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Abstract  
Due to the emergence of cloud and containers, microservices has become widely adopted to 

develop large-scale applications, since deploying on the cloud provides an unlimited amount 

of resources to the developers. However, an uncontrolled usage of these resources leads to 

unnecessary costs or a non-performant system. Therefore, several researches have been carried 

out around an efficient resources auto-scaling, coming out with several policies. Most of the 

existing policies follow a reactive approach that relies on the current state of the system to 

adapt it. On the counterpart, proactive approaches are based on resource future usage 

estimation to adapt the system before it reaches a non-performant state, yet, complex and 

expensive methodologies are needed to ensure proactivity such as reinforcement learning. In 

this work, we propose a proactive approach of resource auto-scaling. We use the weak and 

strong dependencies concept to expect the future state of the system. To formally model the 

proposed approach, we combine high-level PNs and plausible PNs. The plausible PNs are 

suitable for decision-making, when several adaptation plans are available, they allow 

identifying a compromise plan when the auto-scaling concerns different qualities of the system. 
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1. Introduction 

Microservice architectures organizes the applications as a set of loosely-coupled components, 

evolving independently, where new versions can be added and work side by side with the old ones, 

hence reducing the applications downtime for maintenance and upgrades. Nowadays, microservices 

architectures are widely adopted, due to the emergence of cloud computing and containers technology, 

where the cloud provides the user with unlimited pay-per-use resources to run the application, and the 

containers grant a fast and easy deployment of the microservices. However, well-established policies 

are needed to manage the allocation/deallocation of resources to avoid supplement and unnecessary 

costs on one hand, and meet performance targets of the microservices on the other hand. 

Auto-scaling consists of increasing/decreasing the amount of the allocated resources as a response 

to the workload applied on the microservices for an efficient resource utilization, a cost reduction and 

sustainment of the application's quality of service (QoS). Many approaches were proposed to answer 

those needs, where most of them are reactive, i.e. monitor the microservices and adapt them according 

to the current workload [5] [12] [13]. However, a reactive auto-scaling remains a long process and 

proactive approaches are needed to avoid the violation of the system’s QoS. 

Existing proactive approaches [4] require expert systems and knowledges to achieve auto-scaling, 

thus limiting their applicability [18]. In this paper, we propose a proactive approach for auto-scaling, in 

which we consider the architectural level of the system and make use of the dependency relations 

between microservices to establish proactive auto-scaling policies. To this end, we adopt the 

architecture proposed in [14] for self-adaptive systems, this architecture provides a separation between 
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the operating system and the adaptation logic. Unlike existing approaches, our work doesn’t include 

any complex methodologies, it is based on the strong and weak dependencies concept presented in [1] 

as the connected microservices to a given microservice, where strong dependencies must be provided 

before creating of the microservice instances, and the weak dependencies must be provided before the 

end of the given microservice deployment. We use this definition to determine the future state of the 

dependencies from the current state of a given microservice.  

Application auto-scaling is a fault-sensitive operation, a wrong scaling can lead to a loss of money 

(resources rented without being used), or also to a reduction of the quality of service offered by the 

application (lack of rented resources). Therefore, we adopt formal verification to ensure that the model 

is reliable and thus avoiding performance degradation due to a faulty resizing. To that end, we combine 

High-Level Petri Nets (HLPN) with Plausible Petri Nets (PPN) where the PPNs are used to compute a 

compromise plan between several adaptation plans. We highlight that concurrency in our resizing 

model concerns the qualities of microservices and not the microservices themselves.  

The paper is structured as follows: in section 2, we recall basic concepts of both HLPNs and PPNs. In 

section 3, we present some of the existing auto-scaling approaches. Afterwards, in section 4, we propose 

a proactive auto-scaling approach for microservice-based applications, we introduce the adopted 

architecture and we present the metrics monitored to achieve auto-scaling in microservice-based 

applications, then we propose the policies implemented to achieve this adaptation. In section 5 we detail 

the PN-based model of the approach and use the email pipeline processing as a case study to model it. 

Finally, section 6 rounds up the paper with a summary of the presented work and ongoing.   

2. Background 

Petri nets have been initially proposed to model the behavior of a dynamic system with discrete 

events; they have then undergone several evolutions and variants. We present in what follows two types 

of Petri nets to be used in the present work: High level and Plausible Petri nets.  

 

2.1. High level Petri nets 
A high-level petri net (HLPN for short) [6] can be defined in several ways. In our work, we adopt 

the definition proposed in [7]. 

Definition 1 [7]: a HLPN as a directed bipartite graph H= (P, T, A, D, Type, M0), where:  

⚫ P and T are non-empty finite sets of elements called places and transitions, respectively, such that 

P ∩ T = ∅;  

⚫ A⊆ (P×T) ∪ (T×P) is the set of arcs connecting places to transitions, and transitions to places;  

⚫ D is a non-empty finite set of non-empty domains where each element of D is called type;  

⚫  Type: P ∪ T → D is a function used to assign types to places and transitions;  

⚫  M0 ∈ μPLACE is a multiset called initial marking of H, where μPLACE is the set of multisets over 

the set PLACE = {(p,g) : p ∈ P, g ∈ Type(p)}.  

In a HLPN, places are typed (see Figure 1), in order to define the collection of tokens that can be 

hold in each place. The collection of all the tokens associated to all the places represent the net marking. 

In addition, arcs can be associated with expressions, that contain constants, variables, or function 

images (e.g x, y, f(x)). To evaluate an arc expression, values are assigned to its variables, the resulting 

items must be inscribed in the type of the arc’s place. Finally, Boolean expressions are associated to 

transitions and are called guards (e.g x > y). These features make it possible to model several data and 

information about the system and its different variables, so it is possible to measure the qualities of the 

modeled system. 



A transition can fire only if it is enabled. A transition is enabled due to a net marking and a 

particular mode. A transition mode is defined by assigning values to all the variables in the transition’s 

guard and the annotations of the connected arcs. After assigning values, the input arcs expressions are 

evaluated, the results are tokens having the same type as the input places. The transition is enabled for 

the current mode, if the marking of its input places is equal or superior to the multiset of the resulting 

tokens. The firing rule is simple; whenever a transition fires, tokens according to the multiset of the 

evaluated expressions are subtracted from the input places, and tokens according to the evaluation of 

output arcs are added to the output places.  

Figure 1: A HLPN example [7]. 

2.2. Plausible Petri nets 

Plausible Petri nets (PPNs) [8] [9] are a hybrid variant of PNs composed of two types of places and 

transitions, namely, symbolic and numerical, in order to describe both discrete and continuous 

behaviors of a system. In the symbolic subnet, discrete behavior is described using regular tokens, while 

in the numerical subnet, continuous or numerical behavior is described with tokens that carry states of 

information about states of variables [10], where a state of information about a given variable  is 

the probability density function (PDF) of  over [10]. In a self-adaptive system, PPNs can be used 

to compute the plausibility of the different possible adaption plans, so the most appropriate plan can be 

chosen. 

Definition 2 [11]: A PPN is defined as a 9-tuple  = (P, T, F, W, D, , , , M0), where: 

⚫ P is the set of places partitioned into two disjoint subsets, , and  for numerical places, and 

symbolic places, respectively. 

⚫ T is the set of transitions partitioned into two subsets, , and  for numerical transitions, and 

symbolic transitions, respectively. Unlike places, a transition can belong to both  and  , in 

this case it is referred to as a mixed transition. 

⚫ F is the set of arcs that connect transitions to places, and places to transitions. 

⚫ W is the non-negative set of weights applied to arcs within F, and it is partitioned into two disjoint 

subsets, , and  for arcs connected to numerical places, and those connected to symbolic 

places, respectively. 

⚫ D is the set of switching delays for both symbolic and mixed transitions. 

⚫  is the state space of a stochastic variable . 

⚫  is the set of density functions associated to numerical places and transitions. 

⚫  is the set of equations representing the dynamics of the state variable . 

⚫ M0 is the initial marking of the net, which is given by two vectors and  for numerical and 

symbolic places, respectively. 

A PPN can be divided into two subnets, namely, the symbolic subnet, and the numerical subnet. 

Unlike the ordinary evolution of the symbolic subnet, the numerical subnet evolution relies on an ad-

hoc information flow based on conjunction and disjunction of states of information [8][9]. For a 

numerical transition, it can fire when the conjunction between all its input places’ states of information 

and the transition’s states of information is possible. For a mixed transition, both conditions of symbolic 



and numerical transitions must be satisfied. Firing transition’s effect for the numerical places is a state 

of information consisting of a disjunction of the previous state of information, and the information 

produced after firing the transition (conjunction of state of information within the transition and its input 

places). Figure 2 illustrates an example of a simple PPN (given by part (a)) and its firing rules (given 

by (b)). For more details on PPNs, the reader is referred to [11].  

 

Figure 2: PPN example(a) and firing rules [11]. 

3. Related Work 

With the expanding importance of auto-scaling, many approaches have been proposed for an 

efficient auto-scaling of microservices-based applications. Most of the presented works are reactive 

approaches; they adapt the system according to its current state. While other approaches are proactive; 

they adapt the system based on predicting its future state by analyzing historical data. Existing 

approaches generally use threshold-based policies (e.g., [19], [20], [21]), queuing theory (e.g., [22], 

[23],[24]) or machine learning techniques (e.g., [25], [26]). 

In a threshold-based solution, static thresholds are defined for the resources usage and adaptation 

actions are planned according to them, allowing the definition of simple but efficient auto-scaling 

policies. Authors in [21] use reinforcement learning for a dynamic adaptation of the thresholds. 

Threshold-based policies are also used in proactive approaches such as [19] in which authors predict 

the CPU utilization of the microservices and then adapt them using a threshold-based policy. 

 In a queuing theory-based solution, each microservice is modelled as a queue of requests to predict 

its performance under different conditions of workload. Authors in [23] modelled a microservice-based 

application through a Layered Queuing Network for a dynamic scaling. However, Queuing theory 

solutions are considered limited due to the fact that they need to be recomputed when the workload 

changes. 

 Most of proactive approaches (e.g., [25], [26]) are machine learning-based solutions using 

reinforcement learning (RL). RL allows making dynamic scaling decisions after learning phases using 

a trial-and-error approach. However, RL techniques suffer from the long learning process and require 

time to converge to an optimal policy.  

In the present work, we propose a proactive auto-scaling approach, with a threshold-based policy. 

The strong and weak dependencies concept [1] allowed us to reach proactivity without using complex 

and expensive methodologies (e.g., machine learning). Contrary of existing proactive approaches, our 

model doesn’t need any learning process, since it relays on the microservice’s dependencies to predict 

the future state of microservices.  

4. A proactive auto-scaling approach  

Auto-scaling approaches can be classified as proactive and reactive approaches. In a reactive 

approach the auto-scaler increases/decreases the resources allocated to a given microservice relying on 

the current state of the workload, this is achieved by monitoring the system metrics such as input data 



rate and resources usage, despite the efficiency of this approach, it remains a long process due to the 

significant time of adaptation computing and scheduling. Conversely, in a proactive approach, the 

microservice is resized relying on a prediction of the future evolution of the workload and the system 

state using machine learning. Machine learning is a heavy and greedy process in terms of cost, also 

predictions can’t be one hundred percent accurate which may lead to a waste of resources and 

unnecessary cost. [15] and [16] are examples from the few works that have considered proactive 

approaches. In our work, we present a proactive approach, in which we consider the architectural level 

of the system to achieve proactivity, by considering each microservice dependencies when scaling it, 

i.e. we use the monitoring result of one microservice to adapt it due to the workload applied on it, and 

estimate the future workload of its dependencies, and prevent an adaptation for them. In this section, 

we present the adopted architecture to model our approach, then we present the supervised metrics and 

the auto-scaling policy. 

 

Figure 3:  Layered self-adaptive system Architecture. 
 

4.1. Modeling Architecture 
We mainly adopt the architecture presented in [14], and adapt it to meet our needs. As illustrated in 

figure 3, this architecture is composed of a base-level layer referring to the managed subsystem, and a 

high-level layer representing the managing subsystem. Additionally, an emulator and a set of API 

primitives are defined to connect the two layers.  

The logic behind this architecture is that the system process is modelled separately from its managing 

process, for that end, the system process, referred to by the managed subsystem is modelled in the base-

level layer, while the managing logic is modelled in the high-level by means of a set of MAPE-K loops, 

where each loop models the adaptation process of one metric of the system. These loops use the 

emulator to obtain the current state of the system, and the API primitives to edit it. This feats perfectly 

our need to separate the application logic from the auto-scaling process. Additionally, it allows 

modelling the auto-scaling process independently from the application architecture, its composing 

microservices and distributed locations, while the managing subsystem architecture enables the 

modeling of multiple auto-scaling policies according to multiple objectives.  

 

4.2. Supervised Metrics 
The auto-scaling process consists of monitoring the microservices and adapting them regarding 

quality violations, this is measurable through a set of metrics that are directly monitored by the Cloud 

infrastructure and particularly the containers. For each microservice, the MAPE loop’s monitor collects 

the following metrics: 
• CPU usage metric: represents the CPU usage rate of the microservice, obtained as the sum 

of the microservice’s replicas usage of the CPU divided by the sum of CPUs allocated to 
this microservice. 



• Memory usage metric: it is similar to the CPU usage rate expect that the memory usage is 
considered. 

• Input data rate metric: The input data rate is monitored at the microservice level, 
representing the rate of user’s requests to the considered microservice.  

 

4.3. Auto-Scaling Policy 
To realize a proactive auto-scaling, we define a set of MAPE loops where each one is responsible for 

determining an adaptation plan that brings the system to its performant state while maintaining one of the 

supervised metrics. The MAPE loops share one monitor component that monitors the microservices metrics and 

when one of them is violated it triggers an adaptation process in the corresponding loop. After obtaining all the 

adaptation plans, an extended plan component is defined to make a compromise between them and execute it by 

one shared executor. 

Authors in [1] defined the concept of strong and weak dependencies of a microservice, where the 

strong dependencies are microservices that must be deployed before the creation of the microservice 

instance, and weak dependencies are the ones that must be fulfilled before the end of its deployment. 

Since the auto-scaling consists on increasing/decreasing the number of instances of a microservice, then 

new instances of the dependencies are needed to manage them. Therefore, auto-scaling a microservice 

can provide us with a prediction of the necessity of resizing microservices depending on it.  

The auto-scaling policy that will be adopted in our approach is as follow: 
• The Shared Monitor collects metrics of each microservice from the environment layer and verifies if an 

adaptation is needed. 

• When an adaptation is needed for a given microservice, i.e. when one of the microservice’s metrics is 

violated, the Analyze and Plan components of the corresponding MAPE define the adaptation plan from 

the violated metric viewpoint.  

• The Extended Plan computes a compromise adaptation plan if several metrics where violated, and 

computes a proactive adaptation plans for the strong dependencies, and a recommended adaptation plan 

for the weak dependencies. 

• The Execute element applies the adaptation plan on the microservice, and the proactive adaptation plans 

on the strong dependencies, then it notifies the weak dependencies by their recommended adaptation 

plans. Figure 4 illustrate this process. 

 

Figure 4:  The Proactive Auto-Scaling Process. 
 
       The total amount of CPU and Memory allocated to the application microservices always ranges in an 

interval of maximal and minimal thresholds (preset at the deployment phase), to avoid under-utilization/over-

utilization of resources and thus to reduce cost and avoid latency respectively.  
       The microservices input data rate is another supervised metric, with a maximal threshold representing the 

rate that the allocated resources can deal with in order to avoid the application’s latency, and a minimal threshold 

to supervise the efficiency of usage of the allocated resource.  

 The adaptation plan:  An adaptation plan corresponds to the number of replicas to be added or 

removed so that the microservice can manage the applied workload while preserving its QoS. When 

violations are perceived on one or multiple metrics, the corresponding loop augments/reduces the 



current number of replicas and computes the new value of the metric, until it ranges again in the defined 

interval. This new value is computed using the following equation:  

 

       (1)  

 

where oldVmetric is the current value of the violated metric, k is the current number of replicas and k’ 

is the new number of replicas initially set to k. 

When achieving the adapted metric value, the loop returns the corresponding number of replicas as 

an adaptation plan, then the extended plan computes a compromise adaptation plan from all the plans 

as follow: 

 The compromise adaptation plan (CAP): The defined metrics importance and priority degrees 

vary from one microservice to another, therefore, a weighting function is associated to each 

microservice that defines a percentage foreach supervised metric according to its importance degree for 

that microservice. After receiving all the adaptation plans of a given microservice, the Extended Plan 

uses the following function to define the compromise adaptation plan: 

                            

             (2) 

 

where Pi represents the adaptation plan proposed by the metric loop i, Qi the priority degree of this 

metric and nbQ the number of the metric loops. 

 The Proactive adaptation plan: Foreach instance of a microservice, a number of instances of a 

strong dependency is needed, the Extended Plan uses this information to compute the proactive 

adaptation plan for each strong dependency as follow:  

 

         (3) 

where Ni is the number of instances of the microservice i that is needed to run one instance of the 

microservice j. 

Figure 5:  Microservice architecture of email processing pipeline [1]. 

 The recommended adaptation plan: is computed in a similar manner as the proactive adaptation 

plan, but it is not applied on the weak dependencies but sent to them, specifically to the violated metric 

loops. When receiving it, each loop computes the metric value associated to the plan to verify that it 

doesn’t violate it, and if it does, it computes a new plan that preserves it.  

To formally apply this policy on our model, we use a PPN in the plan component of the loops to 

enable computing the defined values. In the next section, we present the formal model of this approach 

which is based on HLPNs and PPNs. For a clear modeling of the approach we apply it on the email 

pipeline processing as a case study. 

 



5. A Formal model for proactive auto-scaling  

Microservice auto-scaling is a critical process in terms of cost and performance. An improper scaling 

can affect the system’s performance or cost. Therefore, a formal approach is needed to model the auto-

scaling process and validate it before its implementation. Therefore, the approach presented in section 

3 for a proactive auto-scaling of microservice-based applications is formally modelled; by means of 

HLPNs and PPNs, in order to construct a proactive compromise auto-scaling and illustrated through 

the example of the email pipeline processing. We describe in what follows the PN-based model and its 

constituents, then we apply it on the email pipeline processing system.   

5.1. The Email Pipeline Processing System 

The email processing system as described in [17] is a system composed of 12 microservices working 

together to analyze an email as shown in Figure 5, first the Message Receiver receives the emails, then 

forwards them to the Message Parser which extracts data from the emails and forwards each part to the 

proper microservice to treat it. The treatment passes through other microservices to finally return all the 

results to the Message Analyzer (we refer the reader to [1] for a detailed description of each 

microservice).  

 

In such an application, the treatment of each user request needs a processing time, so it is necessary 

to supervise the response time of each microservice, by monitoring the input data rate. On the other 

hand, due to the high-workload applied on this kind of applications, and to avoid waste of resources 

and extra costs, thresholds have to be defined for the resources’ usage (CPU and Memory usage). In 

the rest of this section, we model this system by means of the proposed approach. 

5.1.1. The base-level layer 

       The base-level layer represents the managed subsystem that we will modelled by means of a 

HLPN. In the managed subsystem, we are not concerned with the microservices behavior, we actually 

model the microservices and the connections between them. The microservices are represented by the 

places of the HLPN model, and their deployments are associated to those places, while the connections 

are modeled by the transitions and arcs connecting the places. Places in the managed subsystem are 

complex places. Tokens encode information representing their current state (replicas number, the 

amount of associated resources, strong and weak dependencies), also known as the deployment of the 

corresponding microservice, and when an adaptation plan is executed, the deployment information is 

updated. 

Figure 6:  HLPN-based model of email processing pipeline. 
 



The aim of this representation is to allow adding other managing subsystems to the model, that can 

work in parallel with the auto-scaling managing subsystem, for example a scheduler model can be added 

as another managing subsystem to manage allocating nodes for the new replicas and deploying them 

and can be warned of the adaptation made by the auto-scaling managing subsystem through the places 

states. What allow us of considering complex places is the encoding of this Petri net on the emulator, 

where places, and also all the other components of the Petri net, will be represented by tokens, then 

each place will be transformed to a complex token manipulated and edited by the managing subsystem. 

Figure 6 illustrates the HLPN model of the managed subsystem of the email pipeline processing system. 

5.1.2. The environment layer  

This layer refers to the physical state of the system, it contains metrics collected from the containers 

running the system’s microservices instances. The environment layer also contains the set of available 

nodes where new instances can be deployed. By means of a HLPN composed of a set of places; each 

one representing a monitored metric of the system, and which is connected to the managing subsystem’s 

monitor, on the other hand those places are connected to all the nodes where the system microservices 

instances are deployed as shown in Figure 7. 

Figure 7:  HLPN model of the environment layer. 

Transitions get_idr, get_CPU, get_Memory transfer tokens from places nodei to the places idr, 

CPU, Memory respectively. Transferred tokens are composed of an identifier of the corresponding 

microservice and a current value of the metric corresponding to one instance (idr for the input data rate, 

CPU for the current usage of the cpu, and Memory for the current usage of the memory). After collecting 

all the metrics, the next transitions will assemble tokens corresponding to instances of the same 

microservice together to obtain a single token containing the global value of the metric for one 

microservice. These tokens are fired to the managing subsystem monitor by the transition metrics_port. 

The place available_nodes contains tokens representing the set of nodes available for deploying new 

instances, each token is composed of the node identifier and its cpu and memory capacity, when a new 

instance is deployed on a certain node, the corresponding token is consumed by the transition deploy, 

whenever the instance is uninstalled, the node becomes available once again, the token is deposited in 

the place available_nodes by transition free. This part is not connected to the managing subsystem, 

since the auto-scaling concerns resize the microservices without deploying the new instances, a 

scheduler managing subsystem can make use of this place to find proper nodes for the new instances 

and schedule them. 

 

 

 

 



5.1.3. The high-level layer 

This layer includes three components coopering together for an efficient auto-scaling of the system:  
1. The emulator:  

An emulator is a HLPN that can encode and emulate any HLPN’s behavior. The emulator set of 
places coincides with the set of constituents of the HLPN (places, transitions, inputs, etc.) that will be 
encoded into the marking of the emulator [7]. The emulator initially contains a transition fire that 
manipulates the encoded net, whenever this transition fires it causes the encoded net to be executed or 
changed. The place places is connected to the transition fire, so that when it fires tokens representing 
the places are obtained by the managing subsystem’s monitor, in order to associate them with the 
metrics token obtained from the environment. The transition executes fires independently from the 
encoded Petri net, to edit the places’ tokens by the managing subsystem. In fact, tokens flow in the 
managed subsystem is not considered for the auto-scaling process, it is only concerned with the places 
state. Figure 8 illustrates our emulator model where places of the managed subsystem are encoded as 
complex tokens that represent the deployment of a microservice, they are composed of: 

• The microservice identifier. 

• The current number of replicas. 

• The amount of allocated cpu and memory. 

• The needed amount of cpu and memory for one replica. 

• The metrics thresholds (max_idr, min_idr, max_cpu, min_cpu, max_memory, min_memory). 

• The sets of strong and weak dependencies. 

  

Figure 8:  The emulator HLPN model. 
 

2. The API primitives 

The API primitives were defined by [7] as a set of transitions that allow sampling and editing the 

state and the structure of the managed subsystem by the managing subsystem. The API primitives are 

used to read and write the base-level, they allow adding new components to the net or removing existing 

ones (places, transitions, arcs, etc.). They represent sensors and actuators. For our model, we use the 

primitive get_Tokens, and define the primitives set_Tokens and edit_Tokens: 

(a) get_Tokens(x):=p(x) : the primitive is connected to the place place of the emulator, when it 

fires it obtains the token x from place.  

(b) set_Tokens(x):=p(x): also connected to place, it is used to put a token x in place. 

(c) edit_Tokens(x.i):=j: the primitive updates the field i of the token x by j. 

These primitives are used by the managing subsystem to read/edit tokens representing the places 

of the managed subsystem. 
3. The Managing Subsystem 

The managing subsystem models the auto-scaling policy by means of a set of MAPE loops sharing 

a Monitor, an Extended Plan, and the Executer, where each loop analyzes and computes an adaptation 

plan for the auto-scaling of the microservices. For the example of the email processing pipeline, we 



considered three supervised metrics, namely the input data rate, the CPU and Memory usage. 

Therefore, we present a HLPN-PPN managing subsystem composed of three MAPE loops structured 

as follow:  

Monitor: obtains from the environments the metrics values tokens, and uses the API primitive 

get_Tokens to obtain the microservices tokens from the emulator place place, it associates each metric 

token to the corresponding microservice token, then verifies if the metric values are violated by 

comparing it to the microservice’s thresholds (M for maximal value of the metric, N for its minimal 

value). The violated metrics and the associated microservices are then transferred to the loops’ analyzer, 

while the others are returned to the emulator using the API primitive set_Tokens. Figure 9 illustrates 

this Petri net.  

 

Figure 9: The Monitor HLPN model. 
 

Figure 10:  The metric Analyze-Plan HLPN and PPN model. 



Metric Analyze and Plan : obtains tokens composed of the metric value and the corresponding 

microservice, verifies the auto-scaling type (Up/Down), according to which it will weather augment or 

reduce the replicas number, then computes the new metric value by the plausible transition new_metric, 

using equation 1 presented in section 3, it repeats the process until the metric value is adapted and the 

plan is fired by the transition adapted metric. Figure 10 illustrates a generic model of this HLPN 

combined with PPN. 

 

Extended Plan: After computing the adaptation plans from the metric loops’ plans, transition 

combine_plans fires a token containing a vector combining all the plans, and the corresponding 

microservice, then the plausible transition compute_compromise computes the compromise plan using 

equation 2 presented in section 3. Meanwhile, transitions compute_Proactive and 

compute_Recommended obtain the strong and weak dependencies respectively, of the microservice 

from the place ms_dependencies and compute the corresponding adaptation plans using equation 3 from 

section 3, then fire the strong dependencies adaptation plans to places proactive_plans_*, and the weak 

dependencies adaptation plans to places recommended_plans_*. This HLPN combined with PPN is 

illustrated in Figure 11.  

Figure 11:  The Extended Plan HLPN and PPN model. 

Execute: After computing all the plans, the execute apply the compromise plan using the API 

primitive edit_Tokens to edit the number of replicas, and return it to the emulator using set_Tokens. It 

does the same for the proactive plans, after obtaining the corresponding microservices tokens from the 

emulator using get_Tokens. For the recommended plans, the execute use the same process, where 

edit_Tokens is used to update the recommended plan on the token. This HLPN is illustrated in Figure 

12.    

6. Conclusion 

In this work, we proposed a formal auto-scaling model that proactively auto-scales microservices, 

but still uses reactivity to define the primer scaling plan. A layered architecture was adopted to ensure 

separation of concerns between the application’s process and the auto-scaling, it is then formally 

modeled using HLPNs combined with PPNs; a Petri Nets extension that allows us of computing 

compromise between several adaptation plans concerning the different supervising metrics of the 

application, enabling then auto-scaling from different point of view for the microservice-based 

applications. 

As future work, we aim to verify and validate the presented approach to prove the efficiency of auto-

scaling considering the architectural level of the system. For this purpose, we need a PN modeling tool 



with the ability to model plausible functions. We also plan to model the scheduling and deployment 

processes to obtain a full orchestration tool for microservices-based applications.  

 

 

 Figure 12:  The Execute HLPN model. 
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