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Abstract  
The statement of one problem of optimum accommodation of modules on a chip as a linear 

Euclidean combinatorial problem on poly- partial permutations and its special classes are 

presented. The software for the problem based on investigated polyhedral and combinatorial 

properties is considered.  
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1. Introduction 

Let us consider the issue of optimizing microcircuits, which are the main components of modern 

technology, which is relevant to the rapid growth of the capabilities of technical devices and the 

requirements for them. In particular, consider one problem of placing rectangular modules on a 

microcircuit. Such a problem in various settings and depending on the optimization criterion appeared 

in many sources [1], [2], [3]. Traditionally it is considered very difficult [1], [4], [5], [6], because it can 

always be considered as a two-dimensional packing problem, which is NP-hard [1], [2], [6]. 

2. Literature survey 

In recent years, a number of methods have been proposed to solve this problem: based on search 

adaptation [7], [8], linear and quadratic programming [4], [9], [10], simulated annealing [11], based on 

evolutionary modeling methods [12], polyhedral approaches [5], [13]-[16], graph-theoretical 

techniques [17]. 

3. Issues 

 Since theses problems mostly NP-hard optimization problems [4], [9], [10], the development of 

algorithms are highly relevant, especially those that use specifics of all components of the models - 

targets function, search domain, feasible domain, properties of the corresponding combinatorial 

polytopes [5], [6], [18]-[19]. We propose a Euclidean Combinatorial Optimization [15], [20]. the 

approach that explores and utilizes algebraic-topological and geometric properties of the combinatorial 

set, on which optimization is carried out and subproblems are singled out that can be solved more 

efficiently due to the specifics.  
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4. Problem statement 

It is necessary to build mathematical models of one problem of the optimal arrangement of modules 

on a chip in the form of an optimization program over a finite point configuration belonging to a set of 

Boolean vectors (the Boolean set) and develop a polyhedral approach to solve this problem essentially 

used explored specifics of the problem and its special cases. Then we aim to build a software package 

for solving problems of this class implementing our specific approach, from a field of cutting plane 

methods [13], [21]-[25], to its solution based on the investigated properties of the corresponding 

combinatorial set embedded in Euclidean space and the corresponding polytope [14]. 

5. Main part 
5.1. Problem 1 

 On a rectangular microcircuit with length L  and height H , it is necessary to arrange n  modules 

iM  with length il > 0  and height ih > 0 , respectively, in order to minimize the degree of chaos 

placements of modules, if it is possible to return modules by 
090  (  n ni J , J = 1,2,...,n ).   

 Remark 1  By the measure of the randomness of the placement: a) of a module, we will mean the 

number of other modules that are located diagonally from it; b) of all modules, it is implied the total 

number of modules situated diagonally from each other.   

So, 
nx, y,T R , 

4 NZ R , where 
2

nN = C , need to be found such that:  
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and the following constraints hold:   

• placement of the chip:  
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where   
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•  ( ) ( )i ii J i J
n n

x = x , y = y
 

 are vectors of coordinates of all left-bottom corners of modules iM  

( ni J ) (the coordinate system origin is located at a left-bottom corner of the module);  



• ( ) ( )'

i i i Ji J nn

L' = L = L p
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−  and 

• ( ) ( )'

i i i Ji J nn

H' = H = H p
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−  are vector of additional parameters; i i ip = h l+  is a semi-

perimeter of iM  ( ni J  );  

• ( )i i J
n

T = t


 is a vector of module's orientation parameters:  
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( )ij i , j J
n

Z = Z
,i< j

, ( )k

ij ij k J
4

Z = z


 is a vector that determines the relative position of the modules 

( )i j nM ,M i, j J ,i < j , namely:  

• 
1

ijz = 1 , if iM  is left from 
jM  (

i i jx l x+  ), otherwise 
1

ijz = 0 ;  

• 
2

ijz = 1 , if iM  is right from 
jM  (

j j ix l x+  ), otherwise 
2

ijz = 0 ;  

• 
3

ijz = 1 , if iM  is lower than 
jM  (

i i jy h y+  ), otherwise 
3

ijz = 0 ;  

• 
4

ijz = 1 , if iM  is higher than 
jM  (

j j iy h y+  ), otherwise 
4

ijz = 0 ;  

• nB  is Boolean n -vector set [12], [19]; 

• ( )'4

52A G  is a subsets of a set ( )4

52A G  of 4 -partial multipermutations [18] induced by 

a multiset  G = 0,0,0,1,1 , where the sums of the first two and of the last two coordinates of the 

elements does not exceed one;  

• 
' K '4 '4

52 52ms
A ( G )= A ( G ) A ( G )   is a poly-4-partial multipermutation set that is a 

Cartesian product of N  sets of type ( )'4

52A G  [10]. 

Here are two particular cases of the problem simplifying the main problem (1)-(4)  (further referred 

to as Problem 1) to some extend. 

5.2. Problem 2 

 Suppose that some of the modules have a square shape that is  

n i ii J : l = h .   (7) 

Without loss of generality, we can assume that square modules have the first indexes, i.e.,  

i i n
n

i i n n
n n

0n J : l = h i J = I ;

0 0l h j I = J \ J ( J = J {0}).




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(8) 

In this case, reorientation of ( )i nM i J   is inexpedient. Therefore the introduction of the variables 

( )i nt i J   of the form (6) is not required. 



So, after simplifying the constraints (1), (3)-(5) we came to a mathematical model of Problem 2: 

find  

n nn 4 Nx, y R ,T R ,Z R
    

of the form of  
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that minimize (2) and satisfy conditions:   

• of placing on the modules (placement constraints):  
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• nonoverlapping constraints:  
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(15) 

 

As you can see, the dimension of Problem 2 as compared to Problem 1 is slightly less, but its 

advantage is that some of the constraints (3) turn into constraints on the (10) variables (boxing 

constraints), which simplifies its software implementation. 

Remark 2  If all modules are square, i.e., nI = J I = { }  , we get a problem of finding  



' K

ms
0 x L',0 y H',Z A ( G ),      (16) 

 

which delivers the minimum of (2) and satisfying the condition (12).   

5.3. Problem 3 

 Let all modules are oriented along the boundaries of the microcircuit, then, as in Problem 2, it is 

unnecessary to introduce additional variables (6) and the problem (1)-(4) becomes: find x, y,Z  

minimizing (2) while satisfying the conditions (16), (17):  

1 '
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j i ij j
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i j ij i
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j i ij j
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(17) 

Remark 2  A certain simplification of the problem (1) can be derived if the modules form multisets. 

This means that among them, they are multiple of the same size. In this case, for each of a pair of such 

modules, one can introduce a certain ordering 
i jM M ,i < j , according to which iM  is always not 

to the right of 
jM  and not higher than it. Therefore, the set Z  of additional variables and the number 

of the constraints (4) are reduced.   

It is seen that the problem (1) is a linear constrained partially combinatorial optimization problem. 

It is offered to apply the combinatorial cut-off method [20] to its solution. This method is based on the 

derived properties of a polytope being the convex hull of the set 
K

ms
A ( G ) , such as its H-representation 

and the vertex adjacency criterion. 

6. Software implementation 

 To implement the above approach to solving the (1) problem, a web service was developed based 

on ASP.NET WebForms and the programming language C#. 

The block for generating the system of constraints and auxiliary information is based on the 

implemented class Matrix with its methods, operators, indexers and properties. 

Further, capital letters A,..,D  denote matrices, and lowercase letters a,...,d  denote vectors,  

ij i J
m n

A( m,n )=( a )
; j J 

, ij i , j J
n

A( n )= ( a )  , 

i i J
n

a( n )= ( a ) , E,e  are unit matrix and a vector of units. 

To solve the problem, a system of constraints (11)-(17)  is generated. 

The following functions are implemented in the Matrix  class:   

•     static methods that implement matrix concatenation:  

( A( m,n1 n2)= Matrix.ExtendMatrix(

A1( m,n1),A2( m,n2)),

B( m1 m2,n )= Matrix.ExtendMatrixInDown(

B1( m1,n ),B2( m2,n ))

+

+
; 



• the identity matrix E( n )  is generated using the static method of the class 

UnitMatrix( n )   

• operator ( A( m,n ),a( n ))  multiplies matrix columns by elements of a given vector 

( B( m,n )= A( m,n ) a( n )) ;  

• methods MultiplyColsForX( n,N ,a( n )) , MultiplyColsForY( n,N ,a( n ))  are 

used to generate the matrices B1-B4. Input parameters are: n,N  is matrix dimension and a (n) is 

data array, arranged in columns;  

• generation of the specific matrix  is carried out using the constructor of the 

Matrixclass( iRows,iCols,iColValues ) , where iRows,iCols  define the dimension of the 

matrix, iColValues  is an array of elements.  

Also, matrix multiplication and matrix-scalar multiplication are implemented. 

The constraint system is generated using combinations of the above methods and operators of the 

Matrix class. 

Matrices D1, D2 are generated using the operator ( D1( n )= ( E( n ),h( n )),D2( n )=−

( E( n ),l( n ))− . 

We form matrix A by combining matrices of lower dimension using the static functions 

ExtendMatrix and ExtendMatrixInDown. We generate matrices of lower dimensions utilizing the 

constructor of zero arrays of type Matrixclass( n,N ) , with the last unit component and the operator 

*( E ,( 1)) − . We form the matrix B1 using the MultiplyColsForX ( n,N , h ) ( h = h( n ) ) function. 

Similarly, a matrix B2 is created using the MultiplyColsForY ( n,N , h ) function. We form matrices 

B3 and B4 utilizing the functions MultiplyColsForY and MultiplyColsForX with the parameters ( n,N  , 

l ) ( l = l( n )). 

We form the right side vector of the system using the GetB( H ,L,h,l ,n )  function, which uses some 

auxiliary methods, which outputs are combined with the help of ExtendMatrixInDown  into a column 

matrix. The additional methods perform the following operations:   

• generation ( e = e( n ),h,l );  

• generation of vectors c1,c2,c3,c4 .  

The resulting system of constraints along with auxiliary information is displayed in a spreadsheet 

for further analysis. In orfer to find the optimal solution to the problem, the GPL.AlgLib library is 

integrated into the service. It is adapted to solve problems of this type using the proposed combinatorial 

cutting plane methods [14]. 

7. Conclusion 

The work presents a mathematical model of a problem of systematized placement of rectangular 

modules on a microcircuit. For it solution, a service was developed based utilizing ASP.NET 

technology and the C # programming language. The approach underlying the offered algorithm the 

problem solution is the preliminary study of geometric and extremal properties of point configurations 

being a search domain and its convex hulls [20] with further application in the combinatorial cutting-

plane method [21].  
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