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Abstract 
In problems of object and signal recognition, each of the errors of the first and second kind 

has its own cost, which takes on non-negative values. If they are equal, then the problem is 

relatively easy to solve. Since, after some transformations, the equation is transformed so that 

the Laplace function can be applied to it and the approximate values can be found. However, 

finding more accurate values, with inequality of errors of the first and second kind, and mini-

mizing the average risk is in demand and necessary. In the course of the study, a method was 

developed for finding the minimum value of the average risk for two functions that have a 

normal distribution, as well as an independent mathematical expectation and standard devia-

tion. 

The obtained theoretical results are simulated on a computer. In the course of modeling, 

various combinations of the probabilities of errors of the first and second kind were set, in the 

course of which the tendency of change in the average risk was determined. The results of 

computer modeling show the effectiveness of the proposed technique. 

A mathematical model is built to estimate the errors of the measure of proximity between 

objects when solving problems of pattern recognition when recognizing signals, and the con-

ditions for minimizing errors of the measure of proximity between objects are derived from it. 

The fulfillment of these conditions allows two to four times to reduce the errors in estimating 

the measure of proximity between objects. 
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1.   Introduction 

In the last decade, the Smart Grid concept, which means an intelligent power system, has been ac-
tively discussed and developed abroad. Smart Grid is a fully integrated self-regulating and self-

renewing electric power system with a network topology that includes all generation sources, trunk 

and distribution networks and all types of electricity consumers, which are controlled using a single 

network of information and control devices and real-time systems. In fact, an intelligent electric net-
work unites not one, but two networks – an electric and information control network, which closely 

interact with each other and function simultaneously [1]. 
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Without proper coordination may not yield satisfactory results. In order to achieve such coordina-

tion and, at the same time, avoid the single points of failure typical of centralized controller architec-

tures and dedicated communication links, advanced smart grids should incorporate distributed and 
autonomous controllers. Greater numbers of distributed and autonomous controllers also reduce the 

risk of intentional and unintentional outages due to breaches of cybersecurity. There is an underlying 

paradox here, however: the more distributed and autonomous the control structure is, the more com-
plex it also tends to be. Since more complex systems may be more prone to operational failures, with-

out proper planning and design, distributed and autonomous control architectures may yield worse 

reliability performance than expected [2]. 
The computerized control in the electric power industry objects by SCADA systems involves the 

problems of checking the consistency of their parameters with the required values and, depending on 

test results, forming appropriate signals to check and control the processes proceeding in these objects. 

Such problems can be solved with the help of pattern recognition systems (PRS). But existing systems 
cannot provide sufficient certainty in pattern recognition, because of the proximity measure between 

patterns (PMBP) corresponding to the current and required states of power objects [3-5]. 

The existing methods of checking pattern recognition (PR) certainty involve sophisticated algo-
rithms and structural solutions which allow the reduction of PMBP estimation errors but complicate 

the structure and decrease the speed of PRS. 

In the absence of a mathematical model for the analysis of PMBP estimate errors, its development 
and the construction of a model for the correction of these errors are real problems [6, 7].  

2.  Problem statement 

In the development of the principles of invariant pattern recognition each object can be represented 

in the form , where  and ;  is the real value of the i-th parame-

ter of the pattern to be recognized;  are the parameters of influence of destabilizing factors 

on value . A standard pattern can be represented in the form , where   is 

the real admissible value of the i-th parameter of unhealthy influences;  are the parameters 

of influences of destabilizing factors on values  [8,9]. The value of PMBP, evaluated indirectly by 

the i-th parameter, can be determined as follows: 

 

        (1) 
 

As full invariance of pattern recognition is reached, the desired value of  is specified by the ex-

pression: 

 

              (2) 
 

To determine condition , formula (1), on rearrangement, can be expanded into Taylor’s se-

ries. Taking linear terms, we can derive the conditions of invariance of the PMBP value with respect 
to destabilizing factors: 

 

            (3) 

 

There are three ways to meet these conditions: 

 

              (4) 

              (5) 

            (6) 

 



The first solution is that using different algorithmic and structural methods. We can minimize each 

error of direct parameter measurement of the pattern to be recognized and the standard one. Such a 

solution can be realized in the case when the number of destabilizing factors is small. But in practice, 
this number is usually large (ambient temperature, instability of voltage and frequency of a power 

source, illumination of the vision field of a sensitive device, change in the position of the object to be 

recognized, ageing of equipment, and others). Therefore, the minimization of separate errors of pa-
rameter measurement complicates equipment and reduces its reliability. Moreover, in most cases it 

leads to the degradation of system dynamic characteristics [3,4]. 

The second solution implies the invariance of PR for the separate types of errors of parameter value 
measurement for the object to be recognized and the standard one. But firstly, this solution is not effi-

cient for the above reason, and secondly, the formulation of PMBP reduces to differential measure-

ment with spatial and temporal parameter partitioning, and this requires equivalent spatial and tem-

poral conditions, which are difficult to realize [10, 11]. 
The third solution implies the PR invariance by the totality of parameter measurement errors for the 

object to be recognized and the standard one, which seems preferable as compared with other solu-

tions. There is no need in this case to allow for the physical nature and contribution of each destabiliz-
ing factor to the total error, which simplifies the solution for all the types of destabilizing factors [12, 

13]. 

Invariance conditions: 
 

   (7) 

 
Show that to minimize the influences of destabilizing factors on the PMBP value, firstly, the influ-

ence on each parameter X and Y should be minimized, and secondly, the sum of influences on these 

parameters should be minimal. Destabilizing factors form systematic and random errors of the PMBP 

estimate [12, 15]. As a result of the analysis of the Euclidean, Manhattan and Canberra algorithms for 
steady and alternating components of the PMBP systematic estimate error, we have obtained the fol-

lowing generalized expressions: 

 

           (8) 
 

where  and  are the steady components of systematic errors of parameter measurement for the 

object to be checked and the standard one; S  is the sign of error in the estimation of parameter X 

and Y. 
A generalized formula for the determination of the alternating component of the systematic error of 

PMBP value estimation can be written in the form 

 

 
,        (9) 

 

where  and  are the multiplicativity factors of the alternating systematic errors of formulation 

of parameters  and ; X and Y are the relative values of the last. 

As a result of experimental investigations, we could clarify that the random error of PMBP estima-

tion was distributed by the normal law, and this fact is confirmed in literature [16].  The analysis of 
these data showed that the correlation between the error of parameter measurement of the object to be 

recognized  was close to zero, since . It means that the errors introduced into 

the measurements of X and Y are reflected on the results of technical vision system (TVS) operation 

[14,17]. These facts allow some corrections in the determination of the “certainty” concept, by which 

is meant the fiducial probability of the correct determination of belonging of the object under check to 
a proper class, reflecting the degree of correspondence of the measured parameters of an input object 

to the true values of standard object parameter [10,14]. 



The uncertainty of pattern recognition in this case can be realized as a sum of independent uncorre-

lated events characterizing the errors of measurement of parameter values of the checked and standard 

objects. Consequently, the certainty of pattern recognition can be determined as the product of the 
fiducial probabilities of parameter value measurements of the both objects. This attests that certainty 

in TVS will be always less than separate fiducial probabilities of measurement of parameters X and Y. 

To increase the certainty, it is necessary to decrease the error of measurement of this parameters. Thus, 
the development of effective methods for the correction of measurement errors of image parameters of 

natural objects is a real problem [12]. 

Let us represent a mathematical model for the PMBP estimation in the implicit form:  
 

,         (10) 

 

where  are the output signals of a measuring channel in 

the measurement of parameters of the object under check and standard one, respectively;  is the 

function of the PMBP estimation. 

We can see from (10) that destabilizing factors affect parameters X and Y identically. Therefore, 
by minimizing these influences, we can increase the information body of the PMBP value. In order to 

determine extreme points, we expand (10) into Tailor’s series and then only consider linear terms. On 

some transformations, we can find the conditions of invariance of the PMBP estimation for destabiliz-

ing factors:  
 

  (11) 

 
Conditions (11) show that to minimize the influences of destabilizing factors on the PMBP value, it 

is necessary to minimize these influences on each parameter X and Y and the sum of influences on 

these parameters should be minimal. 

3.   Problem solving method 

Images available: reference image – RI and another image – AI.  Let us assume that the bright-

ness level of the reference image is proportional to some true voltage - . The observer measures 

this voltage with errors - у, as a result, there is an estimate of this voltage – y , so that 

. The brightness level of another image is proportional to some true voltage . In 

this case, a similar relationship  takes place, where truex  is the true voltage corre-

sponding to the brightness of another image, x  is the error in measuring this voltage, x  is an 

estimate of this voltage, or the voltage that is measured by the observer.               

Estimates of stresses xandу are random values and are distributed according to normal laws 

with parameters  and .       

Under normal distribution laws, the true stresses of the reference image (RI) and another image 

(AI) are equal to the mathematical expectations of ,  

In addition, either only the reference image with probability or only another image with proba-

bility  can appear in front of the observer. The probabilities of these mutually exclusive events are 

related as .1 01 pp   

The task of the observer is to determine which image he is observing, reference or other, that is, to 

refer the image he is observing either to the reference image or to another. Error of the first type:   It is 
decided that the observed image is different (or not a reference), while the observed image is in fact a 

reference. Error of the second type: It is decided that the observed image is a reference (or is not dif-

ferent), while the observed image is actually different.  

Since the observer has not yet decided which image is in front of him, then it is not yet known 

which value is measured by  or . Therefore, we denote the value of the measured voltage   For 



definiteness, let us assume that the mathematical expectation of a voltage proportional to the bright-

ness of the reference image is greater than the mathematical expectation of a voltage proportional to 

the brightness of another image ,xy mm      

Or the true voltage proportional to the brightness of the reference image is greater than the true 

voltage proportional to the brightness of the other image  

 In that case, a certain threshold - THLDZ  is set for the measured voltage . If the measured voltage 

 is less than the set threshold (THLD), then a decision is made that another image is observed:              

   THLDZz  observed image = another image. 

If the measured voltage  is greater than the set threshold, then a decision is made that a reference 

image is observed:  THLDZz  observed image = reference image. 

In this case, such errors are possible:  

  THLDZz  the observer decides that the image is a reference, in reality the image is different, in 

statistical radio technics this situation is called a false alarm - this is a type 1 error. 

  THLDZz  the observer decides that the image is different, in fact the image is a reference, in 

statistical radio technics such a situation is called a signal skip - this is a type 2 error. (at the very be-
ginning of the task, these situations are confused and indicated vice versa).  

The probability of an error of the first kind will be written as follows: 

 

where   probability density function of random stress - .x  

The probability of an error of the second type will be written as follows: 

                   

where  probability density function of random stress - .y  

The average risk with equal probabilities of the appearance of another and the reference image 

5.010  pp will be written as:  

 

                                                                         (12) 

 

where  and  are the cost of losses from errors of the first and second type, respectively.  

And with unequal probabilities, the average risk should be averaged over these probabilities as fol-

lows: 
 

                    (13) 

 

It is required to set such a threshold THLDZ  at which the average risk becomes C minimum. 

In the above formulation of the problem, the mathematical expectations of random voltages 

 and, the standard deviations -  and , the correlation coefficient - are fixed and known 

to the observer. In this case, statistical averaging over these parameters is possible.   

To develop a method for minimizing the estimation errors of PMBP, we analyze the composition of 
the distribution laws for the measurement errors of the parameters of the recognized and reference 

images.  

Suppose the probability densities p (x) and p (y) of the values of the input and reference features x 

and y have an arbitrary form, and the errors x and y, superimposed on the values x and y, are distrib-

uted according to the normal law (mx and my, x and y).  

It is assumed that the errors x and y are correlated, but independent of the value of x. If the values 

of x and y differ by the value z (z = x - y), an error of the first (x > y and x +   y - z + ) and the 

second (x  y and x +  > y - z + ) genera. As is known, in problems of control and recognition, 



each error has its own cost  and , which take on non-negative values. In this case, the average risk С 

will be equal to the mathematical expectation of the cost: 

  

                                                       (14) 

 

where  and  are, respectively, the probabilities of errors of the first and second kind.  

It is necessary to find the difference between the values of x and y, which corresponds to the value 

of the PRS output signal. For this, a composition of two normal laws of probability density with re-

spect to the variable is compiled: 

 

                                                                                              (15) 

 

where    . 

Using the variable z, the conditions for the occurrence of errors of the first and second kind can be 

represented as: 

 
Considering the domains of definition of probabilities Pα and Pβ: 

 

.     (16) 

 
The value of the output signal should be determined by the minimum average risk. For this, we dif-

ferentiate the last formula and equate to zero. The solution to this equation gives the desired value of z 

in general form. Since the exact value of z is determined by a computational operation, we will ap-
proximately determine it. By the mean value theorem, we transform formula into the following form: 

 

   (17) 

 

Taking the following notation   can be written: 

 

                                             (18) 

 

We expand the last formula in a Taylor series for  

 

    (19) 

 
Substituting this formula into equation (17) we get: 

 

                  (20) 

 
Taking into account the boundary values:  
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After some transformations, the last equation will take the form:  
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Let us define the first and second derivatives of this formula:  
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The exact value of z is determined by the Simpson method using the following algorithm:  

 

 .              (25) 
 

The initial value of z is taken to be the end of the range , at which the following is per-

formed:  
 

             (26) 
 

With a more simplified definition of the value of z, it is required that the condition be met:  
 

                                                                      (27) 

                 

where k is a coefficient that takes into account variations in the values  and :  

 

                                             (28)  

 
This condition is equivalent to:  

 

                  ,                                                      (29)  

 
the fulfillment of which is the main constraint imposed on the function f(x). To soften this restriction, 

it is assumed that  is limited by the interval n (n = 6) and . Thus, the main con-

straint now leads to the condition usually fulfilled in practice that the relative changes in the function 

f(x) are small when x changes in a very narrow interval. The introduction of the condition 

 limits the class of the considered systems, which have an error of no more than 

2.5%.  

The accepted restrictions allow ' and ' to be replaced by  and  in formula (17): 

 

 .      (30)  

 

Approximate (30) becomes strict if  in the range n0 or even more so in the entire 

range of x. Then equation (30) is represented as: 
 

                                   (31) 

 



In formula (31), the Laplace functions are tabulated. Due to the fact that 

 and , the first Laplace function is equal to one, 

and the fourth is equal to zero. Consequently,  

 

                                                           (32) 

 

Expression (32) allows for given  and  to find the number k, which is the tabular value of Ф (*). 

Hence, the output parameter z is estimated by the formula: 
 

 .                            (33) 

 

With the availability of the criterion of an ideal observer ( ) the  parameter can be deter-

mined only by parameters and , because =0.5 with . More so-

phisticated treatment of this process allows us to propose conditions for providing the invariance of 

the PMBP value. 
For random errors 

                                                            (34) 

 

We select  provided that  

For systematic errors 

 

                                                       (35) 
 

We select  provided that  

 

4.   Simulations 

 
To check the correctness of theoretical research, we have performed experiments for greater accu-

racy of the PMBP estimation in the recognition of electrical power signals by their parameters. The 

data obtained in the course of parameter measurements of current and desired object states are shown 
in Table1. 

To improve the accuracy of the PMBP estimation in the object parameter measurement channel, 

conditions (34) and (35) have been met, and the PMBP estimation have been performed by the follow-

ing algorithm. 

At the first stage, using the data of initial arrays, the array of values  and  is being formed. At 
the second stage, mathematical expectations mz are being determined as well as the mean square devi-

ations of the elements of this array . 

Using the obtained data, new array  should be formed to consider the proposed conditions of in-

variance. Its elements can be determined by the following rules: 
 

              
                                           (36) 

 
The essence of this algorithm is that the PMBP estimation errors by separate parameters for input 

and standard objects can have positive or negative signs. But their values should be subjected to a 
proper distribution law. Therefore, when the initial and standard objects coincide, the spread in values 

of their PMBPs, with the appropriate fiducial probability, should be within a given range. The ele-

ments which are within this range and take negative increments are being changed for the PMBP 

mathematical expectation value. 
The errors of formation of parameter X and Y with negative increments are eliminated in the fresh 

array. The mathematical expectation of new array elements is the refined PMBP value. 



Thus, we have discovered in our research that if (34) and (35) are met, then the resulting error of the 

PMBP estimation can be determined by formulas 

 

  

  

  

                                 (37) 

 

Table 1 
The table of dependences of the rms (root mean square) values of the estimate of proximity be-
tween objects measure and the value of proximity between objects measure on the rms values of 
the parameters measurements of the input and reference objects when the proposed conditions are 
met.  

    
7.6 7.6 8.9 10.4 

14.08 14.08 17.39 21.1 
20.67 20.67 25.86 31.3 
27.3 27.3 34.33 41.6 

31.34 31.34 40.45 51.9 
33.92 33.92 42.81 52.2 
36.98 36.98 48.40 61.2 
42.73 42.73 56.37 71.1 
44.35 44.35 57.38 79.9 
55.16 55.16 72.97 92.4 
61.49 61.49 81.37 102.9 
67.33 67.33 90.06 115.4 
74.31 74.31 98.31 124.1 
80.78 80.78 106.83 134.7 
87.28 87.28 115.38 145.4 
93.79 93.79 123.96 156.1 

100.33 100.33 132.57 166.8 

 

Formulas (37) have been constructed by the experimental data obtained with the use the Manhat-

tan, Euclidean and Canberra distances and those proposed in this research for the PMBP estimation. 
This treatment showed that the resulting PMBP estimation error reduced more than by a factor of two. 

Let us discuss the possibility to improve the certainty of TVS operation depending on individual 

invariance conditions for the measure of object proximity to destabilizing factors. For this purpose, we 

now prove that the δ error reaches its minimum value if errors  and  are equal. This dependence is 

symmetric around a minimum point and can be written in the form: 

 

                                    (38) 

 
Formula (38) is true with sign  and shows the necessity of providing symmetry 

between the processes of parameter measurement for the input and standard objects. 

To check the dependence of the fiducial probability of measurement of the proximity measure val-

ue between objects on the correlation between errors  and , we have carried out research to obtain 

the following formula: 
 

                     (39) 

 



Dependence (39) has been derived with the condition of change of the ρ correlation within the             

[0, 0.8] range and the fiducial interval of measurement of the proximity measure between objects 

which is equal to the mean square deviation (MSD). 
Experimental dependencies 

 

 
,   

         and  .          (40) 
 

have been built to allow quantitative estimation of the results obtained (Table 2). 

 

Table 2 
Manhattan, Euclidean  and Canberra distances 

Experimental dependences Linear model MSD 

Manhattan’s distance 

MPMBP= -0.11959-0.2021939 dPMBP + 0.8611193σx –  
– 0.76389 σy + 0.0109959 δPMBP 

MPMBP= -0.1152137-0.1607265 dPMBP + 0.8572778σx – 0.772278 σy  
MPMBP= -0.3369-2.57924 dPMBP + 1.36307 δPMBP 

 
0.138857 

0.139636 

0.993784 

Euclidean distance 

MPMBP= -0.05447-0.022103 dPMBP + 0.778079σx –  
– 0.78622 σy + 0.0304211 δPMBP 

MPMBP= -0.0540528+0.0060352 dPMBP + 0.7825238σx –0.788432 σy  
MPMBP= -0.1912+0.58971 dPMBP – 0.5965 δPMBP 

 
0.144857 
0.145470 
0.907906 

Canberra distance 

MPMBP= 0.05213687-0.2092843 dPMBP + 0.8298258σx –  
– 0.77639 σy + 0.0068988 δPMBP 

MPMBP= -0.0903373-0.122526 dPMBP + 0.8181384σx – 0.785087 σy  
MPMBP= -1.4982 - 3.68793 dPMBP + 0.99132 δPMBP 

 
0.142832 
0.144424 
1.10174 

Proposed algorithm 

MPMBP= -0.03038-0.0057578 dPMBP + 0.0723113σx –  
– 0.05927 σy + 0.0125336 δPMBP 

    MPMBP= -0.027262+ 0.018385 dPMBP – 0.0694287σx – 0.58578 σy  
MPMBP= 0.1699-0.11542 dPMBP – 0.6771 δPMBP 

 
0.128857 
0.139634 
0.993784 

 

Thus, using the estimated values of and  , we can calculate the PMBP value 

2-4 times more precisely, which makes it possible to improve the certainty of pattern recognition. 

5. Conclusions 

The application of the proposed method for minimizing the error in assessing the state of the object 

/ process of the electric power industry by SCADA systems will improve the reliability and quality of 

power supply. This is achieved through more accurate diagnostics of the condition of the equipment 

produced in real time on the equipment of power plants, substations and power lines. Correct analysis 
will allow you to receive early warning of a possible network failure, establish the causes of equip-

ment failures, predict the volume and timing of repairs, as well as equipment service. Thus, it is possi-

ble to improve the efficiency of the power system through a stable supply of electricity to the consum-
er, as well as reduce repair costs by reducing the number of equipment failures.  
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