over 𝑆. For some

𝑠 ∈ 𝑆, 𝑚(𝑠) denotes the number of occurrences of s in 𝑚. The set of all bags over 𝑆 is denoted

by 𝐵(𝑆).
A P/T net 𝑁 is a state machine (S-net) iff: ∀𝑡 ∈ 𝑇𝑁 : |∙𝑡| ≤ 1 ∧ |𝑡∙| ≤ 1 and all markings

have exactly one token [16]. This means there is a one-to-one mapping between the states of

the corresponding state machine and places in its S-net representation. Since S-net markings

only have a single token, a place 𝑝 having a token represents the protocol of the interface being

in a state 𝑠.

While open Petri nets (OPNs) [17] are sometimes used to model interfaces and their interac-

tions [14, 12], we do not need them for this paper. This is because the functional constraints

are defined on internal behavior of a single component with multiple interfaces. Communication

with other components through designated interface places introduced by OPNs is hence out

of scope. We therefore drop these designated interface places, leaving us only with interface

skeletons, which we refer to as interface nets. A component is therefore defined as a set of S-Nets

representing the interfaces that it implements. For a component 𝒪, all interfaces 𝑁 ∈ 𝒪 are

pairwise disjoint. For a component 𝒪, 𝑃𝒪 denotes the set of all places

⋃︀
𝑁∈𝒪(𝑃𝑁 ), and 𝑇𝒪 the

set of all transitions

⋃︀
𝑁∈𝒪(𝑇𝑁 ).

Figure 2 shows the interface skeletons of the two vending machine interfaces represented as

S-nets, which is the result of an existing transformation in ComMA. As each transition in Figure

2 represents an event on an interface, we will use the term event and transition interchangeably.

Note that there are no connections between places and transitions in the two interfaces. This is

because the transformation does not consider functional constraints during the transformation.

That is a novel contribution of this paper.

4. Formalization of Functional Constraints

In this section, we formalize the three types of constraints presented in Section 3: 1) Enabling
constraint: an event of an interface can only occur if one or more other interfaces are in a certain

specified state, 2) Disabling constraint: an event of an interface cannot occur if one or more

other interfaces are in a certain specified state, and 3) Causal sequence constraint: An action

must be followed by a sequence of events across multiple interfaces. In this section we will

formalize the three constraints as reachability properties, starting with enabling constraints

in Section 4.1 and continuing with disabling constraints and causal sequence constraints in

Sections 4.2 and 4.3, respectively.
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Figure 2: S-net representations of the Service Interface and User Interface of the Vending Machine

component.

4.1. Enabling Constraint

An enabling constraint for a transition is defined as an additional enabling condition for that

transition based on the current states of one or more other interfaces, i.e. an enabling constraint

on a transition requires places of other interfaces to contain a token in order to be enabled.

Currently, only conjunctive enabling constraints are supported by the encoding method. For

example, the constraint that a token must be in places P and P’ for T to be enabled is supported,

but the constraint requiring a token must be in either P or P’ for T to be enabled is not. While

considering both conjunctive and disjunctive enabling constraints would enable a wider range

of models to be supported, it would also add more complexity to the encoding. It is therefore

something to consider in the future.

Definition 1 (Enabling constraint). Given a Component 𝒪 and a set of transitions 𝑇𝑐 ⊆ 𝑇𝒪 , an
enabling constraint is defined as

𝐶𝑒 : 𝑇𝑐 → 𝑃𝒪

A component 𝒪 satisfies a set of constraints 𝐶𝑒 iff for any given transition 𝑡 ∈ 𝑇𝑐 and marking
𝑚 ∈ 𝐵(𝑃𝒪):

if 𝑚 𝑡−→ then ∀𝑝 ∈ 𝐶𝑒(𝑡) : 𝑚(𝑝) = 1

Given constraint 1 of Figure 1c, we can then define 𝐶𝑒(LoadProduct) = {Empty}.
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4.2. Disabling Constraint

A disabling constraint for a transition is also defined as an additional enabling condition for

that transition based on the current states of one or more other interfaces. Contrary to the

enabling constraint, places must now act as a disabling condition. A disabling constraint on

a transition hence requires that this transition is disabled if a set of places in other interfaces

contain a token.

Definition 2 (Disabling constraint). Given a Component 𝒪 and a set of transitions 𝑇𝑐 ⊆ 𝑇𝒪 , a
disabling constraint is defined as

𝐶𝑑 : 𝑇𝑐 → 𝑃𝒪

A component 𝒪 satisfies a set of constraints 𝐶𝑑 iff for any given transition 𝑡 ∈ 𝑇𝑐 and marking
𝑚 ∈ 𝐵(𝑃𝒪):

if 𝑚 𝑡−→ then ∀𝑝 ∈ 𝐶𝑑(𝑡) : 𝑚(𝑝) = 0

Given constraint 2 of Figure 1c, we can then define 𝐶𝑑(Order) = {Error}.

4.3. Causal Sequence Constraint

A causal sequence constraint requires that whenever a certain transition on an interface is fired

then a sequence of transitions on other interfaces of that component is executed, and no other

firing sequence is possible.

Definition 3 (Causal sequence constraint). Given a Component 𝒪 and a set of transitions 𝑇𝑐 ⊆
𝑇𝒪 , a causal sequence constraint is defined as follows:

𝐶𝑠 : 𝑇𝑐 → 𝑇 *

A component satisfies a causal sequence constraint 𝐶𝑠 iff for any given transition 𝑡 ∈ 𝑇𝑐 and
marking 𝑚 ∈ 𝐵(𝑃𝒪):

if 𝑚 𝑡−→ 𝑚′ then:

∃𝑚′ 𝜎−→ such that 𝜎 = 𝐶𝑠(𝑡) ∧ ¬∃𝑚′ 𝜎′
−→ such that 𝜎′ ̸= 𝜎

Given constraint 3 of Figure 1c, we can then define the causal sequence constraint

𝐶𝑠(SwitchOn) = ⟨Initialize, Initialized⟩. For a component 𝒪 and a transition 𝑡 ∈ 𝑇𝒪, if

𝐶𝑠(𝑡) ̸= 𝜖, we say that 𝑡 is an activation transition of a sequence. For constraints 3 and 5 of Fig-

ure 1c, these would be SwitchOn and Reset. Any transition 𝑡𝑛 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑛 ≤ |𝐶𝑠(𝑡)|,
is a consequence transition. These would be Initialize, Initialized, and ResetDone belonging

to constraint 3 and 5. We require that an activation transition cannot belong to more than one

causal sequence constraint of a component 𝒪. Furthermore, a transition cannot be an activation

transition if it is also a consequence transition. If a transition is neither a consequence nor an

activation transition of any defined causal sequence constraint of component O, we refer to it as
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a free transition. The Order, Deactivate, and LoadProduct transitions are free transitions in

our example. For two consequence transitions 𝑡𝑛, 𝑡𝑛+1 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑛 < |𝐶𝑠(𝑡)|, we say

that 𝑡𝑛+1 is a sequence successor of 𝑡𝑛, and that 𝑡𝑛 is a sequence predecessor of 𝑡𝑛+1. For example,

ResetDone is a sequence successor of Initialize. It is important to note that consequence

transitions can only be fired after the firing of one of its predecessors, meaning they cannot

be fired independently outside the context of a sequence. Furthermore, only one sequence

may be active at the same time, meaning that after some activation transition 𝑡 fires, any other

activation transition cannot be enabled.

There are some constraint specification that could make the encoding more complex, and

should be considered separately. These cases are now introduced, starting off with the notion of

overlapping and diverging causal sequences. It is possible that a sequence of consequence transi-

tions of two or more causal sequence constraints overlap. That is, for two activation transitions

𝑡 and 𝑡′, and some sequence of consequence transitions 𝜎, 𝜎 may be a subsequence of both 𝐶𝑠(𝑡)
and 𝐶𝑠(𝑡

′). Whenever a set of sequences share a subsequence of consequence transitions, we

say that the sequences are overlapping. If a set of sequences has 𝜎 as a common subsequence,

we say that the sequences overlap on 𝜎. For two sequences 𝐶𝑠(𝑡) = ⟨𝑡0, 𝑡1, 𝑡2, 𝑠0, 𝑠1, 𝑡3⟩ and

𝐶𝑠(𝑡
′) = ⟨𝑡′0, 𝑡′1, 𝑠0, 𝑠1, 𝑡′2⟩, this is illustrated in Figure 3. The behaviour of the sequences shown

in Figure 3 is clear, at least until we reach transition 𝑠1. At this point, 𝑠1 is followed by either

transition 𝑡3 or 𝑡2′, depending on which sequence is active. In this case, we say that the set of

sequences are diverging, and that 𝑠1 is a divergence point.

t0 t1 t2 s0 s1

t0’ t1’

t3

t2’

Figure 3: Overlapping and diverging sequences

When specifying causal sequence constraints, it also possible that there are recurring elements

in the sequence. While a sequence is active, it is then possible that transitions may have to

followed by different transitions in the context of this single sequence. For example, in the

sequence 𝐶𝑠(𝑡) = ⟨𝑡0, 𝑡1, 𝑡2, 𝑡0, 𝑡3⟩, the first time 𝑡0 is taken it is followed by 𝑡1 and the second

time, by 𝑡3. Such sequences are referred to as multi-stage sequences, but are out of scope in

this paper. Every sequence considered in this paper is a single-stage sequence, as there is no

divergence within the context of a single sequence. For more information about multi-stage

sequences, refer to [18].

4.4. Assumptions on Functional Constraints

It is possible that adding functional constraints to a component specification causes termination

problems, such as deadlock or livelock.

In the proof-sketches of Section 5, we reason about the enabledness of transitions belonging

to the Petri nets produced by the encoding algorithms. If a given specification has inherent
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termination problems, it could cause certain transitions to be disabled indefinitely as a result of

the specified functional constraints, regardless of how they are encoded as a Petri net. Because

this would create problems for the proof sketches, this section introduces three assumptions on

the behaviour of a given specification.

Let𝐶𝑠(𝑡) = ⟨𝑡0, ..., 𝑡𝑛⟩where𝑛 ∈ 𝒩 be causal sequence constraint on a transition 𝑡 belonging

to an interface 𝑁 . Whenever a transition 𝑡𝑖 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑖 ≤ 𝑛 fires, the transition 𝑡𝑖+1

belonging to an interface 𝑁 ′
must be enabled in the resulting marking 𝑀 . Because 𝑁 ′

is an

S-net, 𝑡𝑖+1 will have exactly one place 𝑝 belonging to 𝑁 ′
in its preset. For 𝑡𝑖+1 to be enabled, 𝑝

must therefore have a token in 𝑀 , which may not always be the case. In other words, after 𝑡𝑖
fires, 𝑁 ′

may not be in a state in which 𝑡𝑖+1 can be fired.

Recall the causal sequence constraints 3 and 5, and enabling constraints 4 and 6 of Figure 1c.

If these two enabling constraints were absent, it would be possible for SwitchOn and Reset to

fire while the place Uninitialized does not have a token. If these transitions were to fire in this

case, the only transition that is allowed to be enabled in the resulting marking is Initialize, as

it is the sequence successor of both of these transitions. However, since Uninitialized has no

token, and is in the preset of Initialize, there is no way for Initialize to be enabled, resulting

in a deadlock. Assumption 1 formalizes this by requiring that after a consequence or activation

transition fires, the interface that its sequence successor 𝑡𝑠𝑢𝑐𝑐 belongs to is in a state where

𝑡𝑠𝑢𝑐𝑐 is enabled.

Assumption 1. Let 𝑡 be an activation transition for a causal sequence 𝐶𝑠(𝑡) = ⟨𝑡0, ..., 𝑡𝑛⟩ where
𝑛 ∈ N. For any marking 𝑚 that is the result of the firing of 𝑡: 𝑡0 is enabled in m. For any marking
𝑚′ that is the result of the firing of 𝑡𝑖 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑖 ≤ |𝐶𝑠(𝑡)| − 1: 𝑡𝑖+1 is enabled in 𝑚′.

Enabling and disabling constraints combined with causal sequence constraints may also lead

to situations in which it is impossible to satisfy all constraints. Consider the vending machine

example. Suppose that we were to define an enabling constraint requiring the Service Interface

to be in the Off state for Initialize to be enabled. As Initialize is a sequence successor of

Reset and SwitchOn, both of which transition the Service interface to the Operational state,

firing either Reset or SwitchOn would lead to deadlock. Assumptions 2 and 3 formalize this

for the enabling and disabling constraint, respectively.

Assumption 2. Let 𝑡 be an activation transition for a causal sequence 𝐶𝑠(𝑡) = ⟨𝑡0, ..., 𝑡𝑛⟩ where
𝑛 ∈ N. For any marking 𝑚 that is the result of the firing of 𝑡:∀𝑐 ∈ 𝐶𝑒(𝑡0) : 𝑚(𝑐) = 1. For
any marking 𝑚′ that is the result of the firing of 𝑡𝑖 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑖 ≤ |𝐶𝑠(𝑡)| − 1, and the
transition 𝑡𝑖+1 ∈ 𝐶𝑠(𝑡) belonging to some interface 𝑁 : ∀𝑐 ∈ 𝐶𝑒(𝑡𝑖+1) : 𝑚

′(𝑐) = 1.

Assumption 3. Let 𝑡 be an activation transition for a causal sequence 𝐶𝑠(𝑡) = ⟨𝑡0, ..., 𝑡𝑛⟩ where
𝑛 ∈ N. For any marking 𝑚 that is the result of the firing of 𝑡: ∀𝑐 ∈ 𝐶𝑑(𝑡0) : 𝑚(𝑐) = 0. For
any marking 𝑚′ that is the result of the firing of 𝑡𝑖 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑖 ≤ |𝐶𝑠(𝑡)| − 1, and the
transition 𝑡𝑖+1 ∈ 𝐶𝑠(𝑡) belonging to some interface 𝑁 : ∀𝑐 ∈ 𝐶𝑑(𝑡𝑖+1) : 𝑚

′(𝑐) = 0.

5. Encoding Constraints as Petri Nets

Given the S-net representation of a set of interface skeletons, and a set of functional constraints,

we will now present algorithms to add transitions and places to existing interface nets such that
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they satisfy a set of given functional constraints. There are obviously a lot of different ways

to this. However, for the purposes of this paper, which is gaining access to the reachability

graph of a given component and verifying the absence of deadlock, livelock and unbounded

behaviour, only one possible encoding has been proposed. Making a comparison between

different encoding is something to consider for the future.

Figure 4 shows an example of adding functional constraints described earlier in Section 3.1 to

a set of interface nets described in Figure 2. Throughout this section, different parts of Figure 4

will be highlighted and discussed to exemplify the output of the method.

Figure 4: Resulting Petri net after applying the method in this section on the two vending machine

interfaces

5.1. Enabling constraint

For a component 𝒪, and a set of enabling constraints defined by 𝐶𝑒, Algorithm 1 generates a

Petri net that encodes the constraints defined in 𝐶𝑒. The algorithm is fairly straightforward:

Line 3 creates bidirectional arcs between 𝑡 and all 𝑝 ∈ 𝐶𝑒(𝑡) in order to enforce the constraints

of 𝐶𝑒(𝑡). The arcs are bidirectional to ensure that when 𝑡 fires, the token in 𝑝 is not consumed.

We can see how this works out for the enabling constraints defined on the interfaces of our

vending machine component. In Figure 4, we can see a bidirectional arc created between the

LoadProduct transition, and the Empty place to satisfy constraint 1 of Figure 1c. Similarly,

we can see a bidirectional arc created between both the SwitchOn and Reset transtition, and

the Uninitialized place to satisfy constraints 4 and 6. Next, Lemma 1 shows that Algorithm 1

encodes enabling constraints such that the reachability property in Definition 1 is satisfied.
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1 foreach transition 𝑡 ∈ 𝑇𝒪 do
2 foreach place 𝑝 ∈ 𝐶𝑒(𝑡) do
3 create bidirectional arc(p, t)
4 end
5 end

Algorithm 1: Enabling Constraints

Lemma 1. The reachability property defined for the enabling constraint in Definition 1 always
holds for a component 𝒪 after applying Algorithm 1 on 𝒪.

Proof sketch. Let 𝒪 be a component with the constraints 𝐶𝑒, and 𝑡 a transition of 𝑇𝒪 . Line 3

guarantees a bidirectional arc is created between 𝑡 and each of the places in 𝐶𝑒(𝑡), meaning

that all of the places in 𝐶𝑒(𝑡) are in the preset of 𝑡. Therefore, 𝑡 can only fire if all places in

𝐶𝑒(𝑡) have a token, as required by the property in Definition 1.

5.2. Disabling Constraint

The algorithm for disabling constraints is similar to that of the enabling constraint, which

makes sense as the disabling constraint is essentially its inverse. When 𝐶𝑑(𝑡) = {𝑝} for some

transition 𝑡 and a place 𝑝, instead of enabling 𝑡 when 𝑝 has a token, 𝑡 must now be disabled

instead. While using inhibitor arcs is an intuitive solution to this problem, we restrict ourselves

to P/T nets to support reachability analysis with a broader range of tools. Instead, complement

places are be used, which allows us to model the functionality of inhibitor arcs. We can do this

because all interfaces are S-nets and therefore safe [19]. For a place 𝑝, its complement place

𝑝̄ has a token only if 𝑝 does not. With this behaviour, a bidirectional arc can then be created

between a transition 𝑡 and the complement place 𝑝̄ of a place 𝑝 ∈ 𝐶𝑑(𝑡). For a component 𝒪,

and a set of disabling constraints defined by 𝐶𝑑, Algorithm 2 generates a Petri net that encodes

the constraints defined in 𝐶𝑑.

Line 3-6 are responsible for creating complement places, and making sure the complement

places have the correct number of initial tokens, depending on whether 𝑝 has a token initially.

Lines 7-10 then make sure that the complement places are correctly updated as the net executes.

This is done by creating arcs from the complement place of 𝑝, to each transition 𝑝𝑡 in the preset

of 𝑝, and by creating arcs from each transition 𝑝𝑡 in the postset of 𝑝, to the complement place of

𝑝. Line 11 then creates a bidirectional arc that ensures that a transition can only be enabled

if the right complement place has a token. It is shown in Lemma 2 that Algorithm 2 encodes

disabling constraints in a way that satisfies the reachability property in Definition 2.

Lemma 2. The reachability property defined for the disabling constraint in Definition 2 always
holds for a component 𝒪 after applying Algorithm 2 on 𝒪.

Proof sketch. Let 𝒪 be a component with the constraints 𝐶𝑑, and 𝑡 be a transition of 𝑇𝒪.

Because of Lines 3-6, every place in 𝐶𝑑(𝑡) has a complement place, with Lines 3-4 ensuring that

the complement place has no token if the corresponding place has a token in the initial marking.

For any place 𝑝 in 𝐶𝑑(𝑡), its complement place 𝑝̄ can only have a token if 𝑝 has no token, as
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1 foreach transition 𝑡 ∈ 𝑇𝒪 do
2 foreach place 𝑝 ∈ 𝐶𝑑(𝑡) do
3 if 𝑚0(𝑝) = 1 then
4 create place(𝑝̄, 0 tokens)
5 else
6 create place(𝑝̄, 1 token)
7 foreach place 𝑝𝑡 ∈ ∙𝑝 do
8 create arc(𝑝̄, pt)
9 end

10 foreach place 𝑝𝑡 ∈ 𝑝∙ do
11 create arc(pt, 𝑝̄)
12 end
13 create bidirectional arc(𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑝, t)
14 end
15 end

Algorithm 2: Disabling Constraints

by Lines 7-8, any transition in the preset of 𝑝 removes a token from 𝑝̄, and by Lines 10-11, any

transition in the postset of 𝑝 adds a token to 𝑝̄. With Line 13 then guaranteeing that each of

these complement places are in the preset of 𝑡, 𝑡 can thus only be enabled if for all 𝑝 in 𝐶𝑑(𝑡), 𝑝
has no token, as required by Definition 2.

We demonstrate Algorithm 2 constraint 2 of Figure 1c. Figure 4 shows that there now exists

a complement place for the Error state, and that there is a bidirectional arc created between

this complement place and the Order transition. The only transition that produces a token

to the Error place, OutOfOrder, removes a token from the complement place, and likewise

the only transition that removes a token from the Error place, Reset, produces a token to the

complement place.

5.3. Causal Sequence constraints

For a component 𝒪 and a causal sequence constraint 𝐶𝑠(𝑡) = ⟨𝑡0, ..𝑡𝑛⟩, the following two things

have to be guaranteed by Algorithm 3 in order to satisfy the property given in Definition 3. Firstly,

after 𝑡 fires, all free transitions must be disabled until the last transition in 𝐶𝑠(𝑡) fires. Secondly,

any transition 𝑡𝑖 ∈ 𝐶𝑠(𝑡) with 1 < 𝑖 < |𝐶𝑠(𝑡)|, must only be enabled after 𝑡𝑖−1 ∈ 𝐶𝑠(𝑡) fires.

The first requirement is satisfied by introducing a disabler place with a token in the initial

marking. Any free transition has a bidirectional arc to this disabler place, which prevents

them from being enabled whenever the disabler place has no token. All activation transitions

furthermore have an incoming arc coming from this disabler, disabling all free transitions, as

well as any other activation transitions. The final transition of each sequence is then responsible

for producing a token back to the disabler place. The downside of this approach is that by

connecting many transitions of different interfaces to one place, we go against the locality

principle of P/T nets. Structural reduction methods that can be used to reduce the size of

given P/T nets, often rely on exploiting locality properties, are therefore less applicable to nets
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produced by this method.

The second requirement is satisfied using distinct enabler places that each consequence

transition will have in its preset. Enabler places have no token in the initial marking, and the

algorithm ensures that the enabler place of a consequence transition 𝑡 can only receive a token

from the sequence predecessor of 𝑡. However, if there are divergence points this is not enough,

and for such cases a decision place is introduced. For a transition 𝑡, this decision place has a

transition referred to as decision transitions in its postset for each possible sequence successors

of 𝑡. Each of these transitions put a token in the enabler place of its corresponding sequence

successor. To know which of these transitions must be enabled, an active place is introduced for

each defined sequence. Each activation transition 𝑡 puts a token in a place corresponding to

the sequence 𝐶(𝑡), while the last transition of 𝐶(𝑡) removes it. By then creating a bidirectional

arc between each of the transitions in the postset of the decision place of 𝑡, only the correct

decision transition is enabled. Introducing these additional places that indicate which sequence

is active does introduce another problem. Ambiguity may now arise when when a transition is

the final transition of multiple sequences, or is the final transition of one sequence while being

a non-final transition of another. Therefore, the decision place must also be used in such cases.

For a transition 𝑡 and its decision place 𝑝, there is a transition for each of the sequences that has

𝑡 as its final transition in the postset of 𝑝. Each of these transitions then remove a token from

the corresponding active place.

As an example, Figure 4 shows how the causal sequence constraints 3 and 5 of Figure 1c

are encoded. In our specification, Initialize is a divergence point, as it is followed by either

a ResetDone or Initialized. We thus need two places indicating which sequence is active,

which are Reset_Stage0 and SwitchOn_Stage0, present on the right of Figure 4. We can

see that the activation transitions SwitchOn and Reset, put a token in SwitchOn_Stage0

and Reset_Stage0, respectively. Initialized then removes the token from SwitchOn_Stage0,

as it is the final transition of the sequence activated by SwitchOn. Likewise, ResetDone

removes the token from Reset_Stage0, as it is the final transition of the sequence activated

by Reset. As both of these transitions are final transitions, they add a token to the disabler

place. Because Initialize is a divergence point, we can see that it now has Initialize_choice

in its postset, shown on the right side of Figure 4. In the postset of this place, we can see a

transition corresponding to each of the two defined sequences. choice_Reset_stage0 has a

bidirectional arc to Reset_Stage0, while choice_SwitchOn_stage0 has a bidirectional arc

to SwitchOn_Stage0. For each of the consequence transitions Initialize, Initialized and

ResetDone, we can see that there is now an enabler place in their preset. Only the sequence

predecessors, which for Initialize are Reset and SwitchOn, put a token in these places. For

the divergence point Initialize, we can see that the decision transitions in the postset of

Initialize_choice are now responsible for this, rather than Initialize itself.

It now needs to be shown that after applying Algorithm 3, the resulting net satisfies any

single-stage causal sequence constraint. The following places and transitions are used in the

proof sketches of this section. For a consequence transition 𝑡𝑛, 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 refers to the decision

place of 𝑡𝑛 created on Line 16 of Algorithm 3. Every transition 𝑡 in the postset of 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is a

decision transition of 𝑡𝑛. For a sequence 𝑠, 𝑠𝑎𝑐𝑡𝑖𝑣𝑒 denotes the place created on Line 3, that is

used to indicate whether or not the sequence 𝑠 is currently active. 𝑚𝑎𝑐𝑡 denotes the marking

that is the result the firing of an activation transition 𝑡 for a sequence 𝐶𝑠(𝑡).
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1 create place(disabler, 1 token);

2 foreach sequence 𝑠 do
3 create place(𝑠𝑎𝑐𝑡𝑖𝑣𝑒, 0 tokens)
4 end
5 foreach transition 𝑡 ∈ 𝑇𝒪 do
6 if 𝑡 is free then
7 create bidirectional arc(disabler, t)
8 else if t is an activation transition for a sequence s starting with 𝑡0 then
9 create place(𝑡0_enabler, 0 tokens);

10 create arc(𝑡0_enabler, 𝑡0);

11 create arc(t, 𝑡0_enabler);

12 create arc(disabler, t);

13 create arc(t, 𝑠𝑎𝑐𝑡𝑖𝑣𝑒)
14 else
15 if 𝑡 is a divergence point then
16 create place(𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 0 tokens);

17 create arc(𝑡, 𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛);

18 foreach successor 𝑠𝑢𝑐𝑐 ∈ 𝑇𝒪 , where 𝑠𝑢𝑐𝑐 is a successor of 𝑡, and 𝑠𝑢𝑐𝑐 belongs
to the sequence 𝑠 do

19 create transition(𝑡𝑠𝑢𝑐𝑐);

20 create arc(𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑡𝑠𝑢𝑐𝑐);

21 create bidirectional arc( 𝑠𝑎𝑐𝑡𝑖𝑣𝑒, 𝑡𝑠𝑢𝑐𝑐);

22 if enabler place of successor(t) does not exist then
23 create place(successor(t)𝑒𝑛𝑎𝑏𝑙𝑒𝑟 , 0 tokens);

24 create arc(successor(t)𝑒𝑛𝑎𝑏𝑙𝑒𝑟 , successor(t));

25 create arc(𝑡𝑠𝑢𝑐𝑐, successor(t)𝑒𝑛𝑎𝑏𝑙𝑒𝑟)
26 end
27 foreach sequence 𝑠, where 𝑡 is the final transition of 𝑠 do
28 create transition(𝑓𝑖𝑛𝑎𝑙𝑠);

29 create arc(𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑓𝑖𝑛𝑎𝑙𝑠);

30 create arc(𝑠𝑎𝑐𝑡𝑖𝑣𝑒, 𝑓𝑖𝑛𝑎𝑙𝑠);

31 create arc(𝑓𝑖𝑛𝑎𝑙𝑠, disabler)
32 end
33 else
34 if 𝑡 is the last transition of the sequence 𝑠 then
35 create arc(𝑡, disabler);

36 create arc(𝑠𝑎𝑐𝑡𝑖𝑣𝑒, 𝑡);

37 else
38 if if enabler place of successor(t) does not exist then
39 create place(successor(t)𝑒𝑛𝑎𝑏𝑙𝑒𝑟 , 0 tokens);

40 create arc(successor(t)𝑒𝑛𝑎𝑏𝑙𝑒𝑟 , successor(t));

41 create arc(𝑡, successor(t)𝑒𝑛𝑎𝑏𝑙𝑒𝑟)
42 end

Algorithm 3: Causal Sequence Constraints
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Lemma 3. The first transition of 𝐶𝑠(𝑡), 𝑡0 is enabled in the marking 𝑚𝑎𝑐𝑡. For the enabledness
of 𝑡0 belonging to an interface 𝑁 , we must consider the following places its preset in the marking
𝑚𝑎𝑐𝑡:1) Exactly one place 𝑝 ∈ 𝑃𝑁 . This is because 𝑡′ can only belong to one interface, 𝑁 , and has
only one place in its preset while belonging to 𝑁 , as 𝑁 is an S-net, 2) A set of places 𝑐 ∈ 𝐶𝑒(𝑡0),
3) A set of places 𝑐′ ∈ 𝐶𝑑(𝑡0), 4) 𝑝𝑒0, which is the enabler place of 𝑡0 introduced by Algorithm 3 on
either Line 23 or 39.

Proof sketch. Lines 9 and 10 in Algorithm 3 guarantee that the first consequence transition

of a sequence, 𝑡0, has an enabler place 𝑝𝑒0 without an initial token in its preset. Line 11 then

guarantees 𝑝𝑒0 is in the postset of the activation transition 𝑡. Using Assumption 1, we can

assume that 𝑚𝑎𝑐𝑡(𝑝) = 1. Using Assumption 2, we can furthermore assume that for all places

𝑐 ∈ 𝐶𝑒(𝑡0), 𝑚𝑎𝑐𝑡(𝑐) = 1. Lastly, using Assumption 3, we can assume that for all places

𝑐′ ∈ 𝐶𝑑(𝑡0), 𝑚𝑎𝑐𝑡(𝑐
′) = 0. Since 𝑝𝑒0 is in the postset of the activation transition 𝑡, 𝑝𝑒0 also has a

token in 𝑚𝑎𝑐𝑡. Therefore 𝑡0 is enabled in 𝑚𝑎𝑐𝑡.

Lemma 4. Let 𝑡 be an activation transition for a sequence𝐶𝑠(𝑡), whose firing leads to the marking
𝑚𝑎𝑐𝑡. Any consequence transition 𝑡′ that is not 𝑡0 is disabled in 𝑚𝑎𝑐𝑡.

To show that 𝑡′ belonging to an interface 𝑁 is disabled in 𝑚𝑎𝑐𝑡, we only have to look at the
place 𝑝′𝑒, which is the enabler place of 𝑡′ introduced by Algorithm 3 on either Line 23 or 39.

Proof sketch. Lines 23 and 24, as well as Lines 39 and 40, guarantee that any consequence

transition 𝑡′ has an enabler place in its preset without a token in the initial marking. Because of

Line 41, this enabler place 𝑝′𝑒 is not in the postset of 𝑡, but rather in the postset of its predecessor

transition 𝑡𝑝𝑟𝑒𝑑 if 𝑡𝑝𝑟𝑒𝑑 is not a divergence point. If 𝑡𝑝𝑟𝑒𝑑 is a divergence point, Line 25 then

ensures 𝑝′𝑒 is in the postset of a the decision transitions of 𝑡𝑝𝑟𝑒𝑑. There are no other lines that

create transitions that are in the preset of 𝑝′𝑒, which means means that 𝑝′𝑒 cannot have a token

in 𝑚𝑎𝑐𝑡. Therefore, 𝑡′ is disabled in 𝑚𝑎𝑐𝑡.

Lemma 5. Any free transition 𝑡𝑓𝑟𝑒𝑒 or activation transition 𝑡𝑎𝑐𝑡 cannot be enabled in 𝑚𝑎𝑐𝑡. To
show that both 𝑡𝑓𝑟𝑒𝑒 and 𝑡𝑎𝑐𝑡 belonging an interface 𝑁 are disabled in 𝑚𝑎𝑐𝑡, we only have to look
at the disabler 𝑝𝑑 introduced by Algorithm 3 on Line 1.

Proof sketch. Line 7 guarantees 𝑡𝑓𝑟𝑒𝑒 has the disabler place 𝑝𝑑 in its preset, Line 12 then

guarantees that 𝑡𝑎𝑐𝑡 has the disabler place in its preset. Because there is no step in the algorithm

creating an arc from 𝑡𝑎𝑐𝑡 to 𝑝𝑑, 𝑡𝑎𝑐𝑡 never has 𝑝𝑑 in its postset. Line 1 guarantees that 𝑝𝑑 has a

token in the initial marking. This guarantees only activation transitions can remove a token

from 𝑝𝑑, while Lines 31 and 35 guarantee that the last consequence transitions of a sequence

can produce a token to 𝑝𝑑. Because we assume that no sequence is currently active, 𝑝𝑑 therefore

has a token. Therefore, after the firing of 𝑡 that results in the marking 𝑚𝑎𝑐𝑡, the disabler place

𝑝𝑑 does not have a token in 𝑚𝑎𝑐𝑡. Therefore, 𝑡𝑓𝑟𝑒𝑒 and 𝑡𝑎𝑐𝑡 are disabled in 𝑚𝑎𝑐𝑡.

Lemma 6. For any transition 𝑡𝑛 ∈ 𝐶𝑠(𝑡), where 0 ≤ 𝑛 ≤ |𝐶𝑠(𝑡)| − 1, and 𝑡 is an activation
transition, and 𝑡𝑛 is not a divergence point: In any given marking 𝑚′ that is the result of the
firing of 𝑡𝑛, the only transition enabled afterwards is 𝑡𝑛+1 ∈ 𝐶𝑠(𝑡). For the enabledness of 𝑡𝑛+1

belonging to an interface 𝑁 , we consider the following places in its preset in the marking 𝑚′:
1) Exactly one place 𝑝 ∈ 𝑃𝑁 , 2)A set of places 𝑐 ∈ 𝐶𝑒(𝑡𝑛+1)., 3)A set of places 𝑐′ ∈ 𝐶𝑑(𝑡𝑛+1),

4) 𝑝𝑒𝑛+1, which is the enabler place of 𝑡′ introduced by Algorithm 3 on either Line 23 or 39.
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Proof sketch. Line 25 guarantees that the enabler place of 𝑡𝑛+1, 𝑝𝑒𝑛+1, is in the postset of 𝑡𝑛.

Line 24 furthermore guarantees that there is an arc going from 𝑝𝑒𝑛+1 to 𝑡𝑛+1. Because 𝑁 is an

S-Net, only one place belonging to 𝑁 can have a token. Using Assumption 1, we can assume

that this place is 𝑝, and that therefore 𝑚′(𝑝) = 1. Using Assumption 2, we can furthermore

assume that for all places 𝑐 ∈ 𝐶𝑒(𝑡𝑛+1), 𝑚
′(𝑐) = 1. Lastly, using Assumption 3, we can assume

that for all places 𝑐′ ∈ 𝐶𝑑(𝑡𝑛+1), 𝑚
′(𝑐′) = 0. As 𝑝𝑒𝑛+1 is in the postset of 𝑡𝑛, 𝑝𝑒𝑛+1 has a token

in 𝑚′
. Furthermore, since 𝑡𝑛 is not a divergence point and therefore has exactly one successor,

it has exactly one enabler place 𝑝𝑒𝑛+1 in its postset. Any other enabler place therefore cannot

have a token while 𝑝𝑒𝑛+1 does. Therefore, only 𝑡𝑛+1 is enabled in 𝑚′
.

Lemma 7. For any transition 𝑡𝑛 ∈ 𝐶𝑠(𝑡), where 0 ≤ 𝑛 ≤ |𝐶𝑠(𝑡)|−1, 𝑡 is an activation transition,
and 𝑡𝑛 is a divergence point: There is a decision transition 𝑡′ of 𝑡𝑛 whose firing leads to a marking
𝑚 in which only 𝑡𝑛+1 is enabled.

For the enabledness of 𝑡𝑛+1 belonging to an interface 𝑁 , we consider the following places in
its preset in the marking 𝑚: 1) Exactly one place 𝑝 ∈ 𝑃𝑁 , 2) A set of places 𝑐 ∈ 𝐶𝑒(𝑡𝑛+1), 3) A
set of places 𝑐′ ∈ 𝐶𝑑(𝑡𝑛+1), 4) 𝑝𝑒𝑛+1, which is the enabler place of 𝑡𝑛+1 introduced by Sequence
Algorithm 2.

Proof sketch. Line 19 ensures there exists a decision transition 𝑡′ of 𝑡𝑛 for each sequence

successor of 𝑡𝑛. Because of Line 25, 𝑝𝑒𝑛+1 is in the postset of 𝑡′. For the place 𝑝 ∈ ∙𝑡𝑛+1, using

Assumption 1, we can assume that 𝑚(𝑝) = 1. Using Assumption 2, we can furthermore assume

that for all places 𝑐 ∈ 𝐶𝑒(𝑡𝑛+1), 𝑚(𝑐) = 1. Lastly, using Assumption 3, we can assume that for

all places 𝑐′ ∈ 𝐶𝑑(𝑡𝑛+1), 𝑚(𝑐′) = 0. Because 𝑝𝑒𝑛+1 is in the postset of 𝑡′, 𝑝𝑒𝑛+1 will also have a

token in the marking 𝑚. Therefore, 𝑡𝑛+1 is enabled in 𝑚.

Line 20 then ensures that 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is in the preset of each decision transition. This means

that if one of these decision transitions fires, none of the other decision transitions are enabled

in the resulting marking. Because any other decision transition could not have fired, any other

consequence transition cannot have a token in its enabling place. Therefore, 𝑡𝑛+1 is the only

transition enabled in 𝑚.

Lemma 8. For any transition 𝑡𝑛 ∈ 𝐶𝑠(𝑡), where 0 ≤ 𝑛 ≤ |𝐶𝑠(𝑡)|−1, 𝑡 is an activation transition,
and 𝑡𝑛 is a divergence point, Lemma 7 showed that there is a decision transition 𝑡′ of 𝑡𝑛 whose
firing leads to a marking 𝑚′ in which only 𝑡𝑛+1 is enabled. After 𝑡𝑛 fires, resulting in the marking
𝑚, only 𝑡′ is enabled in 𝑚. For the enabledness of 𝑡′, we consider the following places in its preset
in the marking 𝑚: 1) 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 , which is the decision place of 𝑡𝑛 introduced by Algorithm 3 on
Line 16, 2) 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑠(𝑡)

, the place indicating that the sequence 𝐶𝑠(𝑡) that 𝑡𝑛 belongs to is active.

Proof sketch. Line 17 ensures that 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is in the postset of 𝑡𝑛. Therefore, there is a token

in 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 in the marking 𝑚. Because of Line 21, 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is in both the preset and postset

of 𝑡′. Knowing that 𝑡 is guaranteed to be the last activation transition that has fired, and that

the final transition of 𝐶𝑠(𝑡) has not fired yet, Line 21 ensures that decision transitions for

non-final transitions do not consume a token from 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑠(𝑡)
, therefore is a token in the place

𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑠(𝑡)
. Therefore 𝑡′ is enabled in 𝑚. Line 21 also ensures that any other decision transition 𝑡′′

with 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 in its preset will have a different active place 𝑠𝑎𝑐𝑡𝑖𝑣𝑒 in its preset. Knowing that

any activation transition other than 𝑡 could not have been the last activation transition to fire,
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there can be no token in 𝑠𝑎𝑐𝑡𝑖𝑣𝑒. Therefore, any transition 𝑡′′ cannot be enabled in 𝑚. Therefore,

only 𝑡′ is enabled in 𝑚.

Theorem 1. A component always satisfies a set of diverging, single-stage causal sequence con-
straints after applying Sequence Algorithm 2

Proof sketch. To show that 𝒪 satisfies an arbitrary causal sequence constraint after applying

Sequence Algorithm 2, it needs to be shown that the property introduced in Definition 3

holds. That is, it must be shown that there is exactly one possible firing sequence, excluding

transitions introduced by the Sequence Algorithm, after any 𝑡 fires until the last transition of

𝐶𝑠(𝑡) fires. Following Lemma 5, any transition not belonging to a sequence is disabled after 𝑡
fires. Furthermore, any transition belonging to a sequence that is not 𝑡0 is disabled following

Lemma 4. Because 𝑡0 is guaranteed to be enabled following Lemma 3, the only possible transition

that be enabled after 𝑡 fires is 𝑡0. Following Lemmas 6, 7 and 8, the 𝑛th sequence transition

to fire after 𝑡 fires, must be the 𝑛th element of 𝐶𝑠(𝑡), as any transition not belonging to a

sequence is disabled, and any transition 𝑡𝑛 belonging to a sequence can only be enabled after

𝑡𝑛−1 fires. Therefore, for any marking 𝑚′
, if 𝑚′ 𝑡−→, when excluding any transitions introduced

by Sequence Algorithm 2, there exists exactly one firing sequence from 𝑚′
that is 𝐶𝑠(𝑡).

6. Conclusions

This paper addressed the challenge of correctly and cost-effectly designing complex component-

based systems, built from reusable components that provide and consume services to and from

each other over a set of interfaces. The state of an interface on a component may be dependent

on the state of another, which may result in deadlock, livelock, or unbounded behavior. To

address this challenge, the paper proposed a way to capture partial specifications of component

behavior as sets of commonly occurring functional constraints. We formalized such functional

constraints and presented algorithms to generate Petri nets satisfying the constraints, supported

by proof sketches to show their correctness. The approach was demonstrated through a running

example of a vending machine.

Future work involves adding support for the complete ComMA language, as the current

solution does not cover required interfaces and compound transitions. Other possible directions

include adding support for more types of functional constraints, extensions with data, and take

into account commonly occurring middleware patterns, such as blocking calls. Furthermore, a

comparison could be made between multiple encoding methods. For example, a compositional

approach using label based synchronization could be considered as an alternative approach,

making for a more modular solution that is easier to extend.
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