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Abstract
Automatic keyword labelling methods generate a set of short phrases for a given document providing a
short and good description of its content. Those labels are critical in tasks such as exploratory search
and for improving the information discovery experience. This paper presents a novel keyword labelling
model based on text-to-text transfer transformers (T5). We train a T5 model to generate keywords from
academic documents content. We name this model docT5keywords. We compare our proposal with
the state-of-the-art EmbedRank model, based on Sent2Vec embeddings and even with the keywords
manually assigned by the author for representing their writings.

Our proposal does not merely extract fragments of the texts but also may produce unseen labels. We
commonly refer to these models as creative models. Classical evaluation based on matching against a set
of golden truth labels extracted from the texts is not the best alternative when examining the performance
of creative methods. Therefore, we also present an alternative user-based evaluation methodology for
creative keyword generation models. In our user study, we examine the performance of the tested models
using four expert assessors while analysing the assessor agreement and the correlation with the classical
offline evaluation methodologies.
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1. Introduction

Having documents with suitable keywords or labels is crucial for exploratory search [1] and
also for improving the user experience [2] during the discovery task. In addition, keyphrases
have many useful applications such as enabling semantic and faceted search [3, 4], query
expansion [5] or document clustering [6] and classification [7].
Unfortunately, despite the known importance of these short descriptions for the documents,
most of the documents indexed in search engines either miss those keywords or have low-quality
ones. Therefore, keyword extraction and generation models are needed for filling that gap.
Keyword extraction and generation techniques use documents’ content to extract or generate
keywords representing them. Recent advances in the NLP (Natural Language Processing) field
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allowed the appearance of unsupervised and supervised models that achieve good results on
some keyword labelling tasks. Despite this, some limitations exist on the models’ capacity to
produce unseen labels as most of them merely extract phrases or words from the given text to
obtain the keywords.
Keyword labelling of scientific documents is essential for carrying out critical tasks in the
scientific domain, like article recommendation [8], potential reviewers’ identification and
analysis of contents trends. Moreover, in the case of academic publications, it is common to
ask authors to label their writings manually. Therefore, researchers tend to train and test their
keyword extraction models in this domain, given the availability of human-produced references.
Transfer learning [9], in which a model is first trained on a data-intensive task before being
refined on a subsequent task, is a de-facto standard in NLP. The effectiveness of transfer learning
has given rise to a diversity of approaches, methodologies and practices in this area. Raffel et al.
[10] recently presented T5, a new successful model for transfer learning for NLP. Text-to-Text
Transfer Transformer (T5) is a unified framework that converts all text-based language problems
into a text-to-text format rather than following a multi-step approach.
This paper presents docT5keywords - a novel T5-based method that automatically generates
keywords from documents. This new technique is simple as it only requires documents’ abstracts
to produce the keywords related to them. Also, as it is a text-to-text model, docT5keywords
does not need to pull phrases or words from the given text. Instead, it generates keywords that
may or may not appear in the context, which addresses the lack of creativity issue of older
keyphrase extraction models.
To evaluate our models’ performance, we compare it against a state-of-the-art unsupervised
keyphrase extraction model based on sentence embeddings, EmbedRank [11]. This model
achieved great results on several keyword extraction datasets without neglecting performance
or diversity when extracting keywords at inference time.
We carry out the evaluation in INSPEC [12] and NUS [13], two classical keyphrase extraction
datasets compound of scientific publications, to compare the models in a standard and repro-
ducible way. Due to the limitations of this kind of dataset on evaluating creative models (like
docT5keywords), we include an alternative user-based evaluation methodology for correctly
assessing creative keyword generation models. For this evaluation we use other two datasets:
MAG [14], for training the model and CDS 2016, for testing. We will also use these two datasets
on the offline evaluation to address a better comparison.
This study presents the performance of the tested models against each other and the keywords
assigned by the authors. Furthermore, we analyse the evaluation made by four assessors, the
assessor agreement [15], and the correlation with the classical offline evaluation methodologies.
The main contributions of this work are:

• A novel keyword generation model based on T5 that automatically generates keywords us-
ing only documents abstracts. This new model performs great at inference time (necessary
for its use in production systems) and produces creative results.

• A comparison of our model against a state-of-the-art unsupervised keyword extraction
model (EmbedRank), presenting both the results over classical evaluation datasets and a
user study where four assessors evaluate the quality of the labels.



2. Related work

This section briefly overviews the existing keyphrase extraction methods, deepening the Em-
bedRank model. We also introduce the transfer learning basis that originated the T5 model that
we built our proposal upon.
Previous works on keyword extraction have analyzed the pros and limitations of these techniques
for describing documents. The reader may find that Papagiannopoulou and Tsoumakas [16]
present an excellent and recent survey on keyphrase extraction. This work shows a thorough
comparison between a large set of unsupervised and supervised keyphrase extraction models.
They found limitations on existing evaluation methodologies. In particular, they explore how
classical exact matching evaluation differs from recent partial-matching proposals [17]. They
show how one significant shortcoming of exact matching evaluation is that it penalizes methods
even if they anticipate semantically comparable keywords to the golden ones. However, they
also found that the alternative partial matching approach rewards algorithms that predict terms
that exist in golden keyphrases, even if the predicted keyphrases are not appropriate for the
accompanying article.

2.1. EmbedRank

EmbedRank [11] is an unsupervised keyphrase extraction method based on embeddings. It
mainly follows these three steps: first, candidate phrases are extracted from the text, only keeping
phrases that consist of zero or more adjectives followed by at least one noun; second, both the
document and the phrases are represented as embeddings (using the same high-dimensional
vector space); finally, phrases are ranked to select the output keywords.
EmbedRank uses embeddings capabilities to capture semantic relatedness of words, phrases and
documents to rank the candidate terms extracted from the text. Thus, EmbedRank computes
the document embedding and each candidate phrase’s embedding using the same algorithm in
its second phase. Using the embeddings built in the previous phase, in the third and last phase,
EmbedRank selects the top keywords according to the cosine distance to the document they
belong to.
One key aspect of this model is the possibility of changing the embedding model to the one
which best fits our necessity. Both Doc2Vec [18] and Sent2Vec [19] alternatives are tested and
compared on [11]. Sent2Vec turned out to be much faster at inference time (something crucial
for production environments). Also, when working with short and medium-length documents,
the model based on Sent2Vec outperforms previous state-of-the-art unsupervised models.
Along with EmbedRank, authors present EmbedRank++, an alternative model which uses
Maximal Marginal Relevance (MMR) [20] to increase keyphrase diversity. EmbedRank base
model only considers phrase informativeness which leads to redundant keyphrases. This
feature negatively impacts users’ experience in scenarios where they directly see and use these
keyphrases. Moreover, this problem intensifies when extracting the top N keywords, where,
given the limited number of keywords presented to the user, having near duplicates or redundant
variations of keywords is a waste of space. EmbedRank++ aims to address this issue by adapting
MMR to the keyphrase extraction task combining keywords informativeness and diversity.
It includes a hyperparameter to control the trade-off between informativeness and diversity,



making it possible to adapt the model to each situation.
In conclusion, this fully unsupervised model based on embeddings is an excellent alternative
for keyword extraction in a wide variety of domains.

2.2. Transfer learning

Many old machine learning methods only work well, relying on a common assumption: obtained
training and test data must belong to the same feature space and distribution. Nevertheless,
there are many real-world domains or applications where it is expensive or impossible to retrieve
the training data needed to build the models. Semisupervised machine learning methods [21]
address those situations using only a small amount of labelled data but leveraging a larger
number of unlabelled examples. However, these techniques still assume that the labelled and
unlabelled data distribution is the same.
On the other side, transfer learning [9] allows domains, tasks and distributions used in training
and test phases to be different. These methods aim to improve learners’ performance on target
domains by transferring the knowledge in different but related source domains.
We can categorize transfer learning techniques into three classes: inductive, transductive
and unsupervised transfer learning. Both inductive and transductive methods are supervised
approaches. In the inductive setting, the target task is different from the source task, while the
domain can either be the same or not. In this case, we usually need labelled data in the target
domain.
Meanwhile, in the transductive case, both source and target tasks must be the same, but the
source and target domain are different. In this situation, many labelled data is available in the
source domain, while none is available in the target domain.
Finally, under the unsupervised case, we do not have any labelled data available in the source
or target domain. Moreover, the target task is different but related to the source task, as it
happened in the inductive transfer learning method.
Many recent state-of-the-art NLP models rely on these learning techniques, i.e. they are pre-
trained models on large datasets that we later fine-tune for specific tasks (e.g. BERT [22] or
T5 [10]).

2.3. Text-to-Text Transfer Transformer (T5)

Most NLP tasks require machine learning models to develop general-purpose knowledge so
that the model can “comprehend” the text. However, recent approaches do not explicitly train
models on this general task. Instead, these models learn this general-purpose knowledge via an
auxiliary task.
More recent approaches use transfer learning techniques to acquire this knowledge. As we
explained in the previous section, on these approaches, models are first pre-trained on a data-
rich task and then fine-tuned on specific downstream tasks. Transferring knowledge from the
first to the latter task.
While in other fields such as computer vision, models commonly use supervised transfer learning,
modern state-of-the-art NLP favour unsupervised transfer learning.



Figure 1: A diagram of our text-to-text framework for the downstream task of keyword generation.
(Examples taken from Inspec dataset)

The main idea behind T5 [10] is to treat every text processing problem as a text-to-text problem.
The T5 model is a slight adaptation of the original Transformer [23]. It removes the Layer
Form bias, placing the layer normalization [24] outside the residual path and using a different
embedding position scheme. Instead of using a fixed embedding for each position, it uses
relative position embeddings, a new, more common alternative. The architecture learns the
embeddings according to the offset between the key and query being compared in the self-
attention mechanism. Note that an attention function can be described as mapping a query and
a set of key-value pairs to an output, where the query, keys, values, and output are all vectors.
Along with T5, authors also leverage the "Colossal Clean Crawled Corpus" (C4), a cleaned
version of the web extracted text from April 2019 by Common Crawl. T5 models are pre-trained
using this dataset. Because T5 aims to treat every text processing problem as a text-to-text
problem, it was necessary to prove its performance on many downstream tasks. Experiments
on [10] and recent work in NLP have shown the excellent performance achieved by this model
on a wide variety of tasks.

3. Proposal

Our proposal presents an unexplored keyword generation model that takes advantage of
the text generation capacities of the novel T5 text-to-text architecture. We name this model
docT5keywords.
We train the model as follows: for each document, the downstream task is to deliver a set of
keywords that properly represent that document based on its content. More specifically, we
train the model only using the abstract of academic publications. Figure 1 shows some examples
of how the model works.
In the training phase, given a set of pairs (document abstract, document keywords), we feed
as input the abstract and fine-tune T5 to generate keywords that suit the document. In the
inference stage, we will need to feed our fine-tuned model with document abstracts, and it will
output keywords for each of them.
Using documents’ abstracts and keywords from three scientific papers collections, we built
models for three different experiments, as we explain in Section 4.
The main advantage of using a text-to-text model like T5 for a document keyword labelling
task is its possibility of generating keywords that are not in the input text, giving the chance of



building creative models.
In contrast, most models used to deal with this task are based on keyword extraction methods
that first retrieve words and phrases from the document and then process them to select the
output keywords, limiting models’ creativity.
Even though models’ creativity is a crucial aspect of the keyword labelling of documents task,
creative models have a significant drawback. Classical evaluation datasets on keyword extraction
tasks do not consider this characteristic of models, as they almost always label documents with
keywords that appear in the given text.
Given the above, we present, alongside our model, an alternative user-based evaluation method-
ology comparing docT5keywords, EmbedRank and author keywords. This study will gather
the evaluations of four expert assessors to assess our creative model fairly and compare its
performance against EmbedRank’s and author’s keywords.

4. Experimental setup

In this section, we describe the datasets, the evaluation methods and the parameters used to
assess the performance of our model.

4.1. Datasets

4.1.1. Inspec

This dataset [12] is a collection of 2,000 titles and abstracts from scientific journal papers.
Each document from this collection has two sets of keyphrases assigned by the indexers: the
controlled keyphrases, which appear in the Inspec thesaurus, and the uncontrolled keyphrases,
which do not necessarily appear in the thesaurus. For our experiments, we will only use the set
of uncontrolled keyphrases

4.1.2. National University of Singapore (NUS)

NUS corpus for keyword extraction [13] contains 211 long full scientific conference papers with
a length between 4 and 12 pages. Each document provides several keywords: one created by
the authors and, potentially, several others created by annotators. Following the job done on
[11], we evaluate using the union of all sets of keywords.

4.1.3. Microsoft Academic Graph (MAG)

MAG [14] is a heterogeneous graph containing scientific publication records, citation relation-
ships between those publications, as well as authors, institutions, journals, conferences, and
fields of study.
We used MAG papers published in the Open Academic Graph v1 (OAG v1), a dataset generated
by linking two large academic graphs: Microsoft Academic Graph (MAG) and AMiner. The
decision to use the first version of OAG instead of the second one is because MAG papers
included in OAG v2 did not contain author keywords in their documents.



This version of OAG includes 166,192,182 papers from MAG. We preprocessed these documents
by deleting undesired characters and only keeping those that contained both abstract and
keywords.

4.1.4. TREC - Clinical Decision Support (CDS) 2016

Following the work done in previous years (2014 and 2015), in 2016, TREC launched the third
edition of the Clinical Decision Support (CDS) task.
The goal of this task relies on retrieving biomedical articles relevant for answering generic
clinical questions about medical records. In contrast with previous years, actual electronic
health record (EHR) patient records were used instead of synthetic cases.
The document collection used for the task is the Open Access Subset of PubMed Central (PMC).
PMC is an online digital database of freely available full-text biomedical literature. This database
is constantly updated, so they used a snapshot from March 28, 2016, containing 1.25 million
articles.
We filtered the collection by keeping only articles with abstract and author keywords (needed
for the user-based evaluation and used as the ground truth in the respective offline experiment).
Then, we used documents’ abstracts to infer new keywords.

4.2. Offline evaluation

We first compare docT5keywords to EmbedRank using two classic keyword extraction datasets
(Inspec and NUS). After that, we also compare models’ performance on the dataset used for
TREC CDS-2016.
For the first collection (Inspec), we used the training and validation subsets (totalling 1500
documents) to fine-tune T5. For testing, we used the provided subset (500 documents) without
any modification for both our model and EmbedRank. We used the title and abstract as context
and keywords as labels for each record.
In the case of the NUS dataset, we had to split the collection ourselves as no previous split existed.
Therefore, we decided to keep 150 documents for training and 59 for testing (we discarded two
records as they did not have an abstract). Furthermore, it was necessary to limit the size of
the documents’ abstracts for both training and test phases because our implementation for T5
only supports up to 512 tokens as context. However, we did not apply this length limitation to
EmbedRank’s test split as it is a particular feature of our model which may lead to worse results
in models like EmbedRank.
Finally, we decided to include CDS in our offline evaluation to compare offline and user-based
studies’ results. In contrast with the previous datasets, we did not use a split of the CDS
collection to train our model. Instead, we used a two million random sample of documents
from the MAG dataset for training and a total of 250 papers (same subset for online and offline
assessment) from the CDS collection for testing. Of course, this is a more challenging scenario,
as the topics from the articles from the training and test splits may differ, but we wanted to see
how this shift may affect the relative performance of the model. We only used abstracts to train
and infer docT5keywords in MAG and CDS documents. These abstracts were preprocessed
not to exceed the maximum tokens length of 512.



For the EmbedRank method, we tried different configurations regarding the trade-off between
informativeness and diversity (𝜆). We evaluated the model on its full informativeness and
diversity versions. We also assessed its default option (𝜆 = 0.55) set in the code leveraged by
the authors 1. Regarding the embedding model used for EmbedRank, we choose Sent2Vec as
authors reported to perform better than Doc2Vec in overall performance.

4.2.1. Offline metrics

In terms of evaluation metrics, we calculated precision (P), recall (R) and F1. We compared
models’ generated keywords against datasets’ ground truth.
We compute those metrics following the exact match evaluation approach, where the number
of correctly matched phrases with the golden ones are determined based on string matching.
As we commented in Section 2 (Related Work), the exact matching approach is considered
suboptimal as it penalizes methods even if they find semantically equivalent keywords to the
ones in the golden set. Moreover, we cannot directly compare the results with the references
because the models may generate keywords with slight differences from the ground truth, such
as number or verb tense. To alleviate that problem of exact matching evaluation, we decided
to process both models’ outputs and datasets’ reference keywords using a stemmer and then
deleting characters like dashes or even spaces, as some words can be spelt in different ways.
Table 1 shows the results of the offline evaluation which we will explain and discuss in Section 5.

4.3. User-based evaluation

As previously commented, classical evaluation datasets are not the best option to assess creative
models’ performance. The main problem regarding the keyword generation task is that these
datasets cannot identify if keywords not in the ground truth set are suitable for the document.
Therefore, we propose a user-based evaluation experiment as an alternative to the previously
presented offline evaluation.
For the online experiment, following the approach of the offline evaluation, we used a subset of
two million documents from the MAG collection to train our model and a split of 250 papers from
the CDS-2016 to evaluate them with the following strategy. Four expert assessors carried out
our user study, and each one assessed the keywords of 100 CDS records; 50 of them were shared
by the four experts, whereas the other 50 were different. The rationale behind having a split
of documents in the intersection of all the assessments was for studying assessors’ agreement
while rating keywords.
For each document of the test set, we provided assessors with its title and abstract and a maximum
of five keywords of each type (generated by docT5keywords, extracted by EmbedRank and
annotated by authors). Figure 2 shows the interface we provided to the assessors to evaluate the
keywords. Assessors had to score each keyword between 0 and 3, with 0 being a non-suitable
keyword and 3 a perfect keyword for the document. The matching between each value and its
meaning goes as follows: inappropriate (0), somewhat related (1), reasonable (2) and very good
(3).

1https://github.com/swisscom/ai-research-keyphrase-extraction

https://github.com/swisscom/ai-research-keyphrase-extraction


Figure 2: User-based evaluation web interface. Note: some of the keywords were removed due to space
constraints.

We calculated each model’s mean performance based on the assessors’ scores and the assessors’
agreement on the evaluation of the shared documents. Also, the nature of this kind of evaluation
allows us to assess the creative part of our model. Therefore, we also computed our model’s mean
score using only creative keywords (i.e. keywords not present in the text used for inference)
and not creative ones. Finally, we computed Cohen’s Kappa [25] and Fleiss’ Kappa [26] scores
to evaluate the rate of concordance between our assessors.

4.4. Experimental settings

Closing this section, we will show the parameters used in the learning and inferring phase
when using our model for each dataset.
Starting from the T5-base model, we followed almost the same approximation on all three
datasets regarding the training phase. Batch size, learning rate, and maximum input and output
tokens were the same for all of them, with the following values: the batch size of 256, a learning
rate of 10−3, maximum input tokens of 512 and maximum output tokens of 64.
The parameter we had to vary depending on the dataset was the number of epochs. We followed
an early stopping approximation for Inspec and NUS datasets, training the model until the loss
was stable, with 80 epochs for the first and 64 for the second.
On the other hand, as the size of the training set was significantly bigger, we followed a different
strategy for the MAG dataset. Instead of waiting until the loss was stable, we trained our model



Table 1
Comparison between our method and EmbedRank variations on the three datasets. Precision (P), Recall
(R) and F-score (𝐹1) at 5, 10 and 15 are reported.

N Method
Inspec NUS CDS

P R F1 P R F1 P R F1

5 EmbedRank s2v 40.24 20.05 27.14 18.64 3.95 6.51 11.36 10.97 11.16
EmbedRank++ s2v (𝜆 = 0.55) 40.08 20.40 27.03 13.90 2.94 4.85 8.32 8.03 8.17

EmbedRank++ s2v (𝜆 = 0.0) 18.96 9.65 12.79 4.75 1.04 1.66 5.12 4.94 5.03

docT5keywords 56.34 27.58 37.03 20.89 4.38 7.24 8.95 7.50 8.15

10 EmbedRank s2v 35.40 35.60 35.50 16.44 6.97 9.78 10.05 19.38 13.23
EmbedRank++ s2v (𝜆 = 0.55) 33.02 33.22 33.12 13.05 5.23 7.76 6.84 13.20 9.02

EmbedRank++ s2v (𝜆 = 0.0) 18.82 18.93 18.88 5.76 2.44 3.43 5.08 9.81 6.70

docT5keywords 52.73 43.11 47.44 16.85 6.74 9.63 7.97 10.81 9.17

15 EmbedRank s2v 31.98 46.49 37.90 13.52 8.54 10.47 8.82 25.41 13.09
EmbedRank++ s2v (𝜆 = 0.55) 28.89 41.99 34.23 10.01 6.69 8.44 6.43 18.53 9.55

EmbedRank++ s2v (𝜆 = 0.0) 20.10 29.21 23.81 6.82 4.30 5.28 4.69 13.51 6.70

docT5keywords 50.88 45.86 48.24 16.25 8.32 11.00 7.49 12.51 9.37

for around two days, equivalent to training the model for two epochs.
Finally, we used the same parameters for all datasets concerning the inference phase, with the
same batch size and maximum input and output tokens as the training step.
Concerning EmbedRank, we used its enhanced version, which uses MMR to provide more
diverse results, setting the trade-off between informativeness and diversity to 0.55. We also
decided to use Sent2Vec as the embedding model.

5. Results and discussion

This section reports how docT5keywords performs against EmbedRank when using traditional
exact matching offline evaluation on classic collections together with the results of our user
study.

5.1. Offline evaluation

As shown in Table 1, docT5keywords outperforms EmbedRank on two out of the three datasets
in terms of precision, recall and F1 score. Note that we reproduced the results of EmbedRank on
both Inspec and NUS datasets which led to slight variances from the results reported on [11].
Concerning EmbedRank, we can see that increasing models’ diversity leads to worse results on
every dataset. This fact supports our idea that classic datasets are not yet prepared to correctly
evaluate models where diversity and creativity are involved. On the other hand, we spotted
significant better values of the EmbedRank model on the NUS dataset than the ones originally
reported [11]. These improvements may be related to the choice of the fragment of the document
used for inferring the keywords (we only used the abstract of the articles).



Table 2
Comparison between the keywords generated by each model and the author keywords. (Click on papers’
titles (first row) to access the full PubMed publications.)

Increased cognition connectivity network in major
depression disorder: a FMRI study

Characterization of Chromoshadow
Domain-mediated Binding of Heterochromatin

Protein 1𝛼 (HP1𝛼) to Histone H3

Author keywords EmbedRank docT5keywords Author keywords EmbedRank docT5keywords

Depression,
First episode,
Cognition
connectivity
network,
Functional
magnetic
resonance
imaging,

Resting state

cingulate
gyrus,
parietal

cortex, right
dorsolateral
prefrontal
cortex,

precentral
gyrus, frontal

gyrus,
abnormal
cognition

connectivity
network,

fmri, middle
frontal gyrus,

dlpfc,
cognitive

dysfunction

psychological
distress,
cognitive

impairment,
depression

Chromatin
Remodeling,
Protein/Pro-

tein
Interactions,

Chro-
moshadow
Domain,

Chromatin
Structure,
Histones

non-histone
chromatin
protein,

chromatin
binding, hete-
rochromatin

protein,
chromatin,
histone,

dimerization,
transcrip-
tional

regulation,
residues,
binding
region,
binding

transcription
genetic,

animals, dna
binding

proteins, h3
histones, het-
erochromatin
protein 1
subunit,
genes

regulator,
chromatin,
molecular
sequence
data, dna
binding,

chromatin
research

We can see that docT5keywords gets good results on collections where documents length is
either short or medium. However, although our model also performs better than EmbedRank
on collections where documents size is large, its performance is poor compared with datasets
with smaller documents. We attribute this behaviour of docT5keywords to the input token
limitation of T5 both in training and inference. That limits our approach to only using abstracts
(and even not the complete abstract sometimes) for the task. Therefore, as documents’ abstracts
in short and medium papers represent a more significant part of the document, docT5keywords
performs better. We could try to alleviate this problem either by doing the inference process
in more than one step, taking segments of the abstract, or using alternative Transformer
architectures [27]. We leave these alternatives for future work.
Table 2 shows two examples of the keywords assigned by each model and by the authors to two
CDS-2016 papers. Note that only a maximum of 10 keywords are shown per each method.

5.2. Online study

After showing how each model performs in offline evaluation, we will discuss the results
obtained on the user-based assessment, comparing the scores assigned to each keyword set
type and the correlation between online and offline tasks. Finally, we will also examine the

https://pubmed.ncbi.nlm.nih.gov/25866524/
https://pubmed.ncbi.nlm.nih.gov/25866524/
https://pubmed.ncbi.nlm.nih.gov/22493481/
https://pubmed.ncbi.nlm.nih.gov/22493481/
https://pubmed.ncbi.nlm.nih.gov/22493481/


Table 3
Mean score for each keyword type by assessor.

Keywords type Assessor 1 Assessor 2 Assessor 3 Assessor 4 Mean

Author 2.46 1.98 2.53 2.30 2.32
EmbedRank++ s2v (𝜆 = 0.55) 2.42 1.82 2.60 2.49 2.33
docT5keywords 2.00 1.69 1.87 1.72 1.82
docT5keywords (only creative) 1.62 1.48 1.21 1.17 1.37
docT5keywords (only not creative) 2.58 1.96 2.66 2.79 2.49

agreement between assessors in their evaluations.
Table 3 shows the mean score for each model and author keywords based on the assessors’ eval-
uation. As we may see in the results, EmbedRank performs much better than docT5keywords.
Moreover, EmbedRank gets better results than the author keywords overall, which is quite
impressive.
If we transfer the offline task results to the user evaluation task, it is supposed that EmbedRank
should perform slightly better than our model (docT5keywords) as the difference in the
previous evaluation was as significant. We attribute this variance in the model’s performance
to three aspects of the CDS experiments:

• First, we did not follow an early stopping approach to train the model on MAG that we
used to test on CDS. We merely used two epochs given the larger size of the training
and the implications on training times. This, of course, may result in insufficient model
training.

• Second, we used datasets of different nature to train and test the model. The shift between
collections’ domains may result in worse results, especially when generating creative
keywords.

• Third, offline evaluation follows a binary evaluation approach, while online evaluation
follows a graded relevance approach. That means that offline evaluation penalizes equally
both keywords that are relatively close to the document’s content (even present in it)
but not in the ground truth and creative keywords that are far from representing the
document. Meanwhile, the online evaluation methodology will penalize much more
hallucinated creative keywords than those representing the document but missing in the
golden truth.

Further elaborating on the last point, the concept of “hallucination” [28] stands for the problem
that NLG systems generate texts that say false or not in accordance with the input data. Models
that produce innovative results may generate keywords not present in the ground truth that
either fit the record or not. In this case, as we can see by the relative scores of creative and
not creative keywords generated by docT5keywords, our model tends to produce low-quality
creative keywords. Hallucination is a well-known problem in other areas, such as neural
approaches to image captioning [29]. However, recent work in NLP and NLG systems suggest



Table 4
Pairwise inter-assessor agreement I (A: Assessor).

A1 vs A2 A1 vs A3 A1 vs A4

Raw scores

0 1 2 3 0 1 2 3 0 1 2 3

0 22 40 24 8 0 42 11 17 24 0 28 22 17 27

1 1 35 19 4 1 1 8 23 27 1 4 16 12 27

2 9 48 30 21 2 10 9 24 65 2 4 22 16 66

3 9 124 183 124 3 34 16 47 343 3 11 55 37 337

Cohen’s Kappa Score 0.085 0.253 0.211

Table 5
Pairwise inter-assessor agreement II (A: Assessor).

A2 vs A3 A2 vs A4 A3 vs A4

Raw scores

0 1 2 3 0 1 2 3 0 1 2 3

0 22 6 9 4 0 16 11 7 7 0 28 42 13 4

1 32 28 61 126 1 16 56 43 132 1 6 17 10 11

2 22 8 33 193 2 8 37 28 183 2 7 31 25 48

3 11 2 8 136 3 7 11 4 135 3 6 25 34 394

Cohen’s Kappa Score 0.102 0.113 0.369

that it is also a relevant problem in many of these models applications. For example, it is not
acceptable to label a document with an incorrect keyword in our particular case, as it may
cause misleading results in later tasks. As shown in this recent survey [28], several ideas were
proposed to reduce hallucination following diverse techniques and in different areas of NLG.
The best way to address this problem is to do proper human evaluations, which should spot
this model’s issue (like it did in our user study). Unfortunately, user-based assessments are
costly. Thus, some proposals have been made to adapt classic evaluation datasets to address
this problem [28].
To finish models’ performance comparison, after spotting the hallucination problem of our
model, we decided to compute our model’s scores using only not creative keywords (filtering
the generated keywords which cannot be found in the document). As shown in Table 3, our
model under this scenario outperforms EmbedRank and even author keywords.
Closing this section, we present the results when evaluating the agreement between assessors.
The first step into this task was the pairwise study of the inter-assessor agreement. We sum-
marise the results of this study in Table 4 and Table 5. The "raw scores" section shows the
4x4 confusion matrices for each pair of assessors. These matrices represent how each assessor
responded in contrast to the others. Note that the diagonal of the matrix represents the number
of matches each pair of assessors had.
To finish this pairwise study, we computed Cohen’s Kappa score (𝜅), which allows us to measure
the concordance grade between each pair of assessors. We can see the 𝜅 scores for the pairs
between assessors 1, 3 and 4 are higher than with assessor 2, which means the latter does not



agree much with the others.
To wrap up the user study, we compute the unified concordance grade between all assessors by
a naive mean of the Cohen’s Kappa score per assessors’ pair. We also used Fleiss’ Kappa, an
alternative to Cohen’s Kappa that allows working with more than two assessors to compute the
global concordance rate. Results obtained for these metrics were reasonably similar, having
0.193 for Cohen’s Kappa and 0.177 for Fleiss’ Kappa. However, these results were lower than
expected because of the high disagreement between assessor 2 and the other assessors. If we
ignore assessor 2, the values are as follows: 0.289 for average Cohen’s Kappa and 0.289 for
Fleiss’ Kappa. Having this in mind, we can conclude that evaluations have agreement enough
(maybe ignoring assessor 2) to say that the user study results can be adequately considered.

6. Conclusions and future work

This paper explored the potential of text-to-text transfer transformers (T5) in the keyword
labelling for scientific documents task, comparing it to a state-of-the-art model like EmbedRank.
Our model, docT5keywords, outperforms EmbedRank on classic datasets having an outstand-
ing performance on collections formed by short and medium-size papers.
We also demonstrated the problems of classic datasets when evaluating models which rely on
creativity by showing the performance decrease of our model in a user-based evaluation. This
evaluation showed the hallucination problems that NLG models may have. Despite this, we
have to highlight the good performance figures of our model to extract the best keywords from
the text.
In our future work, we plan to delve into the hallucination issue that our model has and work
on correctly assessing creative models in an offline task.
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