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Abstract 

Neural network models contain many parameters. The selection of these parameters and 
the selection of the correct model takes a long time. Model developers rely on expert 

assessment to select models and hyperparameters for them. This paper examines the use 

of a genetic algorithm as an alternative to the current design process. The genetic algorithm 

is used to automatically select network hyperparameters and the model of the network 
itself. This improves the network model and reduces development time. The general model 

presents an algorithm with input parameters equal to those required to represent possible 

states and system output parameters sufficient to describe possible actions. The algorithm 
automatically selects different models for different parameters. It is determined that the 

algorithm can successfully start working with a low-efficiency model template and show 

good model performance and adjust the indicators of the number of layers, policy, entropy 
coefficient, and others. This shows the potential for further application of these algorithms 

for drone design. 
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1. Introduction 

The application of reinforced learning has grown in popularity during the last few years due to its 

success in solving complex successive decision-making problems [1]. While the most impressive results 
have been achieved in classical single-task reinforcement training with a static environment and a fixed 

reward function, reinforced contextual learning promises to stimulate the next wave of breakthroughs, 

using similarities between environment and tasks [2]. 
Reinforced learning (RL) allows agents to learn complex behaviours from interacting with the 

environment. Combinations of RL paradigms with powerful function approximators, commonly 

referred to as deep RLs (DRLs), have led to a superhuman performance in various simulated areas 

[2, 3]. DRL algorithms, despite their outstanding results, suffer from a high sampling complexity. Thus, 
many studies aim to reduce the complexity of the sample by improving the research behaviours of RL 

agents in one task. 

Recently, a growing number of algorithms for curriculum development have been presented, which 
empirically demonstrates that curriculum learning (CL) is an appropriate tool for improving the 
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efficiency of DRL algorithm sampling. However, these algorithms are based on heuristics and concepts 
that are currently theoretically insufficiently understood, not allowing for significant improvements. 

The basic idea of DRL is that an artificial agent can learn by interacting with the environment, much 

like a biological agent. Using the experience gained, the artificial agent should be able to optimize some 

of the goals set in the form of cumulative rewards.  
This approach, in principle, applies to any type of consistent decision-making problem based on 

experience. The environment can be stochastic, and the agent can observe only partial information about 

the current state, observations can be highly dimensional (e.g., frames and time series), the agent can 
freely gain experience in the environment or, conversely, data may be limited (e.g., lack of access to 

the accurate simulator or limited data) [1]. 

2. Related Works 

The basic idea of reinforced learning is to teach the agent to interact with the environment in such a 
way as to achieve the greatest possible success in achieving the goals. Such training is quite similar to 

the natural way of teaching people and other living beings. The environment itself and the result of 

decisions made by the agent based on observation of this environment acts as a teacher in such training. 
From the beginning of its existence in this world, the brain does not know how to behave in it. 

However, it sends signals to the organs of movement and receives data from the senses. And based on 

the data obtained determines whether the previous action led to an approach to the desired result. For 

example, in the process of learning, the child does not understand the purpose of objects and tries to 
taste them because it is one of the most trained senses in early childhood. In the case where the found 

object brings the desired result (pleasure), the pattern of behavior that led to this result is fixed in the 

brain in the form of a more stable neural connection [1]. Based on the observation of similar learning 
processes in nature, reinforcement learning algorithms have been developed. 

There are two main goals for reinforcement learning algorithms. The first goal is to minimize the 

number of errors, and therefore to minimize the number of steps and speed up the achievement of goals. 
The agent learns to analyze the state of the environment before each subsequent action and predict the 

expected outcome of following probable steps. The second important goal in the work of reinforcement 

learning algorithms is to maximize the benefits of the actions taken. In this case, the definition of 

benefits is programmed in advance. This can be, for example, minimizing execution time or finding as 
much space for actions as possible, etc. [2]. Returning to the example of nature, for humans it may be 

the release of the hormone of happiness from achieving the goal. 

The primary purpose of the study conducted during the work on this article is to try to simulate a 
combination of two algorithms that exist in wildlife. Namely, the reinforcement learning algorithm, as 

an algorithm for achieving the goal of each agent, and the genetic algorithm, as an algorithm for 

selecting those agents of the environment that have shown the best results in this environment. 

The task of the genetic algorithm is to optimize the basic parameters of the set of agents based on 
natural selection. By analogy with living nature, the genetic algorithm in the presented experiment will 

select the best representatives of its generation and combine the values of their basic model parameters 

to create the next and more perfect generation, just as living beings are firstborn with certain parameters 
inherited from their ancestors and depending on the success of adaptation to the environment have the 

opportunity to further produce offspring. Thus, it is expected that the best individuals from each 

generation will be selected, and their descendants will be able to become even better adapted to the 
environment. 

3. State of art 

The general problem RL is formalized as a stochastic process of discrete time control, where the 

agent interacts with its environment as follows: the agent starts in a given state in its enviroеment 𝑠0 ∈
 𝑆, collecting the initial observation ω0 ∈ Ω. At each time step t, the agent must perform the action 

𝑎𝑡 ∈ 𝐴. As shown in figure 1, this follows three consequences: 

 The agent is rewarded  rt ∈ R; 



 The state passes to st+1 ∈ S; 

 The agent receives the observation ωt+1 ∈ Ω. 

This control parameter was first proposed by Bellman [4], and later extended to Barto's teaching [5]. 

Comprehensive development of RL basics is provided by Sutton and Barto, 2017 [6]. 

 
 

Figure 1: Agent-Environment Interaction in RL 
 

State S is a complete description of the state of the world. Observation O is a partial description of 

the state in which information may be omitted. When the agent can observe the complete state of the 
environment, it means that the environment is completely observed. When an agent can only see partial 

observation, it means that the environment is partially observed. Different environments allow for 

different types of actions. The totality of all real actions in each environment is often called a space of 

action. Some environments, such as Atari and Go, have discrete action spaces where only a finite 
number of moves are available to the agent. Other environments, such as where an agent controls a 

robot in the physical world, have spaces for continuous action. In continuous spaces, actions are vectors 

with real values.  
A policy is a decision-making rule that an agent uses to choose what action to take. It can be 

deterministic, and in this case, it is usually denoted by µ: at = µ(St). Because politics is essentially the 

brain of the agent, the word "policy" can often be replaced by "agent," for example, by saying, "Policy 
tries to maximize reward." DRL deals with parameterized policies: policies which outputs are 

computational functions that depend on a set of parameters (such as neural network weights and offsets) 

which can be configured to change behavior using a specific optimization algorithm [20]. 

The reward function R is critical in reinforcement learning. It is contingent on the current condition 

of the world, the recent action, and the future state of the world: 𝑟𝑡  =  𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). The agent's goal 

is to maximize some idea of the total reward for actions, but, it can mean several things. Denoting all 

these cases by R (τ), it will either be clear from the context which case is meant or it will not matter 
(because the same equations will apply to all cases). 

Knowing the value of a state or state-action pair is frequently useful. The value means the expected 

reward that begins in this state or state-action pair and then continues to operate according to a certain 

policy. Value functions are used, one way or another in almost every RL algorithm [7]. The on-

policy value function 𝑉𝜋(𝑠), which gives the expected reward if it starts in the state s and always acts 

in accordance with the policy π [7]: 

𝑉π(𝑠) =
𝐸

𝜏~𝜋
[𝑅(𝜏)|𝑠0 = 𝑠] 

 

The on-policy action-value function 𝑄π(𝑠, 𝑎), which gives the expected reward if it starts in the s 
state, performs an arbitrary action a (which may not be from policy), and then forever act following the 

policy π [8]:  

𝑄𝜋(𝑠, 𝑎) =
𝐸

𝜏~𝜋
[𝑅(𝜏)|𝑠0 = 𝑠, 𝑎0 = 𝑎]. 

 

The optimal value function 𝑉∗(𝑠), which gives the expected reward if it starts in the s state and 

always acts following the optimal policy in the environment [8]: 

𝑉∗(𝑠) = max
𝜋

𝐸
𝜏~𝜋

[𝑅(𝜏)|𝑠0 = 𝑠] 

 



The optimal action-value function 𝑄∗(𝑠, 𝑎), which gives the expected reward if it starts in the states, 
performs arbitrary action a, and then acts forever according to the optimal policy in the environment: 

𝑄∗(𝑠, 𝑎) = max
𝜋

𝐸
𝜏~𝜋

[𝑅(𝜏)|𝑠0 = 𝑠, 𝑎0 = 𝑎] 

 

There is an essential connection between the optimal action-value function 𝑄∗(𝑠, 𝑎)  and the action 

chosen by the optimal policy. By definition, 𝑄∗(𝑠, 𝑎) gives the expected return to run in state S, perform 

(arbitrary) action a, and then continuous action according to the optimal policy. The optimal policy in 
s will choose the action that maximizes the expected reward from the beginning in s. As a result, with 

𝑄∗  it can be directly obtained the optimal effect 𝑎∗(𝑠), through [8]: 

 

𝑎∗(𝑠) = 𝑎𝑟𝑔 max
𝑎

 𝑄∗(𝑠, 𝑎) 

3.3. Types of RL algorithms 

In fact, it is pretty difficult to make an accurate, comprehensive taxonomy of algorithms in the 

modern RL space [8], because the modularity of algorithms is poorly represented by a tree-like 

structure (Figure 2). 

 

 
 

Figure 2: Tree-like structure of RL algorithms 
 

Whether the agent has access (or studies) to the environment model is one of the most critical 

branching points in the RL algorithm. The environment model means a function that involves the 
transition of states and rewards. The main disadvantage is that the environment model that corresponds 

to reality is usually not available to the agent. If the agent wants to use the model in this case, it must 

study the model solely on experience, which creates several problems. The most serious issue is that 

the agent can introduce bias into the model. As a result, the agent works well on the studied model but 
behaves sub-optimally in the natural environment. Learning a model is fundamentally difficult, so even 

intense effort - the desire to spend a lot of time calculating - may not pay off. Algorithms that use a 

model are called model-based methods, and those that do not use a model are called non-model. While 
non-model methods reject the potential for sample efficiency from the model used, they are generally 

easier to implement and configure [19]. 

The trade-offs between policy optimization and Q-Learning are that they are fundamental because 

they directly optimize what is needed. This makes them stable and reliable. On the contrary, Q-learning 



methods only indirectly maximize the agent's work, teaching 𝑄θ to satisfy the self-consistency equation. 
There are many failure modes for such training, so it is usually less stable [9]. But Q-learning methods 

have an advantage because they are much more effective when they work because they can reuse data 

more efficiently than policy optimization methods. 

Interpolation between policy optimization and Q-Learning. Ironically, policy optimization and Q-
learning are not incompatible (and in some circumstances appear to be equivalent), and there are a few 

algorithms that live between the two extremes. Algorithms that live in this spectrum are able to find a 

compromise between the strengths and weaknesses of either side. Examples include DDPG and SAC 
[10, 11, 17]. 

3.4. Metaheuristic algorithms 

Metaheuristic algorithms, in recent years, have been utilized to address real-world complicated 

issues in a variety of sectors, such as economics, engineering, politics and management. Intensification 
and diversification are key elements of the metaheuristic algorithm. A proper balance between these 

elements is necessary to effectively solve a real problem. Most metaheuristic algorithms are based on 

the process of biological evolution, swarm behavior and the laws of physics [12]. These algorithms are 
broadly classified into two categories, namely: a single solution and a metaheuristic algorithm based on 

the set (Figure 3). Metaheuristic algorithms based on a single solution use a single candidate solution 

and improve this solution through local search. However, the solution obtained with the help of 

metaheuristics based on one solution may remain in the local optimum [13]. 

 
Figure 3: Classification of metaheuristic algorithms 
 

Evolutionary algorithms work on a set or population of solutions and use two mechanisms to find 

good solutions: selecting mostly high-quality solutions from the set and combining the qualities of two 

or more solutions with specialized operators to create new solutions. New solutions are reintroduced 
into the population after recombination, which may require them to meet conditions such as feasibility 

or minimum quality requirements to replace other (usually low-quality) solutions. Operators used in 

evolutionary algorithms (selection, recombination, and re-insertion) almost without exception make 

extensive use of randomness. A mutation operator is also often used, which randomly changes the 
solution after its recombination. Most evolutionary algorithms repeat the selection, recombination, 

mutation, and reintroduction phases several times and report the best solution in a population [16]. 

Among the metaheuristic algorithms, a well-known algorithm is the genetic algorithm (GA), which 
is inspired by the process of biological evolution. GA mimics Darwin's theory of the survival of the 

fittest. GA was proposed by J.G. Holland in 1992. The main elements of GA are chromosome 

representation, selection, and biological operators [15]. 
GA dynamically changes the search process due to the probabilities of crossover and mutation and 

achieves the optimal solution. GA can modify encoded genes. GA is capable of evaluating numerous 

individuals and making several optimum decisions. Therefore, GA has better global search capabilities. 

Offspring derived from parental chromosome crossover are likely to override the excellent genetic 



patterns of parental chromosomes, and the crossover formula is defined as: 𝑅 =
𝐺+2√𝑔

3𝐺
, where g denotes 

the number of generations and G denotes the population's total number of evolutionary generations. The 

equation shows that R changes dynamically and increases with increasing number of evolutionary 
generations. Individual similarity is quite low in the early stages of GA. To guarantee that the new 

population does not disrupt the great genetic pattern of individuals, R should be set to a low number. 

The individual similarity is relatively high at the end of evolution, hence the value of R should be high 

too [13]. 
 

     The classical genetic algorithm is of the following shape [13]: 

 
          Incoming data: 

          Population size, n; 

          Maximum number of iterations, MAX. 

 
          Entrance: 

          The best global solution, Yb. 

 
          Beginning: 

               Creating an initial population of n chromosomes Y, (i = 1,2, ...., n); 

               Set the iteration counter t = 0; 
               Calculate the value of the fit of each chromosome; 

               While (t <MAX) 

                    Select a pair of chromosomes from the initial population based on suitability; 

                    Apply crossover operation to the selected pairs with the probability of crossing 
                    Apply the mutation to the offspring with the probability of mutation; 

                    Replace the old population with the newly created population; 

                    Increase the current iteration of t by 1. 
               Return the best solution, Yb. 

          End. 

 
According to the scheme theorem, the original scheme must be replaced by a modified scheme. To 

preserve population diversity, the new scheme preserves the original population at an early stage of 

evolution. At the end of evolution, an appropriate scheme will be created to prevent any distortion of 

the excellent genetic scheme [14, 18]. 

4. The results of the study 

As mentioned above, the main idea of the study is to create a combination of analogues of two types 

of algorithms that occur in nature - namely, the reinforcement learning algorithm and the genetic 

algorithm of selection. However, there is more than one reinforcement learning algorithm in machine 
learning. And it is sometimes difficult to determine which one to choose to best solve the problem. In 

addition to choosing the actual algorithm, you must also select parameters for this algorithm. In nature, 

this function was taken over by evolution, which from generation to generation changed the parameters 
and adapted organisms to survive in their environment. In this experiment, the role of evolution is 

performed by a genetic algorithm. And the role of creatures that have to adapt to the environment is 

performed by the agents of each of the reinforcement learning algorithms. 
Since it is not possible to cross different types of reinforcement learning algorithms, as this can lead 

to uncertain results, each of these types of algorithms creates its own initial population of agents (Figure 

4). Next, each of these populations will be handled almost separately in the genetic algorithm. Only 

during selection based on results of the test in the environment, if all agents with a certain machine 
learning algorithm with reinforcement showed significantly worse results, it will be a chance that none 

of these agents will not have offspring, and therefore this algorithm will not be presented in the final 

sample of results. 



The results were obtained using Python and such libraries as Tensorflow, Stable baselines, and 
PyGAD. The flowchart of the developed algorithm is presented in Figure 5. 

 
Figure 4: Flowchart of researched algorithm 
 

 
Figure 5: Initial populations for each algorithm 
 

At first, the initial population is created with different DRL algorithms. Chromosomes are presented 

like hyperparameters of RL algorithms in each individual of the population. This determines the 
diversity of individuals in the population. During the genetic algorithm cycles, crossings and mutations 

occur between individuals with the same DRL algorithm in a population, which gradually determines 



the selection of the best individuals with the most appropriate DRL algorithm. The genetic algorithm 
completes its work when the maximum number of generations is reached. It can also complete work 

when the agent's reward result's specified accuracy is achieved. 

The results were tested in a virtual gym environment. When testing the CartPole-v1 agent from 30 

samples of the initial population for 500 iterations, the 5 most successful samples were selected. They 
all turned out to be individuals with the DQN algorithm (Figure 6). The differences between them are 

only in the internal construction of the models and hyperparameters to them. 

 

 
Figure 6: Selecting the RL algorithm for the CartPole-v1 agent 
 

The dependence of the time the agent receives a positive reward on the sample generation is shown 

in Figure 7. 
 

 
 

Figure 7: Time of receiving positive reward in dependence of generation 
 

5. Discusiion 

For this algorithm, improvements in the selection method of individuals from the population for 

gene inheritance are possible, as individuals with poorly selected initial parameters in some RL 



algorithms quickly lose the competition and the ability to produce offspring (Figure 8). Also, this 
problem could probably be solved by more individuals in the population, but it will take more time and 

hardware. 

 

 
Figure 8: Changing the number of RL algorithms during the experiment  
 

Another possible improvement in the algorithm may be an improvement in the mutation method. It 

would be a significant improvement in the final characteristics if some genes were given the possibility 
of mutation. 

6. Conclusions 

The article considers machine learning algorithms with complement and metaheuristic algorithms. 

The result of the study was the ability to combine different DRL algorithms with a genetic algorithm 
and automatically select the best DRL models to solve the solution. 

During the experiment, a population of 30 CartPole agents was analyzed in a virtual gym 

environment. The result of the experiment was the selection of one DRL algorithm from the sample 
with some differences in the hyperparameters of the model. 
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