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Abstract 
Taking into account the fractal properties of computer network traffic allows one to predict the 

information processes in them. The known criteria for determining the fractal dimension, such 

as the Hurst exponent, have significant errors and deviations for some cases, so it is advisable 

to develop new methods for estimating the fractal characteristics of the researched signal. The 

authors had proposed a method for determining the fractal dimension of network traffic by its 

probabilistic properties. The purpose of this paper is to research the quality of the proposed 

method. In this work, a binary time series is used to model fractal binary network traffic, which 

persistence is regulated by setting up the probability of one state change to the opposite by 

means of Markov chain. The generated traffic was used to investigate the quality of the 

proposed probabilistic method of determining the fractal dimension of network traffic and to 

compare it with the method based on R/S analysis. A series of experiments was conducted 

which showed that R/S analysis gives different values with different cumulative sums for the 

same data, that indicates the ambiguity of the method. The probabilistic method does not have 

this disadvantage and gives unambiguous results. Also, the developed method has a lower 

deviations from the mean value of the Hurst exponent, and therefore it is more accurate in 

determining the fractal dimension than R/S analysis method – R/S analysis has a deviation of 

2.5%, and the developed method has 1.8%. 

 

Keywords1 
time series forecasting, fractal dimension, Hurst exponent, network traffic, data analysis, 

computer simulation 

1. Introduction 

During researching and modeling information processes in telecommunication systems and computer 

networks, it is necessary to take into account the fractal properties of telecommunication traffic. In 

particular, taking into account fractal properties significantly affects the results of simulation modeling of 

information exchange processes, and, accordingly, it allows predict the development of events in 

information processes that are associated not only with the movement of information in 

telecommunications systems [1-6]. All these sources are related to the problem of determining the fractal 

dimension of time series, and the dates of publications vary from 1994 to 2021, which indicates that the 

problem of rapid and accurate determination of fractal dimensions is not finally solved and needs further 

research. 

Often, to determine the fractal characteristics of time series, used methods are based on the simulation 

of random walks [7-11], which depends on the standard deviation of the random variable and the length 
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of the series. In particular, such an indicator is R/S analysis [12-16]. It is believed that R/S analysis for 

searching the self-similarity has a higher accuracy for long series with large cumulative sums [6]. Also, it 

is noted that determining the self-similarity coefficient depends on the length of the researched series [17]. 

It is not always possible to obtain long time series for its analysis. For example, time series properties 

change before it will be able to be used the calculated coefficient, or the process itself is too short to obtain 

enough data for reliable analysis. Therefore, it can be seen that the flow of scientific works on methods 

for obtaining the self-similarity coefficient of the time series does not decrease. Eventually it demonstrates 

the relevance of the given problem. 

1.1. Related Works and Problem Statement 

So, during solving problems of forecasting and optimizing the operation of telecommunication 

networks, it is almost necessary to take into account the fractal nature of traffic on the Internet [18-21].  

The known criteria by which fractal dimension is determined, for example, the Hurst exponent [22], 

have significant errors and deviations for individual implementations, so it is advisable to develop new 

methods for assessing the fractal characteristics of the signal under study, such researches are observed in 

a number of publications, for example, in [23] was proposed method using wavelet analysis. 

Some review publications, which consider and compare several methods, use the definition of the 

fractal dimension of individual short-term implementations, based on which determine the properties of 

this signal [24]. But there are cases of ergodic signal with a known theoretical justification of its 

probability density distribution function. In such cases, short implementations have a high probability of 

deviations, but such implementations allow us to estimate the weights of the known probability 

distribution. Exactly in such cases it is useful to have high-quality means of determining the fractal 

dimension based on the probability distribution function, which is the reason for the constant search and 

development of new better methods for determining the fractal dimension. In the processes of information 

transmission in telecommunication systems and networks, the search for the fractal dimension of network 

traffic is widely used. To do this, use different methods and approaches aimed at reducing random 

deviations when performing calculations on relatively small implementations of numerical series [19-21, 

23, 24]. Given the lack of input data, additional data on the nature of the studied time series can 

significantly improve the situation. For example, with the help of theoretical justifications for modeling 

time series, they can be realized on the basis of random processes with given probability distributions, 

such as Poisson process [25, p. 32], Markov chains [25, p. 89], queues based on Pareto process [26] and 

others. Each of the distributions has its own scope and is based on accepted hypotheses and experimental 

testing on long-term implementations. However, real processes have only approximate distributions to the 

theoretical ones, it is worth remembering that the theoretical flow of data per unit time is limited by the 

bandwidth of the input channel of the network. Therefore, the approximation can be improved by taking 

into account the real probability distributions obtained experimentally. 

The authors proposed a method for determining the fractal dimension of a numerical sequence by the 

probability distribution of the values of its elements (Probabilistic method) in [27, 28]. In the mentioned 

work, the problem of obtaining a mathematical relation to obtain the expected value of the fractal 

dimension of network traffic based on the knowledge of the probability density distribution p(x) was set 

and solved. The results can be used to predict changes in network traffic, as well as to improve the 

modeling of fractal random sequences, queuing systems [29], simulating the traffic of telecommunications 

networks [30]. 

The purpose of this work is an experimental study of the quality of the proposed method for 

determining the fractal dimension of network traffic by its probabilistic properties. 

2. A method for determining the fractal dimension of network traffic by its 
probabilised properties 

2.1. Theoretical substantiation and essence of the method 

Modern traffic management systems take into account its fractal properties. Network traffic can be 

represented as a time series. In systems that use packet information exchange, it is more convenient to 



use a binary time series, and the representation of traffic at the level of “data packet is present”, “there 

is no data packet”. In this work, a probabilistic analysis of such a time series is performed in order to 

highlight the probabilistic characteristics that reveal not only the intensity of such traffic, but also its 

fractal properties. 

The following relations are valid for the probability density distribution p(x): 

∫ 𝑝(𝑥)𝑑𝑥

+∞

−∞

= 1, 𝑝(𝑥) ≥ 0, 𝑀(𝑥) = ∫ 𝑥 ∙ 𝑝(𝑥)𝑑𝑥

+∞

−∞

 (1) 

where M(x) – is the mathematical expectation of the random variable x. A numerical sequence consists 

of a series of implementations xi, where i – is the serial number of the element. 

By definition, the Minkowski dimension is the value of the following limit:  

 lim
𝜀→0

ln(𝑁𝜀)

ln(𝜀)
,  

where ε – is the diameter of the coating element; Nε – is their number. In practice, the problem is solved 

geometrically by covering the studied figure with squares (cubes), where its side is taken as the 

diameter. In [1, 31] there is a variant in which the coverage is replaced by rectangles of width ε and 

height, which is minimal to cover the area of the graphical representation of the numerical series. 

When using rectangles, the number of figures of the coating is replaced by the coverage area: 

𝑆(𝜀) = ∑ ℎ𝑘

𝑁𝜀

𝑘=0

, (2) 

where hk  – is the height of the corresponding rectangle k. 

If take ε > 1 for the number of discrete samples of the numerical series xi, then hk is searched 

according to the following algorithm: 

ℎ𝑘 = max(𝑥𝑖) − min (𝑥𝑖) , where 𝑖 = 𝑘𝜀, … , (𝑘 + 1)𝜀 − 1. (3) 

For an inclined straight line, the coating with a decrease ε in 2 times reduces the area also twice. 

For a figure that covers a plane (for example, the Hilbert or Piano curve), when ε changes, the value 

of the area does not change and covers the entire part of the plane. This corresponds to the fractal 

dimension of the plane D = 2. Therefore, the fractal dimension is expressed through the area of coverage 

[2, 3] by relation (4), if the width of the rectangle is changed γ times: 

𝐷 = 2 − log𝛾(𝑆(𝜀 ∙ 𝛾)/𝑆(𝜀)). (4) 

For a significant number of samples of the numerical sequence N, it is possible to replace the values 

of the heights of the rectangles of coverage hk by their mathematical expectation M(hk). But the 

mathematical expectation of the height of the rectangle depends on the number of samples per partition 

ε, and this dependence is nonlinear. Therefore, we denote the mathematical expectation of the height of 

a rectangle depending on its width ε as М(ε), where the mathematical expectation of the area of an 

individual rectangle will be expressed as the product of its width and the expected height (5): 

𝑆𝑘(𝜀) = 𝑀(𝜀) ∙ 𝜀. (5) 

Then have the expression for determining the fractal dimension through the coverage of rectangles 

of formula (2), taking into account (5): 

𝑆(𝜀) = ∑ 𝑆𝑘(𝜀)

𝑁𝜀

𝑘=0

⇒    𝑆(𝜀) = ∑ 𝑀(𝜀) ∙ 𝜀

𝑁𝜀

𝑘=0

 ⇒    𝑆(𝜀) = 𝑀(𝜀) ∙ 𝜀𝑁𝜀 ⇒    𝑆(𝜀) = 𝑀(𝜀) ∙ 𝑁, (6) 

where N is the total number of elements of the series, which is divisible by ε (although for N >> ε this 

requirement can be neglected and incomplete last rectangles of coverage can be accepted). 

If use the obtained relation (6) to the dimension value, obtain: 

𝐷 = 2 − log𝛾 (
𝑀(𝜀 ∙ 𝛾)

𝑀(𝜀)
), (7) 



in which the number of numbers in the implementation of series N has been reduced and is no longer used. 

Unfortunately, the mathematical expectation of the height of the rectangle (3) is not known. 

Therefore, we obtain from the mathematical expectation of the quantity itself. To do this, find the 

probability q3(h) of the height of the rectangle for ε = 2: 

𝑞2(ℎ) = ∫ 2𝑝(𝑥) ∙ 𝑝(𝑥 + ℎ)𝑑𝑥

+∞

−∞

, (8) 

an additional factor of 2 is used here, because the resulting probability turns out in two independent 

cases when the smaller number is obtained earlier and later. 

The general expression for q3(h) is obtained if all subsequent realizations of the number x, by the 

number ε-2, will be located on the interval [x, x + h]. To do this, the probability of ∫ 𝑝(𝑥)𝑑𝑥
𝑥+ℎ

𝑥
 falling 

into this interval must be increased to the power of ε-2 and multiplied by their possible combinations 

of the location of the limit values x and x + h, as which acts binomial coefficient 𝐶𝜀
𝜀−2 = 𝜀(𝜀 − 1)/2: 

𝑝𝜀−2(𝑥, 𝑥 + ℎ) = 𝜀(𝜀 − 1) ( ∫ 𝑝(𝑡)𝑑𝑡

𝑥+ℎ

𝑥

)

𝜀−2

, (9) 

Therefore, for q3(h), the expression is written with (8) taking into account (9) as the following 

integral (10): 

𝑞3(ℎ) = 𝜀(𝜀 − 1) ∫ 𝑝(𝑥) ∙ 𝑝(𝑥 + ℎ) ( ∫ 𝑝(𝑡)𝑑𝑡

𝑥+ℎ

𝑥

) 𝑑𝑥

+∞

−∞

. (10) 

Formula (10) in fact provides information about the probability density distribution of the height of 

the rectangle of coverage with a width of ε samples. The value of the expression is not valid for ε < 2, 

because for a single width of the rectangle, it should cover only one point, so its height will always be 

zero. In other cases, zero or less samples cannot be taken, because the number of samples ε is a natural 

number. 

Now that there is a value for the probability distribution of the width of the rectangle (10), we can 

write the value of the mathematical expectation of this height (11): 

𝑀(𝜀) = 𝜀(𝜀 − 1) ∙ ∫ ℎ ( ∫ 𝑝(𝑥) ∙ 𝑝(𝑥 + ℎ) ( ∫ 𝑝(𝑡)𝑑𝑡

𝑥+ℎ

𝑥

)

𝜀−2

𝑑𝑥

+∞

−∞

)

+∞

0

𝑑ℎ. (11) 

For the mathematical expectation M(ε) the integration limit is taken on the interval [0; +∞], because 

the height of the rectangle cannot have a negative value. 

Finally, using the obtained mathematical expectation of the height of the rectangle (11) for 

expression (7), we have an estimate of the fractal dimension based on the density of the distribution (1): 

𝐷 = 2 − log𝛾 (
𝛾(𝜀 ∙ 𝛾 − 1) ∫ ℎ (∫ 𝑝(𝑥) ∙ 𝑝(𝑥 + ℎ) (∫ 𝑝(𝑡)𝑑𝑡

𝑥+ℎ

𝑥
)

𝜀∙𝛾−2
𝑑𝑥

+∞

−∞
)

+∞

0
𝑑ℎ

(𝜀 − 1) ∙ ∫ ℎ (∫ 𝑝(𝑥) ∙ 𝑝(𝑥 + ℎ) (∫ 𝑝(𝑡)𝑑𝑡
𝑥+ℎ

𝑥
)

𝜀−2
𝑑𝑥

+∞

−∞
)

+∞

0
𝑑ℎ

). (12) 

Sometimes it is advantageous to use a non-multiple partition relation, so the following notation of 

expression (12) will be more useful: 

𝐷 = 2 − log𝜀2/𝜀1
(

𝜀2(𝜀2 ∙ 𝛾 − 1) ∫ ℎ (∫ 𝑝(𝑥) ∙ 𝑝(𝑥 + ℎ) (∫ 𝑝(𝑡)𝑑𝑡
𝑥+ℎ

𝑥
)

𝜀2−2
𝑑𝑥

+∞

−∞
)

+∞

0
𝑑ℎ

𝜀1(𝜀1 − 1) ∙ ∫ ℎ (∫ 𝑝(𝑥) ∙ 𝑝(𝑥 + ℎ) (∫ 𝑝(𝑡)𝑑𝑡
𝑥+ℎ

𝑥
)

𝜀1−2
𝑑𝑥

+∞

−∞
)

+∞

0
𝑑ℎ

). (13) 

A formula for obtaining a mathematical expectation of the fractal dimension of a sequence of random 

numbers with a known probability density distribution (13) is obtained. 

The obtained formula (13) is transient for estimating the fractal dimension of a binary series, which 



consists only of elements that are equal to 0 or 1 (Fig. 1). 

 
 
Figure 1: Visualization of zero coverings on a discrete binary number series 
 

To estimate the fractal dimension of such a binary series, need to determine the probability of 

obtaining a sequence of a given length ε zeros p0(ε) and units p1(ε): 

𝑝0(𝜀) = λ0
𝜀 , 𝑝1(𝜀) = λ3

𝜀 ,  

where λ0 is the probability of maintaining the zero state, λ3 is the probability of maintaining the single 

state. According to the defined probabilities, the mathematical expectation of the degree of coverage n 

elements of the sequence will be expressed by the following formula: 

𝑀(𝑛) = 1 −
(1 − λ3)λ0

𝑛 + (1 − λ0)λ3
𝑛

(1 − λ0) + (1 − λ3)
.  

If, for convenience, go to probability designations to change the current state in the series from zero 

to one and vice versa, λ1=1-λ0 and λ2=1-λ3, then in (13) can use discrete sums instead of integrals. 

Determining the mathematical expectation of the degree of coverage M(n), allows to use the following 

formula to determine the fractal dimension of the binary sequence: 

𝐷(𝑛1, 𝑛2, λ1, λ2) = 1 + 𝑙𝑛 (
λ1 + λ2 − λ2(1 − λ1)𝑛1 − λ1(1 − λ2)𝑛1

λ1 + λ2 − λ2(1 − λ1)𝑛2 − λ1(1 − λ2)𝑛2
) 𝑙𝑛(𝑛1/𝑛2)⁄ .  

The fractal dimension search expression contains not only the transition probabilities but also the 

coverage lengths. This leads to ambiguity in the resulting dimension. To get rid of the ambiguity, direct 

n1 to n2 and then direct the number of elements to 1. In result of finding the boundaries, we obtain the 

final formula for determining the fractal dimension of a binary sequence by transition probabilities [27]: 

𝐷(λ1, λ2) = 1 −
λ2(1 − λ1)𝑙𝑛(1 − λ1) + λ1(1 − λ2)𝑙𝑛(1 − λ2)

2λ1λ2
. (14) 

 

Due to the fact that the binary time series is given by the probabilities of changing or leaving the 

state, it was possible to express the fractal dimension analytically (14). Visually, this can be assessed in 

Fig. 2. Unfortunately, the coating method has an effect on the value of the fractal dimension, so to 

compare the results you need to make the transition from the resulting dimension to others by 

regression. 

As a result, we obtained a method for determining the fractal dimension of network traffic by its 

probabilistic properties: 

Stage 1. The binary time series for which it is necessary to define fractal properties accumulates. 

Stage 2. The probabilistic properties of the series are evaluated. The accumulated data calculates 

the number of occurrences of pairs of consecutive elements n00 : “0, 0” and n01 : “0, 1”. We obtain λ1 as 

the probability of change of state from “0” to “1” by the definition of probability λ1 = n01 / (n01 + n00). 



Similarly, the probability of changing the state from “1” to “0” is estimated as λ2 = n10 / (n10 + n11), where 

n10 is the number of pairs of consecutive elements “1, 0”; n11 – is the number of pairs of consecutive 

elements “1, 1”. 

Stage 3. The fractal dimension of a binary sequence is determined by formula (14). 

 

 

Figure 2: Dependence of the fractal dimension of a binary series on the probabilities of changes in the 
state of the system 

 

For practical use of the results there is a need to create a binary sequence generator with specified 

probability characteristics. This question is discussed below. 

2.2. Experimental study of the quality of the method 

To conduct experiments, it was decided to simulate network traffic with predefined properties. It 

was decided to model based on the theory of Markov processes, which is often used to model the traffic 

of different queuing systems [32-38]. For generation fractal binary traffic used Markov chain, shown 

in Fig. 3. 

In this work, a binary time series was created to simulate network traffic, the persistence of which 

is regulated by setting the probabilities of state change to the opposite λ1, λ2 (Fig. 3). 

 

0 1

λ2

λ1

λ0 λ3

p0 p1

 
 

Figure 3: Markov chain for generating fractal binary traffic  
 

This generator is characterized by states 0 or 1, and the probabilities of being in these states as 

p0 = λ2/(λ1 + λ2) and p1 = λ2/(λ1 + λ2), where λi – is the probabilities of the corresponding transitions [27]. 

The traffic intensity of such a generator will be within [0, 1] and will be equal to the probability of 

obtaining the output of the generator 1: p1. The algorithm of operation of such a generator is shown in 

Fig. 4. 



Enter(N, λ)

a = random

[0. ... 1.]

a>λ

series[i] = s

i=0..N-1

s = 1-s

(inverce)

Out(series)

series[0...N]

s = random 

(1 or 0)

generated traffic 

(series) visualization

Yes

No

 
 

Figure 4: Algorithm for generating fractal binary traffic 
 

Generating traffic with intensity ½ begins with setting the probability of maintaining the state λ. The 

algorithm contains a variable to save the previous state. The cycle repeats the generation of a pseudo-

random number from the range [0; 1) with a uniform distribution, for which a comparison is made with 

a given probability λ. When passing the test for comparison, the state is preserved, and the output is 

given the value of the previous state, otherwise the state changes to the opposite. It is expected that the 

generated binary traffic according to this algorithm has a controlled fractal dimension according to 

relation (14). 

In order to determine the fractal properties of the binary series obtained by the generator from 

Figs. 3, an experimental measurement of the Hurst exponent by R/S analysis was performed, the results 

of which are shown in Fig. 5. 

Fig. 5 contains the results of the analysis of binary traffic with intensity p1 = 0.5. To do this, it suffices 

to fulfill the condition of equality of transition probabilities λ = λ0 = λ3, or equivalent to λ1 = λ2. This 

indicator is responsible for the persistence of the time series and affects its fractal properties. Also, to 

calculate the Hurst exponent H, need to select a series of random wanderings – cumulative sums. The 

number of steps of the cumulative sums is shown by a separate axis L. 

 



 
Figure 5: The results of experimental measurement of the Hurst exponent H 

 

The graph shows that as the length of the cumulative sums decreases, the graph goes to a straight 

line that connects the unit and zero values of the Hurst exponent. Сonversely, if the cumulative sums 

are long enough, the Hurst exponent goes to a value of 0.5 without reflecting the persistence of the time 

series. 

The Hurst exponent was calculated according to the R/S analysis algorithm, which is implemented 

by the following program code [31]: 

 

1  # Input data: 

2  # ts - array with series data 

3  # lasg - array with shifts in cumulative data 

4  ts = numpy.cumsum(ts) 

5  tau = [numpy.sqrt(numpy.subtract(ts[lag:], ts[:-lag]).std()) for lag in lags] 

6  m = numpy.polyfit(numpy.log(lags), numpy.log(tau), 1) 

7  hurst = m[0]*2.0 

8  # output data: hurst - Hurst exponent 

 

The algorithm used for the experiment is shown in Fig. 6. The algorithm takes at the input the 

sequence to be analyzed, and lags – is the value of shifts in the calculation of cumulative sums. For 

each point of the graph, which corresponds to the probability of maintaining the state and range of 

lengths of cumulative sums, 100 times a random series of 10000 values is generated, for which Hurst 

exponents are calculated with the specified lengths of cumulative sums. The graph shows the average 

value for these 100 measurements. 

 



Begin

Generate:

series(10000, λ) 

H[i] = measure(series)
σλ = standard 

deviation of H[0..99]

i = 0..99

Hλ = mean of 

H[0..99]

End (Hλ, σλ)

λ = 0.01...0.99

 

 
Figure 6: Algorithm for plotting changes in the Hurst exponent 

 

Boundary results need better clarity. In Fig. 7 shows the result of using the minimum cumulative 

sums in 1 and 3 consecutive values: 

 

 
 
Figure 7: The results of experimental measurements of the Hurst exponent for cumulative sums in 1, 
3 samples with deviations of 2σ 
 

As a result, we have a curve that is an approximation of the linear relationship between the 

probability of maintaining the previous state λ and the Hurst exponent. Also, the markup of deviations 



shows a small discrepancy between the results from experiment to experiment. However, this is the 

result of a deliberately election long series of experiments in order to obtain reliable experimental 

results. 

The following Fig. 8 is a representation of another extreme position (in Fig. 5, this trend is 

developing "deep"), when the cumulative sums are long: 

 

 
 
Figure 8: The results of experimental measurements of the Hurst exponent for cumulative sums in 
100, 120, 150 samples with deviations of 2σ 

 
Here it is obvious that there is a significant deviation in some measurements, which affected the 

bandwidth of 2σ. This indicates that the measurement of the Hurst exponent is extremely inaccurate. In 

this case, in a wide range of probabilities of preservation of the previous state, about [0.1; 0.9], R/S 

analysis showed that the series is random. 

Comparison of graphs in Fig. 7 and Fig. 8, as a result of the analysis of the results of Fig. 5, leads to 

the conclusion that the result depends on the user's choice of parameters, in particular the length of the 

series or the lengths of the cumulative sums. 

It is proposed to use the Probabilistic approach, which is based on direct measurement of the 

probability of state change from 0 to 1 (r0) and from state 1 to state 0 (r1) according to the formula for 

determining fractal dimension (14), which is implemented in Python 3 programming language: 

 

1  r0 = (series[0:-2] < series[1:-1]).sum()/(series[0:-2]<1).sum() 

2  r1 = (series[0:-2] > series[1:-1]).sum()/(series[0:-2]>0).sum() 

3  d = 1-(r1*(1-r0)*math.log(1.0-r0)+r0*(1-r1)*math.log(1.0-r1))/(2.0*r0*r1) 

4  H = 2.0-d 

 

where, series is a one-dimensional array containing a binary time series. Using this code to determine 

the fractal properties of the time series is shown in Fig. 9. 

The results of the research of the quality of the Probabilistic method and its comparison with the 

well-known method of R/S analysis are shown in Table 1. 

To construct each row of the table, 100 generations of a binary sequence with a length of 10000 

elements with the corresponding value of λ were performed. For each of them, the Hurst exponent H 

was determined by R/S analysis and by based on an estimate of the probability of transition from 1 to 

0 and from 0 to 1 (Probabilistic method, PM).  

Thanks to hundreds of independent tests, it is possible to determine the average Hurst exponent (15) 

standard deviation σ (16) and percentage of deviation (17): 

 



 
 
Figure 9: The results of the experimental probabilistic estimation of the Hurst exponent with 
deviations of 2σ  
 
Table 1 
The results of work quality comparison of methods for fractal dimension definition – the known R/S 
analysis method and proposed Probabilistic method (PM) 

№ λ H, R/S H, PM σ, R/S σ, PM 
Deviations for 

R/S, % 
Deviations for 

PM, % 

1 0,01 0,020862173 0,004996201 0,001825691 0,000435045 8,751204779 8,707522638 
2 0,06 0,115130822 0,030678064 0,005365203 0,001102508 4,660093493 3,593801913 
3 0,11 0,197424495 0,057299125 0,006720639 0,001636951 3,404157102 2,856851724 
4 0,16 0,266660733 0,084636434 0,008166731 0,001946542 3,062592345 2,299887334 
5 0,21 0,321224610 0,113072840 0,009107072 0,002310433 2,835110483 2,043314238 
6 0,26 0,367964061 0,143068708 0,009842329 0,002886502 2,674807286 2,017564092 
7 0,31 0,404989816 0,173980449 0,010944700 0,003172788 2,702463230 1,823646757 
8 0,36 0,435730431 0,206981323 0,011123077 0,003080814 2,552742787 1,488450246 
9 0,41 0,462658106 0,240125774 0,011055708 0,003745437 2,389606470 1,559781461 
10 0,46 0,485639655 0,277501570 0,009411981 0,003754746 1,938058694 1,353054180 
11 0,51 0,502866839 0,313936619 0,011826159 0,004215003 2,351747645 1,342628967 
12 0,56 0,520859605 0,354596924 0,011126878 0,004295506 2,136252974 1,211377335 
13 0,61 0,540472278 0,398324387 0,010182414 0,004817891 1,883984610 1,209539751 
14 0,66 0,561685180 0,444444295 0,012015554 0,004776983 2,139197425 1,074821662 
15 0,71 0,587349580 0,494695839 0,010646189 0,004218451 1,812581414 0,852736347 
16 0,76 0,619086392 0,549212501 0,010121335 0,005005190 1,634882623 0,911339444 
17 0,81 0,667516915 0,609945932 0,010737486 0,005076275 1,608571380 0,832250120 
18 0,86 0,737425650 0,680389339 0,009941918 0,004865064 1,348192641 0,715041204 
19 0,91 0,836641573 0,762035440 0,010570512 0,004452206 1,263445799 0,584251869 
20 0,96 0,949146972 0,866270314 0,007584074 0,005016391 0,799041091 0,579079216 

Averages: 0,009416 0,003541 2,597437 1,852847 

 

To build each row of the table, 100 binary sequence generations with a length of 10000 elements 

with an appropriate value of λ were performed. There are σ – is the standard deviation σ (16) and 

Deviations – is the percentage of deviation (17). 

The constructed table allows to estimate the accuracy of the found Hurst exponents by last two 

columns (Table 1). According to these columns, the relative deviation for the Probabilistic method is 



smaller. This is because R/S analysis requires to estimate the “scatter” of R, which is the cumulative 

sum of several elements of the studied sequence. It is clear that such a value requires more 

measurements of traffic values and requires estimating the values with the appropriate accuracy, i.e. 

more experiments. 

𝐻 =
1

100
∑ 𝐻𝑖,

100

𝑖=1

 
(15) 

 

𝜎 = √
1

100
∑(𝐻𝑖 − 𝐻)2,

100

𝑖=1

 
(16) 

 

Deviations =  
𝜎

𝐻
∙  100%. (17) 

R/S analysis gives different values for different lags of the cumulative sum and the larger the step 

of the cumulative sum, the more different the value of the Hurst exponents determined by it. This 

indicates the ambiguity of the method and the possibility of manipulating the results by choosing the 

size of the cumulative sums. The proposed Probabilistic method does not have this disadvantage. The 

developed method is unambiguous and does not depend on the period of consideration, because it does 

not use cumulative sums. 

Also, as can be seen from Table 1, developed Probabilistic method has a lower percentage deviation 

from the mean value of the Hurst exponents, namely 1.8% as opposed to the R/S analysis, which has a 

deviation 2.5%. Therefore, the proposed method has a greater accuracy in determining the fractal 

dimension. 

3. Conclusions 

This experimental study investigates the quality of work of the previously proposed method of 

determining the fractal dimension of network traffic by its probabilistic properties. Also, the results of 

the experimental comparison of the work quality of the proposed Probabilistic method compared to the 

method based on R/S analysis. 

A simulated binary time series using Markov process theory was used to conduct the experiments. 

To simulate network traffic a binary time series was created with persistence regulated by setting up 

the probabilities of changing states “0” and “1” to the opposite ones. 

As shown by experiments on simulated network traffic, the proposed Probabilistic method has 

greater accuracy and unambiguity of results regardless of the length of the studied series in contrast to 

R/S analysis. 

R/S analysis gives different values for different sizes of the cumulative sum, and the larger the step 

of the cumulative sum, the more diverges the value of the Hurst exponent determined by it. This 

indicates the ambiguity of the method and the possibility of manipulating the results by choosing the 

different lags of the cumulative sums. The proposed Probabilistic method does not have this 

disadvantage. The developed method is unambiguous and does not depend on the period of 

consideration, because it does not use cumulative sums. 

Also, the developed method has a lower percentage of deviation from the mean value of the Hurst 

exponent and therefore has higher accuracy in determining the fractal dimension – R/S analysis has a 

deviation of 2.5%, and the developed method 1.8%. 

4. References 

[1] C. Ma, G. Dai, J. Zhou, Short-Term Traffic Flow Prediction for Urban Road Sections Based on 

Time Series Analysis and LSTM_BILSTM Method, in IEEE Transactions on Intelligent 

Transportation Systems (2021). URL: https://ieeexplore.ieee.org/document/9364926. doi: 

https://doi.org/10.1109/TITS.2021.3055258. 



[2] P. Dymora, M. Mazurek, Influence of Model and Traffic Pattern on Determining the Self-

Similarity in IP Networks, Applied Sciences, Vol. 11,  Issue 1(190), 2021. URL: 

https://www.mdpi.com/2076-3417/11/1/190. doi: https://doi.org/10.3390/app11010190.  

[3] A. Phinyomark, R. Larracy, E. Scheme, Fractal Analysis of Human Gait Variability via Stride 

Interval Time Series. Front Physiol, Vol. 11, Article 333, 2020 Apr 15. URL: 

https://pubmed.ncbi.nlm.nih.gov/32351405. doi: https://doi.org/10.3389/fphys.2020.00333.  

[4] G. Millán, Traffic Flows Analysis in High-Speed Computer Networks Using Time Series, arXiv 

preprint arXiv:2103.03984 [stat.AP], 2021.  URL: https://arxiv.org/abs/2103.03984. doi: 

https://doi.org/10.48550/arXiv.2103.03984. 

[5] D. Zhukov, J. Perova, V. Kalinin, Description of the Distribution Law and Non-Linear Dynamics 

of Growth of Comments Number in News and Blogs Based on the Fokker-Planck Equation,  

Mathematics, Vol. 10  Issue 6, 2022. URL: https://www.mdpi.com/2227-7390/10/6/989/htm. 

[6] J. B. Bassingthwaighte, G. M. Raymond, Evaluating Rescaled Range Analysis for Time Series, 

Annals of Biomedical Engineering, Vol. 22, 1994, pp. 432-444. URL: 

https://link.springer.com/article/10.1007/BF02368250#citeas. doi: https://doi.org/10.1007/ 

BF02368250. 

[7] Y. Chen, Random walk: statistical data analysis and application in finance, in Proc. SPIE 12259, 

2nd International Conference on Applied Mathematics, Modelling, and Intelligent Computing 

(CAMMIC 2022), 122590E (2022). doi: https://doi.org/10.1117/12.2639464. 

[8] Y. Hu, F. Xiao, A novel method for forecasting time series based on directed visibility graph and 

improved random walk, Physica A: Statistical Mechanics and its Applications, Vol. 594, 2022. 

doi: https://doi.org/10.1016/j.physa.2022.127029. 

[9] S. U. Rehman, B. Said, Analysis of Investor Overreaction Effect and Random Walk: A Case Study 

of Pakistan Stock Exchange, Vol. 5, No. 1, 2019. doi: https://doi.org/10.31529/sjms.2018.5.1.1. 

[10] M. A. Nia, R. E. Atani, B. Fabian, E. Babulak, On detecting unidentified network traffic using 

pattern‐based random walk, Security and Communication Networks, Vol. 9, No. 16, 2016, 

pp. 3509-3526. doi: https://doi.org/10.1002/sec.1557. 

[11] M. Rhanoui, S. Yousfi, M. Mikram, H. Merizak, Forecasting Financial Budget Time Series: 

ARIMA Random Walk vs LSTM Neural Network, IAES International Journal of Artificial 

Intelligence, Vol. 8, No. 4, 2019, pp. 317-327. doi: http://doi.org/10.11591/ijai.v8.i4.pp317-327. 

[12] X. Qi, H. Sheng, Hurst Index Analysis of Social Electricity Consumption Change Trend Based on 

R/S Analysis, in IOP Conference Series: Materials Science and Engineering (2020). URL: 

http://dx.doi.org/10.1088/1757-899X/750/1/012150. 

[13] A. Kuchansky, A. Biloshchytskyi, S. Bronin, S. Biloshchytska, Y. Andrashko, Use of the Fractal 

Analysis of Non-stationary Time Series in Mobile Foreign Exchange Trading for M-Learning, 

Advances in Intelligent Systems and Computing, Vol. 1192, Springer, Cham (2021). doi: 

https://doi.org/10.1007/978-3-030-49932-7_88. 

[14] M. S. Raimundo, J. Jr. Okamoto, Application of Hurst Exponent (H) and the R/S Analysis in the 

Classification of FOREX Securities, International Journal of Modeling and Optimization, Vol. 8, 

No. 2, 2018, pp. 116-124. 

[15] H. Danylchuk, O. Kovtun, L. Kibalnyk, O. Sysoiev, Monitoring and Modelling of Cryptocurrency 

Trend Resistance by Recurrent and R/S-Analysis, 2020. URL: https://ssrn.com/abstract=3618074. 

[16] S. Wu, An User Intention Mining Model Based on Fractal Time Series Pattern, Fractals, Vol. 28, 

No. 08, P. 2040017, 2020. doi: https://doi.org/10.1142/S0218348X20400174. 

[17] M. Fernández-Martínez, M. A. Sánchez-Granero, J. E. Trinidad Segovia, I. M. Román-Sánchez, 

An accurate algorithm to calculate the Hurst exponent of self-similar processes,  

Physics Letters A, Vol. 378, Issues 32-33, 2014, pp. 2355-2362. doi: https://doi.org/10.1016/ 

j.physleta.2014.06.018. 

[18] O. Zmeškal, M. Nežádal, B. Komendová, M. Julínek, T. Bžatek, Fractal analysis of printed 

structure images, Institute of Physical and Applied Chemistry, of the methods used to perform 

analysis listed above, Brno University of Technology, Brno, Czech Republic. URL: 

http://imagesci.fch.vut.cz/download/en07_brat03.pdf. 

[19] W. Leland, М. Taqqu, W. Willinger, On the self-similar nature of IP-trafic, IEEE/ACM 

Transactions on Networking, No. 3, 1997, pp. 423-431. 



[20] H. A. Kuchuk, Method of research of fractal network traffic, Information processing systems, 

Vol. 5 (45), Kharkiv University of Reinforced Forces named after Ivan Kozhedub, Kharkiv, 2005, 

pp. 74-84. (in Ukrainian) 

[21] H. A. Kuchuk, O. O. Mozhaiev, O. V. Vorobiov, Analysis and models of self-similar traffic, 

Aerospace Engineering and Technology, Vol. 9 (35), 2006, pp. 173-180. (in Ukrainian) 

[22] Y. Zhao, L. Wu, Comparison and Application of Estimation of Hurst Exponent, Computer 

Engineering and Applications, No. 16, 2014, pp. 154-158. 

[23] V. A. Malinnikov, D. V. Uchaev, Analysis of methods for forming a multifractal measure based 

on wavelet processing of experimental data, Izvestiya vuzov, Series geodesy and aerial 

photography, No. 6, 2007, pp. 57-61. (in Russian) 

[24] L. Ya. Nych, R. M. Kaminskyi, Determination of Hurst exponent using fractal dimension 

calculated by cellular method on the example of short times series, Information systems and 

networks, Vol. 814, Bulletin of the National University of Lviv Polytechnic, 2015, pp. 100-111. 

(in Ukrainian) 

[25] V. Ya. Voropaieva, V. I. Bessarab, V. V. Turupalov, V. V. Chervynskyi, Theory of teletraffic, 

Donetsk National Technical University, Donetsk, 2011. (in Ukrainian) 

[26] I. O. Romanenko, R. M. Zhyvotovskyi, S. M. Petruk, A. V. Shyshatskyi, O. O. Voloshyn, 

Mathematical model of load distribution in special purpose telecommunication networks, 

Information processing systems, No. 3(149), 2017, pp. 61-71. (in Ukrainian) 

[27] H. Drieieva, O. Smirnov, O. Drieiev, Y. Polishchuk, R. Brzhanov, M. Aleksander, Method of 

Fractal Traffic Generation by a Model of Generator on the Graph, COAPSN, CEUR-WS, 

Vol. 2616, Lviv, Ukraine, 2020. URL: http://ceur-ws.org/Vol-2616/paper31.pdf. 

[28] H. M. Drieieva, O. M. Drieiev, O. O. Denysenko, Determination of the fractal dimension of a 

numerical sequence by the probability distribution of the values of its elements, Machinery in 

agricultural production, industrial engineering, automation, Vol. 31, Kropyvnytskyi, 2018, pp. 

119-128. URL: http://nbuv.gov.ua/UJRN/znpkntu_2018_31_17. (in Ukrainian) 

[29] Ju. P. Ryzhikov, Algorithmic approach to queuing problems: monograph, Military Space 

Academy named after A. F. Mozhaisky, Saint Petersburg, 2013. (in Russian) 

[30] V. N. Zadorozhnyj, Analytical and simulation studies of large network structures: monograph, 

Omsk State Technical University Publishing House, Omsk, 2011. (in Russian) 

[31] J. Park, How can calculate Hurst exponent in python? (lags parameter issue), 2018. URL: 

https://quantopian-archive.netlify.app/forum/threads/how-can-calculate-hurst-exponent-in-

python-lags-parameter-issue.html.   

[32] Ye. Meleshko, O. Drieiev, M. Yakymenko, D. Lysytsia, Developing a model of the dynamics of 

states of a recommendation system under conditions of profile injection attacks, Eastern-European 

Journal of Enterprise Technologies, Vol. 4, No. 2(106), 2020, pp. 14-24. URL: 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85096707995&origin=resultslist. 

[33] Ye. Meleshko, L. Raskin, S. Semenov, O. Sira, Methodology of probabilistic analysis of state 

dynamics of multidimensional semiMarkov dynamic systems, Eastern-European Journal of 

Enterprise Technologies, Vol. 6, No. 4(102), 2019, pp. 6-13. URL: 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85078054250&origin=resultslist. 

[34] T. D. Dimitrakos, E. G. Kyriakidis, A semi-Markov decision algorithm for the maintenance of a 

production system with buffer capacity and continuous repair times, International Journal of 

Production Economics, Vol. 111(2), 2008, pp. 752-762. doi: https://doi.org/10.1016/ 

j.ijpe.2007.03.010. 

[35] Q.-L. Li, J. C. S. Lui, Block-structured supermarket models, Discrete Event Dynamic Systems, 

Vol. 26(2), 2014, pp. 147-182. doi: https:// doi.org/10.1007/s10626-014-0199-1.   

[36] H. Okamura, S. Miyata, T. Dohi, A Markov Decision Process Approach to Dynamic Power 

Management in a Cluster System, IEEE Access, Vol. 3, 2015, pp. 3039-3047. doi: 

https://doi.org/10.1109/access.2015.2508601. 

[37] Q.-L. Li, Nonlinear Markov processes in big networks. Special Matrices, Vol. 4(1), 2016. doi: 

https://doi.org/10.1515/spma-2016-0019. 

[38] E. A. Feinberg, F. Yang, Optimal pricing for a GI/M/k/N queue with several customer types and 

holding costs, Queueing Systems, Vol. 82(1-2), 2015, pp. 103-120. doi: https://doi.org/10.1007/ 

s11134-015-9457-7 


