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Abstract 
Over the past decade, data sizes have grown faster than processor speeds. In this context, the 
capabilities of statistical machine learning methods are limited by computational time, not 
sample size. A more accurate analysis reveals qualitatively different trade-offs in the case of 

small and large learning problems. This work considers the occurrence of a large-scale case 
involving the basic algorithm's computational complexity and the implementation of 
optimization in non-trivial ways. Optimization algorithms such as stochastic gradient descent, 

which demonstrate exceptional performance for large-scale problems, are considered. The 
work compares the algorithms of gradient descent, stochastic gradient, and standard 

deterministic gradient descent. Here are given ways to apply them in machine learning and 
considered a formal description of the operation of gradient descent, stochastic gradient, and 
standard deterministic gradient descent algorithms. Here is analyzed the difference in the 

process of algorithms. The advantages and disadvantages of each of them are given. A 
comparison of both approaches is considered: deterministic and Stochastic algorithms. This 
work has analyzed the effectiveness of these two approaches. Convolutional (convolutional) 

neural networks are considered, which, unlike conventional deep neural networks, use 
convolutions to find patterns in images, thereby improving prediction in image recognition 

problems. A model of a convolutional neural network is presented. Here are analyzed the 
parameters of training the input sample and its testing. As a result of using a simulation of the 
usual gradient descent, when the weight is updated only after viewing all the elements, the 

value of the loss function is considered. The analysis of the selected problem and model also 
justifies the results of its use. 
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1. Introduction 

As a sub-branch of artificial intelligence, machine learning is actively developing in various areas 

of technology and human life. It is used in several computational problems in which the development 

and programming of explicit algorithms with good performance are difficult or impossible. Examples 

of its applications include email filtering, detecting network criminals or malicious insiders, Optical 

Character Recognition, ranking training, computer vision, etc. 

For so-called" training", machine learning often uses statistical techniques and algorithms, one of 

which is the gradient descent method. 
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However, when training the model, a massive sample of data is most often used, as a result of 

which the standard deterministic gradient descent does not show the best time results. A modification 

of deterministic gradient descent is stochastic gradient descent, which provides accelerated learning 

without significant loss of efficiency. 

This work aims to analyze and reveal the operation of stochastic gradient descent, explore the 

application of this algorithm in machine learning training, and compare it with a deterministic 

algorithm. 

2. Review of literature sources 

Almost all machine learning problems are optimization problems, which is to find the extremum of 

the objective function [1]. Finding a model and the correct objective function is the first step in 

solving the machine learning problem. Then you need to define analytical and numerical methods that 

will help solve the optimization problem [2]. 

The paper discusses first-order methods, namely methods that use the gradient of a function. In the 

author's work [3], the general optimization method is the usual gradient descent. The author of [5] 

describes a formal description and description of the algorithm for solving the gradient descent 

method. In his work [5], the parameters are updated iteratively in the direction of the gradients of the 

objective function. The mechanism of the gradient descent method is described in the paper [2]. The 

gradient descent method is easy to implement. The solution is a global minimum or maximum when 

the objective function is convex [6]. It often converges more slowly if the variable is closer to the 

optimal solution, which requires more thorough iterations [1,4,6]. Due to the high computational 

complexity in each iteration, stochastic gradient descent (SGD) [3, 19] is proposed for a large amount 

of data. Therefore, the authors [8, 10] present an analysis of the application of this algorithm in the 

process of machine learning training and its comparison with a deterministic algorithm. 

The manually adjusted learning rate strongly affects the SGD effect. This is a complex problem of 

setting the appropriate learning rate value. It is described in the authors' works [1-8]. The study uses 

popular machine learning libraries for the Python language (such as PyTorch, TensorFlow, and 

SkLearn). The standard algorithm is not even implemented, but only its stochastic version exists [12-

15]. 

Using a simulation of the usual gradient descent described in [1-4, 16], the model's accuracy 

becomes very low when the weight is updated only after viewing all the elements. It is described that 

with this approach, gradients are updated more accurately. In this paper, the authors conduct a study 

with many epochs, where gradient descent shows the best accuracy of training. 

3. Materials and methods  

Gradient descent is one of the most popular optimization algorithms and the most common way to 

optimize neural networks. At the same time, each modern deep learning library contains 

implementations of various algorithms for optimizing gradient descent. However, these algorithms are 

often used as black-box optimizers because it is difficult to find practical explanations for their 

strengths and weaknesses. 

The study aims to provide an analysis of the behaviour of various algorithms for optimizing 

Gradient Descent, which will help to apply them. First, you should consider different options for 

gradient descent. The next step is to summarize the problems during training. Therefore, this work 

presents the most common optimization algorithms that demonstrate their motivation to solve these 

problems and lead to the conclusion of update rules. 

Gradient descent is a way to minimize an objective function )(J  that is parameterized through 

model parameters 
dR  by updating parameters in the opposite direction of the objective function 

)( J  gradient to parameters. The learning rate   determines the size of the steps that need to be 

taken to reach the (local) minimum. When analyzing, you need to monitor the direction of inclination 

of the surface down, which is created by the objective function. 

 



 

 

3.1. Gradient Descent 

Gradient descent is an iterative first-order optimization algorithm in which steps are taken to find 

the local minimum of a function proportional to the opposite value of the process's gradient (or 

approximate gradient) at the current point. 

In short, since the gradient shows us the direction and speed of movement of the function relative 

to all arguments, to find the local minimum, we must move opposite to the action of the process (if it 

increases, we move it to decrease, if it declines, we move even more to the minimum). 

For an intuitive understanding of gradient descent, we can imagine the movement of the ball 

(arguments) along with a parabolic bucket (function) in the direction of the bottom (minimum). Still, 

our algorithm will perform its role (Figure 1). When the ball is on the left side (i.e., the function 

decreases), the algorithm must "push" the ball forward to reach the bottom. When it is, on the right 

side (the function increases), as shown in Figure 1, then the algorithm, on the contrary, "pulls" it 

down. This movement continues step by step until the ball reaches the bottom. 

 

 

 
Figure 1: Intuitive image of the gradient descent algorithm 

3.2. Standard deterministic gradient descent 

Deterministic refers to an algorithm that returns the same result each time, regardless of the 

number of its runs. 

Normal gradient descent can return the same values because it is performed on the total amount of 

data that comes to its input (that is, it works with the same input data and also serves the same steps 

on it without any accidents, which gives the same result at the end). 

3.3. Stochastic gradient descent 

Stochastic refers to an algorithm that returns different values each time, i.e. the algorithm contains 

a certain stochastic (random) relationship. 

Different output values occur because stochastic gradient descent is not performed on the entire 

volume of input data but stochastically selects only a certain predefined number of records for each 

epoch. Such a set of individual records is called a batch. 

3.4. Application in machine learning 



Gradient descent is widely used in machine learning because it allows the model to learn from its 

mistakes and inaccuracies. 

When training the model, a loss or error function is introduced, which provides information about 

the difference between the model's expected results. Since we cannot change the input data from the 

dataset, we must optimize the coefficients of our model. 

The gradient of this function shows us how each coefficient affects the final error function. 

Applying a gradient descent to the loss function after this allows us to achieve the minimum of this 

function by adjusting the coefficients (i.e., make the error minimal). In this way, the configured model 

will enable us to use it for our tasks. 

Thus, it becomes clear that gradient descent itself (stochastic and standard) is not used in machine 

learning. Its implementation is only an auxiliary tool for minimizing loss or error functions in 

machine learning algorithms. 

4. Formal description of gradient descent algorithms 
4.1. Mathematics in gradient descent 

The gradient descent algorithm looks like this: 

1. The calculation of new values of variables is presented in equation 1: 
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where 0;0  i  – a fairly small value, the pace of learning 

2. Repeat the calculation of Step 1 until ))(( iwfgrad , where 0 – a fairly small constant. 

4.2. Mathematics in Stochastic Gradient Descent 

The stochastic gradient descent algorithm looks like this: 

1. Randomly shuffle the dataset. 

2. Select the k-required samples (in pure stochastic descent 1=k , in mini-batch 1k ). 

3. The calculation of new values of variables is presented in equation 2 
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where 0;0  i  – a fairly small value, the pace of learning 

4. Repeat Steps 1-3 until ))(( iwfgrad , where 0 – a fairly small constant. 

4.3. Difference of algorithms 

As can be seen from points 4.1 and 4.2, there is no difference in the formula for calculating new 

values for both algorithms. Differences appear in the approach to updating variables. While a standard 

gradient descent updates variables only after all n training samples have been passed, the stochastic 

algorithm updates these variables after passing only randomly selected models, which increases the 

number of updates per epoch. 

4.4. Comparison of both approaches 

On the one hand, a deterministic algorithm behaves more precisely since it processes a complete 

dataset to update data, but such training takes a very long time. On the other hand, the stochastic 

algorithm is not as accurate after each update, but its speed allows you to achieve the required 

accuracy in much less time. 

Since machine learning works with massive data sets, the stochastic algorithm is much more 

efficient for its tasks. The standard algorithm is not even implemented in most popular machine 



learning libraries for the Python language (such as PyTorch, TensorFlow, and SkLearn), but only its 

stochastic version exists. 

5. Recognition by convolutional neural networks trained using stochastic 
gradient descent 

5.1. Analysis and justification of the selected task and model 

Digit recognition is still a relevant topic today, which can be applied in various areas of our lives, 

starting from recognising bank card numbers in bank applications and ending with recognising 

mathematical expressions. 

As you know, convolutional neural networks are best suited for image recognition, which, unlike 

conventional deep neural networks, use convolutions to find patterns in images that allow for 

improved prediction. Convolutions also compress images, which significantly increases the speed of 

analysis. 

5.2. Description and analysis of the selected dataset 

To recognize numbers, a well-known dataset is called MNIST. MNIST (short for Mixed National 

Institute of Standards and Technology) – a dataset of samples of handwritten writing of numbers. It is 

a standard proposed by the US National Institute of standards and technology to calibrate and 

compare image recognition methods using machine learning, primarily based on artificial neural 

networks. The dataset contains 60,000 images for training and 10,000 images for testing (Figure 2). 

 

 

 
Figure 2: Example of the appearance of images from the MNIST dataset  

5.3. Convolutional neural network model 

To implement a convolutional neural network, I chose the following architecture, a diagram of 

which can be seen in Figure 3: 

• input 28x28x1 

• convolutional layer 24x24x10 

• Max-puling 12x12x10 

• ReLU activation function 

• convolution 8x8x20 

• Max puling 4x4x20 

• complete connection of 320 neurons 

• complete connection of 50 neurons 

• output for 10 classes (10 digits) 



Note: there is a ReLU activation function between all full connection layers 

)),0max()((Re xxLU = . 

 
Figure 3: CNN diagram  

5.4. Training and testing parameters 

The data is randomly divided into 60,000 training images and 10,000 test images to prevent the 

possibility of retraining, when the model shows good results in training, but then cannot distinguish 

samples that were not seen during training. 

As an optimizer for training, a stochastic gradient descent was chosen with the experimentally 

selected best learning rate learningrate = 0.01. 

The training will last for 3 epochs with a different number of images in each betcha for the step of 

the stochastic gradient algorithm. 

The negative logarithmic likelihood function )log()( yyL −= is chosen as the loss function, 

which is simple, but at the same time powerful in classification problems. 

Accuracy testing will reflect the ratio of the number of correctly predicted images to the total 

number of images in the dataset 
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6. Work results 

The graph shown in Figure 4 shows the change in the value of the loss function relative to the 

number of elements seen during a pure stochastic gradient descent (1 element per batch). At the same 

time, the accuracy of the neural network for 3 epochs was only 8%, which means that only about 800 

out of 10,000 images were correctly identified by the network. The final error was about 4.2315. 



 
Figure 4: Graph of the ratio of the amount of losses relative to the number of elements passed by 
the network with a batch size of 1 element CNN diagram  

 

The graph shown in Figure 5 shows the change in the value of the loss function relative to the 

number of elements seen with a batch size of 64 elements. At the same time, the accuracy of the 

neural network for 3 epochs was 97%. The final error was about 0.327. 

 

 

 
Figure 5: Graph of the ratio of the amount of losses relative to the number of elements passed by 
the network with a batch size of 64 elements  

 

The graph shown in Figure 6 shows the change in the value of the loss function relative to the 

number of elements seen with a batch size of 128 elements. At the same time, the accuracy of the 

neural network for 3 epochs was 96%. The final error was about 0.421.  



 
Figure 6: Graph of the ratio of the amount of losses relative to the number of elements passed by 
the network with a batch size of 128 elements  

 

The graph shown in Figure 7 shows the change in the value of the loss function relative to the 

number of elements seen with a batch size of 256 elements. At the same time, the accuracy of the 

neural network for 3 epochs was 93%. The final error was about 0.686. 

 

 

 
Figure 7: Graph of the ratio of the amount of losses relative to the number of elements passed by 
the network with a batch size of 256 elements  

 

Since there is no ready-made implementation of normal gradient descent among known libraries, 

we can only stimulate it with stochastic gradient descent by setting the number of elements in the 

batch to 60,000 (i.e., to update the algorithm weights, we will need to view 60,000 images. The graph 

shown in Figure 8 shows the change in the value of the loss function relative to the number of 

elements seen during the simulated normal gradient descent. At the same time, the accuracy of the 

neural network for 3 epochs was only 9%. The final margin of error was about 2.284. 



 
Figure 8: Graph of the ratio of the amount of losses relative to the number of elements passed by 
the network with a batch size of 60,000 elements (simulation of a normal gradient descent)  

7. Discussion of results 

When we consider only one random element to change the weights in pure stochastic gradient 

descent, the loss function has the highest values. One random component is not enough to describe the 

trend of movement of the loss function and the corresponding gradients for all other weights. It can be 

seen that the value of the loss function is constantly moving up and down. Obviously, with this 

movement of the process, the accuracy of neural network predictions was very low (only 8%). 

When we use mini-batch stochastic gradient descent for a different number of elements in a batch 

(64/128/256), the value of the loss function increases and decreases alternately. However, in all cases, 

it still moves to a minimum. The only difference with a different number of batch elements is the 

frequency of these movements since the weights are updated with a different number of viewed 

features. At the same time, mini-batching showed the highest accuracy of predictions, which was 97% 

for a 64-element batch. 

As a result of using the standard gradient descent simulation, when the weight update takes place 

only after viewing all the elements, we see that the value of the loss function also falls. Still, since the 

weight update is so rare, this movement is prolonged, so the model's accuracy also becomes very low. 

However, the gradients with this approach are updated more accurately. Presumably, with more 

epochs, gradient descent would show better training accuracy. 

8. Conclusions 

Looking at the results of stochastic gradient descent and comparing them with the simulated 

average gradient, we can see that SGD performs training much faster because only three epochs are 

enough to achieve 97% accuracy with the correct number of elements in the batch. At the same three 

epochs, gradient descent reduced the value of the loss function by several tenths. 

At the same time, pure GHS also shows poor accuracy results since it cannot describe the change 

in weights using a single random element. 

Considering the previous thesis, we can conclude that using a mini-party stochastic gradient is 

more effective and more in demand since it performs the fastest and best training of the model. 
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