
Specifics of Designing and Construction of the System for Deep 
Neural Networks Generation 
 

Oleksandr Mediakov and Taras Basyuk
  

 

Lviv Polytechnic National University, Bandera str.12, Lviv, 79013, Ukraine  

  

 

Abstract  
In the article we propose designing and implementing an information system for code-free 

generating of Deep Neural Networks (DNN) based on TensorFlow and Flutter. Because of the 

mathematical properties and production success of DNN, it`s clear that many medium and 

small companies or individual users must be able to use the benefits of machine learning 

models. In order to simplify and speed up the process of generating one – we have created the 

object-oriented design of the respective informational system using UML. The analysis of the 

basic requirements to the system with the description of the text scenario according to the RUP 

methodology was carried out, which allowed forming the leading use case of our system. For 

the object-oriented designing of our system, we have used the IBM Rational Rose CASE tool, 

which let the decomposition of complex objects and contributed to writing the software 

solution. Our software was created using Flutter as development technology and TensorFlow 

as DNN making and training backend technology. It can be seen as proof of design relevance, 

its validation, and hence the possibility of its practical application in code-free generating 

DNN. Further research will design related software packages to expand the functionality and 

test their work. 
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1. Introduction 

Machine learning models have been used successfully in research, business, corporate and 

government management, device controlling, smart homes, and more. One of the most popular 

algorithms is Deep Neural Networks. The use of DNNs allows one to solve a robust set of problems: 

regression and classification [1], clusterization and anomalies detection [2], dimensionality 

reduction [3], generation [4, 5], etc. 

The creation, training, and deployment of a neural network require a particular intellectual resource, 

i.e., an analyst who has specific knowledge of programming, mathematics, and other related sciences. 

The need to have most of these skills significantly delays the use of DNN in small businesses or by 

individuals. 

However, in the context of globalization, Industry 4.0, and other factors, the use of DNN should 

become more accessible to average users and small companies. The growing need for such access is 

evidenced by the development of appropriate information and intelligent systems that will create and 

implement models of DNNs. But, such systems have not gained popularity yet. Nevertheless, 

researchers increasingly prove the high efficiency and superiority over other algorithms and machine 

learning methods [6, 7]. 

That is why there is a need to study the necessary functionality for a system that will create neural 

networks for the user, create a project that developers can use to develop software, and hence the 

relevance of design and development of DNN generation system.  
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2. Analysis of the subject area 
2.1. Definitions and concepts for the DNN generation 
2.1.1. Main definitions and components of DNN 

Creating the Deep Neural Network (DNN) is an intellectual and informational task that involves a 

clear understanding of terminology, study of the subject area, and the correct use of existing 

mechanisms and technologies. Therefore, the paper's primary task is to form a unified set of definitions 

that will determine the rules and particular constraints in generating the neural network. 

The abstract highest concept is the Artificial Neural Network (ANN). ANN is a brain simulation 

system for the perception and analysis of information. In the article, an Artificial feed-forward Neural 

Network called a system which takes an input vector X and builds a nonlinear function f(X) to predict 

the response Y [8]. The dimensionality of X and Y, and DNNs shapes and sizes accordingly, depend 

on the application [9]. As we mentioned earlier, the classic issues of ANN: regression and classification, 

clusterization and anomalies detection, dimensionality reduction, generation, etc.  

This study focuses on creating networks that can solve the first two problems. Its known that DNN 

consists of at least three fully connected layers: input, hidden, and output. A sequence of layers and 

their properties determine network architecture. The more hidden layers there are, the 'deeper' the 

network is. Classic DNN uses dense-connected layers also called Dense. The neural network topology 

is a graphical representation of DNN architecture in the language of graph theory. Using the introduced 

concept of topology, it is possible to create a definition of DNN, which we will use throughout the 

paper. Deep Neural Network is a multilayer Artificial feed-forward Neural Network in which the 

topology of two sequential layers forms a complete bipartite graph. 

Those networks use backpropagation as a training method [1, 10]. The defined classes of tasks, 

definitions and learning algorithm bound the domains for the main parameters required to create a DNN 

and constrain some architectural solutions. For example, AutoEncoders (AE) can meet DNN criteria. 

But the main task of AE is dimensionality reduction [3], which is not included in the tasks list. It is 

related to the necessity of combining two separate models (encoder and decoder), and this possibility 

is not yet provided by the design of the developed system. Typically, each network has three related 

processes: learning or fitting, testing or validation, and inference or prediction. Each of the processes 

requires input from the subject area. Such input data must have a unified form or a pipeline of obtaining 

it (cleaning, normalization, feature engineering, etc.) [11]. However, the first two processes require 

some other related values that are part of the standard parameters for DNN. 

The standard parameters of the DNN are the number of layers (or its 'depth'), number of units of 

each layer, activation functions of each layer, loss function, stochastic optimization algorithm, number 

of repetitions of the learning process, the batch size for input data splitting. Optional features are a set 

of DNN performance metrics, callbacks of the learning process (functions that are called after one step 

of the train process), the initialization kernel (method of random initialization of weights and biases) 

[12], etc. Incidentally, the number of layers has a limit of three positions, and the upper limit does not 

exist. But the study of an infinite number of layers and continuous models is another domain. The set 

of valid layers’ activation and loss functions is determined by the tasks that DNN solves. 

In order to build fairly complex nonlinear relationships in the regression process it will be sufficient 

to use several types of the most common functions: sigmoid (transform data to the interval [0,1]), 

hyperbolic tangent (transform data to the interval [-1,1]), relu, and their variations: leaky relu or elu, 

for some regression tasks swish function is the best choice [13, 14], and last but not least - the usual 

linear function. The loss function can be a classic mean square or absolute error. 

The classification problem requires more complex combinations of functions, particularly the 

widespread use of softmax (or numerically stable softmax also called the normalized exponential [1]) 

as an activation function for the output layer, combined with cross-entropy as a loss function [1]. When 

considering the classification task, it is necessary to build an agreement with the input data and network 

parameters, which minimizes the cost of building and debugging the model. When considering the 

classification task, it is necessary to agree the input data (esp. ‘ground truth output’) with network 

parameters, which minimizes the cost of building and debugging the model, and for example, 

representing a target class. Suppose the data is not decoded and saved as the original labels or class 

numbers. In that case, any of the mentioned loss functions will not make sense because the cross-entropy 



works with One-Hot encoded data [11]. Therefore, it is necessary to use sparse functions, such as sparse 

cross-entropy, in the absence of encoding. 

The optimization algorithm is a stochastic method that defines the logic of applying gradients to the 

weights and biases of the DNN [15]. The most common and popular general-purpose method is Adam 

[10], that we are going to use in the default settings. But users could use many other algorithms, and an 

information system will allow them to change the method. 

The last parameter to consider is initialization kernel, the rule by which the initial random values of 

weights and biases are selected.  

2.1.2. Preventing overfitting and stabilizing of the training process 

There are several problems and difficulties when dealing with neural networks at every 

implementation stage. The common downside is the requirement of a massive amount of prepared data, 

which occurs at the beginning of the process. Two central problems of the learning process are 

overfitting and underfitting. And one of the main drawbacks of the ready-to-use DNN is a lack of 

meaningful interpretation of its learned parameters. 

But, when building a system that can generate DNN, we need to consider those problems that appear 

at this step: over- and underfitting. That is why IS should offer users some prevention mechanisms. 

An advanced, effective way to stabilize learning is the intermediate normalization of data batches. 

When using Keras API, this mechanism of normalizing is implemented using the BatchNormalization 

layer [16]. The main goal of normalization is to transform data into a normal distribution 𝑁(0,  1) 
[12,16]. During the training process, normalization is performed with the standard deviation and mean 

of batches, and during the inference, the layer uses the rolling average of the mean and standard 

deviation of the batches. 

The problem of overfitting also has classic approaches of handling it. For instance, one could make 

learning a little bit harder or with some difficulties, which will help to avoid forming erroneous patterns 

in the network. Dropout is one the most common technique of preventing overfitting with mentioned 

approach [1]. TensorFlow Dropout layer randomly drops out some fraction of a layer's input units every 

training step, making the fitting process a little more challenging. As a network layer, it affects the next 

dense layer and is only called during the training. The layer's behavior is determined by a single 

parameter - the percentage of dropped connections in one step (aka the rate). 

Often, a combination of three layers: Dropout, BatchNormalization, Dense – a classic "composite" 

layer, is used as the hidden and output layers of the network, see Figure 1. Normalization can be used 

as the first layer of the DNN if input data is not normalized. 

 
Figure 1: "Composite" hidden layer of DNN (for training and inference respectively) 

 

Such layers correspond to the concept of the system and the definition of DNN described earlier. Of 

course, building such layers is a good solution for large datasets or complex tasks. Still, it may not be 

appropriate to use more complex structures with minor challenging tasks, such as multivariate 

regression, so the system should have the opportunity to remove these additional layers. 

For example, the DNN architecture for the classification task, typically provided by the system, is 

represented in Figure 2. 

One possible way to improve a template is to use intelligent automated neural architecture search 

methods, which can be used to generate the most proper architecture for the given dataset [17].  



 
Figure 2: Complete DNN template 

2.2.  Analysis of available solutions 

As shown in [18], DNN entail an inherent advantage over traditional machine learning. They can 

handle data in its raw form without the need for manual feature engineering. That is why they are 

constantly used in various business models, which gives rise to their popularity. The popularity and 

power of ANN have turned into a large number of information technologies of different levels of 

complexity that allow one to create, teach and deploy DNN for production. 

We allocate three types of systems to generate DNN: 

● Frameworks, libraries, and extensions of programming languages for machine learning 

● Analytical platforms with support for the creation of multilayer perceptron’s or other types of 

DNN 

● Specialized systems for DNN creating 

The first type requires the developer to directly write program code, quality mathematical training, 

and programming skills. Examples of such systems are well-known libraries such as TensorFlow 

(Google), PyTorch (Meta, Nvidia, etc.) [19], Theano [20], OpenNN, Caffe, and many others. Those 

systems run on several programming languages, like Python, R, C ++, Java, Julia, etc. Systems of this 

type are a powerful tool for knowledgeable users, and these systems have the highest flexibility and 

support from communities and big IT companies, can run on GPU [7]. However, for users with limited 

programming knowledge, expertise of a specific language or framework will not allow you to create 

the necessary artificial network quickly, respectively, a possible loss of time or money from customers.  

The second and third types are usually code-free systems. The second class includes systems such 

as NeuroDesigner or Neuroph, which allow you to use the graphical interface to go through the 

necessary steps to create a network. They use their add-ons and libraries to get an advantage in the 

learning speed of large DNNs. However, this approach imposes limitations on the rate of updating and 

efficiency of systems and directly machine learning libraries.  

Our system is designed and developed as the third type. This means that it must define for the user 

the minimum required set of steps and input to achieve the desired result, i.e., the creation of DNN. Due 

to the possibility of quick updates, additions, and simple integration, it was decided to delegate 

networks' direct building and training processes to the TensorFlow library with direct using of Keras 

API [21, 22]. 

2.3. System specifications and design 
2.3.1. System conception and main use case 

Conceptually, the designed system generates correct code scripts for DNN creating using 

TensorFlow, see Figure 3. Two of the main processes of the system are delegated to other information 

systems. The code execution process is delegated to programming language interpreters, while learning 

and saving processes are charged to the TensorFlow library. With this approach, we can increase the 

number of data formats, that out system uses and produces, as TensorFlow works with many 

programming languages. Therefore, the generated code can be saved as files of these languages or 

integrated into projects with one of that languages supports.  



 
Figure 3: Black box interpretation of IS conception 

 

Since creating a system is a complex job, we have subjected it to a particular logical decomposition. 

In the aftermath, we can cluster systems functions within decomposed subtasks. The main subtasks of 

the designed system are: 

● Configuration of main DNN parameters 

● Downloading of input files 

● Generation of code and its execution configuration 

● Saving and uploading of projects (locally and from database) 

● Visualization of processes and their results 

● Implement login and system context supporting 

We propose a text description of the system scenario according to the RUP methodology to set out 

system functionality.  

1. Stakeholders and their requirements: 

● User – requires simplicity of the system 

● TensorFlow – requires correctly generated program code 

2. The user of the software system: 

● User – a person who needs using the system 

3. Prerequisites for use case: 

● User with Google account (or email associated with Google account) 

● For local code execution: installed programming language (e.g., R, Python) and TensorFlow 

library  

● Stable Internet connection 

● Correct, ready-to-use dataset file 

4. Successful scenario: 

● The user logs in (or registers) with Google account 

● The user creates a new project, adds a name and a subscription (if needed) 

● The user uploads the dataset file into the system 

● The user chooses the target field optionally edits newly configured input and output layers 

● The user changes train/test split percentage 

● The user adds and modifies any number of hidden layers, modifies activation functions, units 

count, removes non-trainable layers if needed 

● The user chooses the Loss function 

● The user modifies metrics 

● The user sets the number of epochs 

● The user initiates the learning and testing process for a current DNN model 

● TensorFlow executes scripts, while IS streams stdout results for the user 

● The user checks model performance and metrics results 

● The user starts the process of project saving into the database, choosing a saving configuration 

● The database actor saves files and document and returns confirmation of successful results 

● The user logs out 



5. Scenario Extensions or Alternative threads: 

● Invalid input shape: 

o TensorFlow returns an error 

o The user analyses given error 

o The user changes input shape for the model 

o The user initiates the learning process (extension’s return point) 

● Model performance unsatisfied the user  

o The user changes the layers count if needed 

o The user modifies activation functions 

o The user chooses a different optimization method 

o The user initiates the learning process (extension’s return point) 

● Alternative thread 

o The user checks model performance and metrics results (thread’s start point) 

o The user modifies model parameters 

o The user initiates the learning and testing process for a current DNN model 

o TensorFlow restarts processes and saves the current model 

o TensorFlow returns results via streamed stdout 

o The user checks model performance and metrics results (thread’s return point) 

● Alternative thread 

o The user checks model performance and metrics results (thread’s start point) 

o The user starts the process of project saving project on the local device with all 

scripts 

o The user logs out (thread’s return point) 

● Alternative thread 

o The user initiates the learning and testing process for a current DNN model 

o The IS sends scripts to the server 

o Server’s TensorFlow executes scripts, while IS streams results for the user 

o The user checks model performance and metrics results (thread’s return point) 

6. Post-conditions:  

● Clean up temporary files of the model and close threads (processes). 

● Saved files and projects 

● Generated DNN and scripts 

7. Special system conditions: 

● Ensuring the correctness of the generated code files 

● Nice UI/UX design of the system 

● Support of many popular file extensions for datasets or model 

● For local execution: programming language, TensorFlow, minimum required architectural 

requirements for the device needed for the language or library 

It is important to point out that current trends in software development require cross-platform 

support of the system on various devices, including desktop, mobile, and web. Therefore, code 

execution will be performed using cloud services to maintain multi-platforming, scalability, and 

minimally dependence on user’s devices. The ability to run program code on user’s devices can only 

be done for advanced users, for instance, with devices based on TPU or a specific language version 

preference [7]. These aspects affect the choice of system development tools. 

2.3.2. Object-oriented design 

Object-oriented design with UML is the study's next step. It’s based on the previously given 

specifications. Implementing this step is necessary for the object-oriented decomposition of complex 

objects and then writing an effective program using the benefits of object-oriented design and 

programming paradigm. First thing first, we designed a UseCase diagram, which is displayed (Figure 

4). The development of diagram allows us to describe the functional purpose of the system, i.e., to show 

the initial conceptual model of the system in order to further detail it in the form of logical and physical 

models. 



 
Figure 4: UseCase diagram 

 

Determining the system's basic functionality and interactivity with external actors allows choosing 

the minimum set of objects whose interaction and cooperation can fully perform use cases or use cases. 

The description of such objects is made on the class diagram [22] – Figure 5. 

 
Figure 5: Class diagram of information system 

 

Methods and attributes have minimal binding to the specific programming language. Table 1 shows 

some sequences of class methods that allow one to implement specific use cases of the system. 

The achievement of the main goal of the information system - the generation of DNN, can be seen 

as a logical sequence that represents the cooperation of class instances. 

A cooperation diagram was constructed to demonstrate that sequence as a specific action of the 

instances (Figure 6). We specify a brief description of the classical scenario of the use case for building 

a DNN project from a cooperation diagram. 

 

  



Table 1 
Correspondence of use cases and sequence of classes' methods 

UseCase Classes’ methods 

Log in/Sign in FirebaseManager().signIn() 
Create new DNN project DNNProject().setName(), DNNStack().push() 

Upload input dataset DNNProject().addTrainData() OR/AND 
DNNProject().addTestData() OR/AND 
DNNProject().addPredictData() 

Initiate learning process TFCodeManager().createProjectDirectory(), 
TFCodeManager.createFile(train_test), 
TFCodeManager.generateCode(), DNNProject.toCodeString(),  
TFCodeExecutor().run() 

Save DNN project FirebaseManager().saveProject(), DNNProject().toMap(), 
TFCodeManager().getDirectoryPath() 

 

The successful DNN generating scenario assumes that the user has all the necessary programming 

language modules (for local execution), an Internet connection, installed information system. To 

generate the network, the user uploads data, sets the model's parameters, optimization method, and 

configuration of the learning process. After starting the training, the system creates files, initializes 

execution, streams the results to the user, and after saves the project in the database. 

 
Figure 6: Cooperation diagram 

 

In order to construct a specific physical system, it is necessary to somehow implement all the 

elements of the logical representation (Figures 4-6) in one particular material entity. Another aspect of 

the model representation is intended to describe such an entity, namely the physical manifestation of 

the model. In the UML language, for the physical representation of the system model, so-called 

implementation diagrams are used, one of which is the component diagram [23,24], shown in Figure 7. 

The application of this diagram allowed to carry out visualization of the general structure of the software 

system's source code, showing the specifications of the implemented version of the software system 

and ensuring the modularity of its construction [24]. 



 
Figure 7: Component diagram 

3. Means of solving the problem and practical implementation 
3.1. Choice of development tools 

The next stage of the study was the choice of developing tools that allow high-quality and rapid 

development of system software. The structural logic of the system's primary task can be described in 

two parts: data collection from the user and generation with the execution of code scripts. Executing 

scripts that build, teach and save DNN is delegated to the TensorFlow library. Many programming 

languages support the library, and the system design provides the option to choose one, but the default 

and recommended choice is Python. 

Creating an ANN in TensorFlow is possible in different ways, but we have preferred the Functional 

API within developed software [20].  

For the high-quality implementation of the designed system in the form of software with a graphical 

interface, the development technology must meet specific parameters. 

● Built on imperative programming language, with support for the paradigm of object-oriented 

programming 

● Speed of code execution and efficiency of its writing and debugging 

● Cross-platform - creating a unified code base for the main platforms: mobile (Android, iOS), 

desktop (devices based on Windows, Linux, or macOS) and web applications 

We are talking about a particular stack of technologies, or frameworks that can easily interact, 

avoiding the need to use many technologies at once. Many tools meet the described requirements, 

among which are the following. 

● Python. The most important advantage of using Python is the nativeness of TensorFlow (within 

the system context), which will increase the speed of tasks and ease of integration. The main 

drawback is using Python for developing a mobile application. There are many high-quality libraries 

and frameworks for desktop and web (Tkinter, Django, etc.), while for Android and iOS, there is a 

need to use native development tools - Kotlin and Swift. 

● C/C++. C ++ is a standard among object-oriented programming languages. With the help of 

assistive technologies, it is possible to implement the system on different platforms, and it is possible 

to use frameworks: CMake, Android NDK, C ++ iOS development tool. However, creating web 

applications and applications for the macOS operating system is problematic when using C ++, 

especially for visual components. Therefore, there is a need for further use of Swift for macOS and 

HTML / CSS / JavaScript - for web development.  

● JavaScript with React Native. With the help of this programming language, you can describe 

the logic of the interaction of system objects to provide the necessary functionality. Also, there is 

TensorFlow support for JS [25]. With the React Native framework, it is possible to use a single code 



base for all platforms, which significantly speeds up developing a multiplatform system with a 

quality UI. 

● Java. The use of Java will have some advantages in terms of security and data integrity. 

However, there are some problems while using Java in implementing the GUI on the iOS platform, 

integration with TensorFlow, etc. 

Based on the analysis, we have chosen the Flutter framework of the Dart programming 

language [26] as the software solution [27]. The main advantages of Flutter over the analyzed options 

are the use of a single source code for all platforms, speed of execution, creation, and launch of 

applications, its own kernel for rendering [28, 29]. 

The graphical component of the software is a set of widgets. Flutter contains ready-made graphic 

elements with a specific shape and design [27]. These widgets come in two different designs - Material 

and Cupertino [29]. We used self-designed and Material components while creating the software. 

Concerning database, in terms of ease of implementation and integration with the selected development 

technology, it is recommended to use a system such as BaaS – Firebase [30]. Firebase is a service from 

Google that includes a set of subsystems, including Firestore and Realtime Database. These two NoSQL 

databases allow you to store system information, user data and required project files [30]. 

3.2. Practical implementation 

With provided analysis of the development tools, we have construct the NeuroPIS information 

system. The features of NeuroPIS are presented in the form of the classical use case of the system, 

namely: creating a project, uploading the input dataset file, configuring the model and learning 

parameters, initiating code execution, saving the model. We have chosen the flatten version of the 

classic DNN training dataset - MNIST, to set a use case [31]. Each data row contains a display of 

numbers from 0 to 9 (“label”) and 784 values (as flattened by row 28 by 28 images) from 0 to 255, 

corresponding to the pixel's grayscale. 

 
Figure 8: Part of the visualized MNIST dataset 

 

To show the simplicity of creating DNN within an information system, we will use the default 

architecture for the use case example. The start screen of the system is shown in the Figure 9. 

 
Figure 9: The main window of the application without any projects 



To create a project, one must provide its name, see Figure 10. 

 
Figure 10: Adding of the new DNN project 

 

After creating a new project, the system automatically fills in most parameters. Usually, the 

minimum or most probable values are used. As for the model, there are initially three layers. The last 

two are "composite" blocks (Figure 11). 

 
Figure 11: Project’s start windows 

 

After uploading the training and test dataset into the system, first and last layers will be automatically 

corrected. For the output Dense layer number of units is equal to the length of the unique values in the 

target field of the dataset. In the example - Figure 12, the target field is the first one – "label". 



 
Figure 12: Updated state of the model 

 

The next stage is the settings of the model and training parameters. The hidden Dense layer 

configuration is shown in Figure 13 with 64 units and elu activation. Dropout layers will be used with 

a rate equal to 0.1 to prevent overfitting. 

 
Figure 13: Hidden Dense layer configuration 

 

Because projects’ task is classification – the last layer has softmax activation. Loss function and 

metric are set as CategoricalCrossetropy (Figure 14). The last change is the number of epochs, and for 

the example, it is set to 3.  



 
Figure 14: Training parameters settings 

 

With all settings done, the main window of the projects will look like in Figure 15. 

 
Figure 15: Training parameters settings 

 

After initiating the running process, the system will include all messages in the log widget like in 

Figure 16. While the file execution particular progress indicator is active, and the user can read current 

training parameters. 

 
Figure 16: Logs of the training process 

 



The end of the process notifies the user using the message in the log widget. The last numbers given 

in the list are the tested model performance parameters. For instance, after three epochs, our model gets 

categorical accuracy of 94%. The last step of the classical use case is saving the DNN. The user should 

choose a directory where the scripts and TensorFlow model will be saved. After the saving process, the 

user receives the project directory. Users can reuse projects like any python script. For example, the 

DNN model definition generated by the NUEROPIS looks like that:  
import tensorflow as tf 
def get_mnist_classification_model(): 
 inputs = tf.keras.layers.Input(shape = (784)) 
 x = tf.keras.layers.Dropout(0.1)(inputs) 
 x = tf.keras.layers.BatchNormalization()(x) 
 x = tf.keras.layers.Dense(units = 64, activation = tf.keras.activations.elu)(x) 
 x = tf.keras.layers.Dropout(0.1)(x) 
 x = tf.keras.layers.BatchNormalization()(x) 
 outputs = tf.keras.layers.Dense(units = 10, activation = tf.keras.activations.softmax)(x) 
 model = tf.keras.Model(inputs, outputs) 
 model.compile( 
 optimizer = tf.keras.optimizers.Adam(), 
 loss = tf.keras.losses.CategoricalCrossentropy(), 
 metrics = [tf.keras.metrics.CategoricalAccuracy()], 
 ) 
 return model 

 

Given the success of setting up and saving the DNN project, the classical use case example showed 

the correctness of the design decisions. The generated result proves the possibility of practical use of 

the developed information system. 

4. Conclusion 

The implementation of this work allowed us to analyze the availability of models of Deep Neural 

Networks for users in the form of information systems. The problem analysis highlights the main 

limitations, shortcomings, and typical algorithms in modern software solutions. Based on the study, we 

have: created a conceptual model of the system, identified the necessary functionality, prepared 

information content for the system project. 

The logical continuation of the work was creating an object-oriented design of the information 

system in the form of multiple diagrams of the UML language. Created design yields descriptions of 

the logical and physical levels of functioning within the formed concept. Among the possible 

combinations of UML diagrams, we have described those that allowed detailing the system's use cases, 

specify a set of classes that can fully implement them, and instances' interaction and cooperation. A 

possible set of system design components is formed as a respective diagram. Created theoretical and 

graphic materials became the basis for developing our system software. The validation of the system 

confirmed the correctness of the results and thus the possibility of its practical application in creating 

Deep Neural Networks.  

Further research will focus on implementing automating model construction and designing related 

software modules to expand the functionality and test their work. 
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