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Abstract  
The work presents a study of three new extragradient-type algorithms for solving variational 

inequalities in a Banach space. Two algorithms are natural modifications of Tseng method and 

“Extrapolation from the Past” method for problems in Banach spaces, based on the generalized 

Alber projection. The third algorithm, called the operator extrapolation method, is a variant of 

forward-reflected-backward algorithm, where the generalized Alber projection is also used 

instead of the metric projection onto the admissible set. Advantage of the latter algorithm is 

only one calculation of the operator value and the generalized projection onto the feasible set 

on each iteration. For variational inequalities with monotone Lipschitz operators acting in a 2-

uniformly convex and uniformly smooth Banach space  1O


 estimates for the complexity in 

terms of the gap function are proved.  
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1. Introduction 

Areas of operations research, data analysis, and mathematical physics produces many problems, 

which can be written in the form of variational inequalities [1–5]. Prominent example is the saddle 

problem that plays an important role in mathematical economics: 

 min max ,
p P q Q

L p q
 

,  

where :L P Q R  is a smooth convex-concave function, 
nP R , mQ R – convex closed sets, 

which can be formulated as 

find x C : , 0Ax x x   x C  ,  

where  , n mx p q R   , n mC P Q R    , and mapping : n mA P Q R    has the next form: 

 

 

1

2

,

,

L p q
Ax

L p q

 
  
  

. 
 

Let's recall another important example related to ranking and search on the Web. The problem of 

finding the PageRank vector can be rewritten as follows  

min
nx

Px x


 , 

where P  is an n n  column-stochastic matrix,  1
: 1, 0

nn n

i ii
x R x x


     , and 

1,...,
max i
i n

p p
 
 . 

And the minimization problem can be transformed into a saddle point problem 

 
1

1
min max ,

n yx
y Px x


 , 
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where 
1 1

n

ii
p p


 . The last saddle point problem can be rewritten as a bilinear minmax problem on 

the product of standard simplexes 

 
2

min max ,
n nx v

Jv Px x
 

 , 

where J  is an 2n n -matrix of the form  I I , where I  is the identity matrix. We got the following 

variational inequality problem 

find nx , 2nv  :       * *, , 0P I J v x x J I P x v v        nx   2nv  . 

Note that often nonsmooth optimization problems can be effectively solved with algorithms for 

variational inequalities, if former are reformulated as saddle point problems [6]. With the growing 
popularity of generative adversarial networks (GANs) and other adversarial learning models, a steady 

interest in algorithms for solving variational inequalities has arisen among specialists in the field of 

machine learning [7, 8]. 
The most widely known method for solving variational inequalities is so called Korpelevich 

extragradient algorithm [9]. Many publications are devoted to the study of this algorithm and its 

modifications [6, 10–16].  
An effective modern version of the extragradient method is Nemirovski mirror-prox method [6]. 

This method can be interpreted as a variant of the extragradient method with projection understood in 

the sense of Bregman divergence. One more interesting method of dual extrapolation for solving 

variational inequalities was proposed by Nesterov [10]. Adaptive variants of the Nemirovski proximal 
mirror method were studied in [11–13].  

In the early 1980s, Popov proposed a modification of the classical Arrow-Hurwitz algorithm for 

finding saddle points of convex-concave functions [17]. Recently Popov's algorithm for variational 
inequalities has become well known among machine learning specialists under the name “Extrapolation 

from the Past” [7, 8].  

A modification of Popov's method for solving variational inequalities with monotone operators was 

studied in [18]. And in the article [19], a two-stage proximal algorithm for solving the equilibrium 
programming problem is proposed, which is an adaptation of the method [17] to the general Ky Fan 

inequalities. The algorithm from [19] uses Bregman divergence instead of Euclidean distance. Further 

development of this circle of ideas led to the emergence of the so-called forward-reflected-backward 
algorithm [20]: 

  1 1 1n C n n n n n nx P x Ax Ax Ax       ,  

and similar method [21]: 

   1 1 1n C n n n n n nx P x Ax Ax Ax       .  

Recently, using theory of Banach spaces and constructions of their geometry [26–30], progress has 

been achieved in the research of algorithms for problems above in Banach spaces [3, 23–25]. Extensive 

material on this topic is contained in the book [3]. The next algorithm for solving variational inequalities 
in a 2-uniformly convex and uniformly smooth Banach space was proposed in [22]: 

 1

1n C n nx J Jx Ax

   , 
 

where С  is Alber generalized projection operator [23], 0  , J  is normalized dual mapping from 

E  to *E . This method weakly converges for inversely strongly monotone (cocoercive) operators 
*:A E E . Shehu [24] has recently extended Tseng’s result to 2-uniformly convex and uniformly 

smooth Banach spaces. He proposed the next weakly converging process: 

 

  

1

1

1

,

,

n C n n n

n n n n n

y J x Ax

x J Jy Ay Ax











   


  

 

 

where 0n   is either chosen based on operator A  Lipschitz constant value or calculated with a kind 

of linear search procedure.  
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It should be noted that the early research on algorithms for solving variational inequalities was 
usually concentrated on the study of convergence of algorithms and related questions of an asymptotic 

nature [13–15, 17, 19–25].  

More recent studies are focused on estimating the number of iterations of algorithms required to 

obtain an approximate solution of a given quality [6, 8, 10–12, 16, 18]. This direction of research was 
initiated by the work of Nemirovski [6], where mentioned earlier mirror-prox algorithm was proposed 

and  1O


 complexity estimate in terms of the gap function was obtained for the class of problems with 

monotone Lipschitz continuous operator.  

A fundamental question arose about the construction of an algorithm with  1O


 complexity 

estimation and single computation of the operator's value and projection onto the feasible set at the 

iteration step. Algorithm [20] answers this question in the case of a Hilbert space. 
This work is devoted to the study of three new extragradient type algorithms for solving monotone 

variational inequalities in a Banach space. The first two algorithms are natural modifications of Tseng's 

method [14] and “Extrapolation from the Past” method [18] for problems in Banach spaces using the 
generalized Alber projection. Iteration of each of these algorithms is more economical than iteration of 

the extragradient method, because the first one uses single projection on iteration, and the second one 

needs only one operator calculation. The third algorithm, called operator extrapolation method, is a 

variant of the forward-reflected-backward algorithm, proposed by Malitsky and Tam [20]. Operator 
extrapolation method also uses generalized Alber projection onto the feasible set. An attractive feature 

of the algorithm is only one computation at the iterative step of the operator value and the generalized 

projection. The  1O


 complexity estimations are proved in terms of the gap function for variational 

inequalities with monotone Lipschitz operators acting in a 2-uniformly convex and uniformly smooth 
Banach space. 

The article has the following structure. Section 2 contains the necessary information on the geometry 

of Banach spaces. Section 3 is devoted to variational inequalities. The algorithms are described in 

Section 4. The formulations and proofs of complexity estimations are presented in Section 5. 

2. Preliminaries 

Let us remind some basic terms and results from Banach spaces geometry, which are needed for us 

to formulate and prove our results [23, 25–30]. 

Everywhere later E  is a real Banach space with norm  , E  – dual space for E , ,x x  – value 

of functional x E   on element x E . Let’s also denote 

  norm in E . 

Let  : 1ES x E x   . Banach space E  is called strictly convex, if for all , Ex y S  and x y  

we have 1
2

x y
 . Convexity module of E  is defined as  

  inf 1 : , ,
2

E E

x y
x y S x y  

 
     

 
,  0,2  . 

 

Banach space E  is called uniformly convex, if   0E     0,2   [26, 27]. Banach space E  is 

called 2-uniformly convex, if exists 0c   such that   2

E c    for all  0,2   [27]. Obviously 2-

uniformly convex space is uniformly convex. It’s known that uniformly convex Banach space is 

reflexive [26-28]. 

Banach space E  is called smooth, if 

0
lim
t

x ty x

t

 
                                                                          (1) 

exists for all , Ex y S  [26]. Banach space E  is called uniformly smooth if limit (1) exists uniformly 

for , Ex y S  [26]. There is a duality between convexity and smoothness of E and it’s dual space E  
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[26,27]: E  – strictly convex   E  – smooth; E  – smooth   E  – strictly convex; E  – uniformly 

convex  E  – uniformly smooth; E  – uniformly smooth  E  – uniformly convex. The first two 

implications can be reversed for reflexive space E . 
Smoothness module of space E  is defined as 

  sup 1: ,
2

E E

x ty x ty
t x y S

   
   

 
 0t  . 

 

Uniform smoothness of Banach space E  is equivalent to the relation   1

0lim 0t E t t 

   [27, 28]. 

Banach space E  is called 2-uniformly smooth, if exists 0c   such that   2

E t ct   for all 0t   [27, 

28]. Banach space E  is 2-uniformly convex if and only if E  is 2-uniformly smooth [27–29]. 

It is known, that Hilbert spaces and spaces pL  (1 2p  ) are 2-uniformly convex and uniformly 

smooth ( pL  are uniformly smooth for  1,p   and 2-uniformly smooth for  2,p  ) [27, 28]. 

Multivalued mapping : 2EJ E


 , which has the form 

 22
: ,Jx x E x x x x   


    , 

 

is called normalized dual mapping [27, 28].  

For Hilbert space J I (identity). It is known [23, 27, 28] that: if space E  is smooth, then mapping 

J is single-valued; if E  is strictly convex, then J  is injective and strictly monotone; if space E  is 

reflexive, then mapping J  is surjective; if E  is uniformly smooth, then J  is uniformly continuous on 

bounded subsets of E . The explicit form of the mapping J  for spaces p , pL  and m

pW  (  1,p  ) is 

given in [3, 23, 27, 28]. 

Let E  be a smooth Banach space. Let’s consider functional, introduced by Y. Alber in [23]: 

 
2 2

, 2 ,d x y x Jy x y     , .x y E   
 

The next useful 3-point identity follows from the definition above: 

     , , , 2 ,d x y d x z d z y Jz Jy x z       , , .x y z E   
 

If space E  is strictly convex, then for ,x y E  we have  

 , 0d x y   x y . 

Lemma 1 ([25]). Let E  be a 2-uniformly convex smooth Banach space. Then for some 1    

 
21

,d x y x y


   ,x y E  . 
 

For Banach spaces p , pL  and m

pW  (1 2p  ) we have 
1

1p
 


 [29, 30]. For a Hilbert space, 

inequality from Lemma 1 becomes identity with 1  . 

Lemma 2 ([29]). Let E  be a 2-uniformly smooth Banach space. Then for some 0   

2 2 2
2 ,x y x Jx y y      ,x y E  . 

 

For Banach spaces p , pL  and m

pW  ( 2 p   ) we have 1p    [29, 30]. For a Hilbert space, 

inequality from Lemma 2 becomes identity with 1  . 
Let K  be a non-empty closed and convex subset of a reflexive, strictly convex and smooth space 

E . It is known [23] that for each x E  there exists unique point z K  such that 

   , inf ,
y K

d z x d y x


 . 
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This point z  is denoted by K x , and the corresponding operator :K E K   is called generalized 

projection of E  onto K  (generalized Alber projection) [23]. Note that for a Hilbert space K  

coincides with the metric projection onto the set K . 

Lemma 3 ([23]). Let K  – closed and convex subset of a reflexive, strictly convex and smooth space 

E , x E , z K . Then  

, 0Kz x Jz Jx y z y K       . 
 

Inequality from Lemma 3 is equivalent to the next one [23]: 

     , , ,K Kd y x d x x d y x y K      . 
 

Remark 1. The main element of the algorithms studied below is the calculation of a new point 

 1

Kx J Jx x     

by known x E  and x E  . From Lemma 3 and mentioned 3-point identity follows the inequality 

fundamental for the analysis of algorithms. 

     , , ,d y x d y x d x x   2 ,x y x y K     . 
 

Basic information about monotone operators and variational inequalities in Banach spaces can be 

found in [1, 3, 23, 28]. 

3. Variational inequalities 

Let E  be a 2-uniformly convex and uniformly smooth Banach space, C  is a non-empty subset of 

space E , A  is an operator, acting from E  to *E . Let’s consider the variational inequality: 

find x C :   , 0Ax y x    y C  .                                              (2)   

Let’s denote set of solutions of (2) as S .  

We need the next assumptions: 

 set C E  is convex and closed;  

 operator *:A E E  is a monotone and Lipschitz continuous with constant 0L   on C ; 

 set S  is non-empty. 

Let’s consider dual variational inequality: 

find x C :   , 0Ay x y    y C  .                                            (3) 

We will denote set of solutions of (3) as dS . Note that set dS  is convex and closed. Inequality (3) 

is sometimes called weak or dual formulation of (2) (or Minty inequality), and solutions of (3) are called 

weak solutions for (2). For monotone operator A  we always have 
dS S . In our setting we have 

dS S  [1]. 

Variational inequality (2) can be formulated as a fixed-point problem [23]: 

 1

Cx J Jx Ax  ,                                                          (4) 

with 0  . Formulation (4) is useful, as it leads to obvious algorithmic idea. Procedure 

 1

1n C n nx J Jx Ax

                                                       (5)  

was studied in [22] for inversely strongly monotone operators *:A E E . However, for Lipschitz 

continuous monotone operators, algorithm (5) generally does not converge. Numerous modifications 

of the extragradient algorithm [6, 9–16,24] can be used for such conditions. 
In this paper, we focus on three algorithms: the Tseng method [14], the extrapolation from the past 

method [18] and more recent forward-reflected-backward algorithm [20].  We consider their natural 
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modifications for problems in Banach spaces using Alber generalized projection instead of the metric 
projection. 

The goal is to estimate the number of iterations of algorithms necessary to obtain an approximate 
solution of a given quality. The quality of approximate solution x C  of variational inequality (2) will 
be measured using the non-negative gap function [6] 

 Gap sup ,
y C

x Ay x y


  .                                                          (6) 

Obviously, for definition (6) to be correct, feasible set C  should be bounded. 
The next lemma holds: 

Lemma 4. Let operator A  be monotone. If x C  is a solution of (2), then  Gap 0x  . And vice 

versa, if for some x C  we have  Gap 0x  , then x  is a solution of (2). 

Everywhere below we assume, that set C E  is bounded. 

4. Algorithms 

Let us study the next iterative extragradient-type algorithms for finding solutions of variational 
inequality problem (2). 

Algorithm 1. Modified Tseng method ([24]).  

Select 1x E , 0n  . Set 1n  . 

1. Calculate 

 1

n C n n ny J Jx Ax  .  

2. If n ny x , then STOP. Else calculate 

            1

1n n n n nx J Jy Ay Ax

    .  

3. Set : 1n n   and go to step 1. 
Algorithm 1 is a modification of forward-backward-forward method by P. Tseng [14] for problems 

in Banach spaces, where generalized Alber projection is used instead of the metric one.  
The weak convergence of the Algorithm 1 in 2-uniformly convex and uniformly smooth Banach 

space is proved in [24].  
Note that in the case of a Hilbert space and without constraints, the Algorithm 1 coincides with the 

Korpelevich extragradient method. 
Algorithm 2. Extrapolation from the Past. 

Select 1 0x y E  , 0n  . Set 1n  . 

1. Calculate 

 1

1n C n n ny J Jx Ay

  .  

2. Calculate 

 1

1 ,n C n n nx J Jx Ay

     

if 1n n nx y x   , then STOP. Else set : 1n n   and go to step 1. 

Algorithm 2 is a modification of L.D. Popov algorithm [17] for problems in Banach spaces using 
generalized Alber projection operator instead of the metric one.  

The convergence of Algorithm 2 in a Hilbert space and in Euclidean space with Bregman divergence 
instead of Euclidean distance is proved in [18, 19].  

Algorithm 3. Operator extrapolation. 

Select 0 1x x E  , 0n  . Set 1n  . 

1. Calculate 

  1

1 1 1n C n n n n n nx J Jx Ax Ax Ax 

      .  

2. If 1 1n n nx x x   , then STOP. Else set : 1n n   and go to step 1. 

Algorithm 3 is a modification of modern "forward-reflected-backward algorithm" [20] for 
variational inequalities in Banach spaces. 

Remark 2. Some text Algorithm 3 can be represented in form, which is similar to Algorithm 2: 
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 

  

1

1 1

1

1 1 1

,

.

n C n n n

n n n n n

x J Jy Ax

y J Jx Ax Ax







 



  

   


  

 

 

This formulation indicates conceptual similarity of Algorithms 1 and 3.  More precisely, the operator 
extrapolation algorithm is obtained from Algorithm 1 in the same way, as Algorithm 2 can be obtained 
from the analogue of the extragradient algorithm 

 

 

1

1

1

,

.

n C n n n

n C n n n

y J Jx Ax

x J Jx Ay











   


  

 

 

Now let us turn to the analysis of the algorithms, namely, to the estimation of the number of iterations 
required to obtain an approximate solution of the variational inequality (2) with a given value of the 
gap function. 

5. Analysis 

We will prove, that Algorithms 1 – 3, mentioned above, require  LDO


 iterations to obtain feasible 

point x C , for which  Gap x  , where 0   and  ,sup ,a b CD d a b   . 

Theorem 1. Let  nx ,  ny  are sequences, generated by Algorithm 1. Suppose that  10, .n L
 


 

Then for the sequence of Cesaro means 1

1

N

n nn
N N

nn

y
z













 the next inequality holds 

   1

1

1
Gap sup ,

2
N y CN

nn

z d y x









. 

 

Proof. For arbitrary y C we have 

           1

1, ,n n n n nd y x d y J Jy Ay Ax

      

   
22

*
2 ,n n n n n n n ny Jy Ay Ax y Jy Ay Ax          

             
22

*
2 , 2 ,n n n n n n n ny Jy y Ay Ax y Jy Ay Ax          

                            
22

*
, 2 ,n n n n n n n n nd y y y Ay Ax y Jy Ay Ax        . 

 

Using Lemma 2, we get an estimation 

   
22

1 *
, , 2 ,n n n n n n n n nd y x d y y Ay Ax y y Ay Ax        .                (7) 

Let’s use 3-point identity to transform  , nd y y  

     , , , 2 ,n n n n n n nd y y d y x d x y Jx Jy y x     .  

and now use this in (7) 

                    1, , ,n n n nd y x d y x d x y     
22

*
2 , 2 ,n n n n n n n n n nJx Jy y x Ay Ax y y Ay Ax         . 

 

From Lipschitz continuity of A , equality    , 2 , ,n n n n n n n nd x y Jy Jx y x d y x     and Lemma 1 

we have 

       2 2

1, , 1 ,n n n n nd y x d y x L d y x      

                                                    2 ,n n n n n n nJx Jy Ax Ay y y      . 

Identity  

 1

n C n n ny J Jx Ax   

is equivalent to inequality  

, 0n n n n nJx Ax Jy y y    . 
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So, we have 

       2 2

1, , 1 ,n n n n nd y x d y x L d y x     2 ,n n nAy y y  .  

From monotonicity of A  operator it follows 

       2 2

1, , 1 ,n n n n nd y x d y x L d y x     2 ,n nAy y y  .                            (8) 

Let’s transform (8) as  

       2 2

12 , , , 1 ,n n n n n n nAy y y d y x d y x L d y x      .                             (9) 

Summing (9) over n  from 1 to N , we get 

1

2 ,
N

n n

n

Ay y y


   1,d y x , 
 

which leads to 

 1

1

1
, ,

2
N N

nn

Ay z y d y x




 


,                                                            (10) 

where 1

1

N

n nn
N N

nn

y
z













. Passing in (10) to the supremum over y C , we obtain 

   1

1

1
Gap sup ,

2
N y CN

nn

z d y x









, 

 

which was required to prove. ■ 

Corollary 1. Let  nx ,  ny  are the sequences, generated by Algorithm 1 with 1

2n L
  . Then 

for the sequence of means 1

1

N

N nN n
z y


   the next inequality holds: 

 
 1sup ,

Gap
y C

N

L d y x
z

N

 
 . 

 

 
For algorithm 2 we have the next result. 

Theorem 2. Let  nx ,  ny  are the sequences, generated by Algorithm 2. Let  2 10,n L
    . Then 

for the Cesaro means sequence 1

1

N

n nn
N N

nn

y
z













 the next inequality holds: 

 
   1 1 1 0

1

sup , ,
Gap

2

y C

N N

nn

d y x L d x y
z













. 

 

Proof. For arbitrary y C we have 

     1 1, , ,n n n nd y x d y x d x x   12 ,n n nAy y x   .  

From monotonicity of A  follows 

1 1 1, , , , ,n n n n n n n n n n nAy y x Ay y y Ay y x Ay y y Ay y x           .  

So, we have 

     1 1, , ,n n n nd y x d y x d x x   12 , 2 ,n n n n n nAy y x Ay y y       

   1, ,n n nd y x d x x  1 12 ,n n n nAy y x      

1 12 , 2 ,n n n n n n nAy Ay y x Ay y y       .           (11) 

Let’s write 1 12 ,n n n nAy y x    as  

1 1 1 12 , 2 ,n n n n n n n n n nAy y x Jx Ay Jy x y          12 ,n n n nJy Jx x y  .  

From the inclusion 1nx C   and Lemma 3 follows inequality 

1 1, 0n n n n n nJx Ay Jy x y      .  

As a result, we have 
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1 12 ,n n n nAy y x    12 ,n n n nJy Jx x y        1 1, , ,n n n n n nd x x d x y d y x   .       (12) 

Estimating the right side of (11) with (12), we come to the next inequality: 

 1, nd y x        1, , ,n n n n nd y x d x y d y x    

1 12 , 2 ,n n n n n n nAy Ay y x Ay y y       .              (13) 

Now let’s estimate term 1 12 ,n n n n nAy Ay y x    . We get 

1 1 1 1 1 1*
2 , 2 2n n n n n n n n n n n n n n nAy Ay y x Ay Ay x y L y y x y                 

2 2

1 1

1 1
2

2 2 2
n n n n nL y y x y  

 
     

 
 

  2 2 2

1 1

2
2 2 2

2 2

n n
n n n n n n

L L
y x x y x y

 
          

  2 2 2

1 11 2 2n n n n n n nL y x x y x y         .          (14) 

Here we have used auxiliary inequalities  

2

2

2 21
2 2

ab a b


  ,    2 2 22 2 2a b a b    . 

 

Estimating norms in (14) using inequality from Lemma 1, we get 

 1 1 12 , ,n n n n n n n nAy Ay y x L d x y        

     11 2 , 2 ,n n n n n nL d y x L d x y     .       (15) 

Using (15) in (13), we get 

 1, ny x             1, 1 2 , 1 1 2 ,n n n n n n nd y x L d x y L d y x        

 1,n n nL d x y   2 ,n nAy y y  .      (16) 

Let’s rewrite (16) as 

2 ,n nAy y y       1, ,n n n nd y x L d x y       1 1 1, ,n n n nd y x L d x y     

         1 11 2 , 1 1 2 ,n n n n n n nL d x y L d y x          .   (17) 

Summing (17) over n  from 1 to N , we get 

1

2 ,
N

n n

n

Ay y y


     1 1 1 0, ,d y x L d x y , 
 

and so 

   1 1 1 0

1

, ,
,

2
N N

nn

d y x L d x y
Ay z y







 


,                                     (18) 

where 1

1

N

n nn
N N

nn

y
z













. Passing in (18) to the supremum over y C , we obtain 

 
   1 1 1 0

1

sup , ,
Gap

2

y C

N N

nn

d y x L d x y
z













, 

 

which was required to prove. ■ 

Corollary 2. Let  nx ,  ny  are sequences, generated by Algorithm 2 with 1
3n L

  . Then for the 

means sequence 1

1

N

N nN n
z y


   the next inequality holds: 

 
   3 1

1 1 02 6
sup , ,

Gap
y C

N

L d y x d x y
z

N

  
 . 

 

 
Let’s study Algorithm 3. 
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Theorem 3. Let  nx  be a sequence, generated by Algorithm 3. Let  1
2

0,n L
   . Then for the 

sequence of Cesaro means 
11

1

1

N

n nn
N N

nn

x
z














 the next inequality holds 

 1Gap Nz   1

1

1
sup ,

2
N

y C
nn

d y x
 






. 

 

Proof. For sequence  nx , generated by algorithm 3, the next inequality holds 

 1 1 12 ,n n n n n nAx Ax Ax y x              1 1, , ,n n n nd y x d x x d y x       y С  .   (19) 

Let’s rewrite (19) the next way: 

   1, ,n nd y x d y x   1 12 ,n n nAx x y    1 12 ,n n n nAx Ax x y       

1 12 ,n n n nAx Ax x y      1 1 12 ,n n n n nAx Ax x x      1,n nd x x .       (20) 

Summing (20) over n  from 1 to N , we get 

   1 1, , Nd y x d y x    

1 1

1

2 ,
N

n n n

n

Ax x y  



  1 12 ,N N N NAx Ax x y       

  1 1 1 1

1

2 , ,
N

n n n n n n n

n

Ax Ax x x d x x    



    .  (21) 

Using Lipschitz continuity of A  and Lemma 1 we get 

  1 1 1 1

1

2 , ,
N

n n n n n n n

n

L Ax Ax x x d x x    



      

2 2 2

1 1 1 1 1 1

1

1 1 1
2

2 2 2

N

n n n n n n n n n N N

n

L x x x x x x x x x x
  

     



 
           

 
  

2

1

1

2
N Nx x


  . 

Using this estimation in (21), we get 

   1 1, , Nd y x d y x  
1 1

1

2 ,
N

n n n

n

Ax x y  



 1 12 ,N N N NAx Ax x y       
 

2

1

1

2
N Nx x


    

 

1 1

1

2 ,
N

n n n

n

Ax x y  



  1 12 N N N NL x x x y     
2

1

1

2
N Nx x


    

 

1 1

1

2 ,
N

n n n

n

Ax x y  



 
2

1N NL x y   . 
 

So, we can come to inequality 

1 1

1

2 ,
N

n n n

n

Ax x y  



    
2

1 1 1, ,N N NL x y d y x d y x          y С  .     (22) 

Using monotonicity of A , we get 

1 1 1 1

1 1 1

, , ,
N N N

n n n n n n N

n n n

Ax x y Ay x y Ay z y     

  

 
     

 
   ,         (23) 

where 
11

1

1

N

n nn
N N

nn

x
z














. Using estimation (22) in (23), we come to inequality 

1

1

2 ,
N

n N

n

Ay z y 



 
 

 
  

2

1 1

1
,N NL x y d y x




 
    
 

    y С  , 
 

from which follows 
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 1 1Gap sup ,N N
y C

z Ay z y 


   
1

1

1

2 sup ,
N

n
y Cn

d y x





 
  
 
 , 

 

which was required to prove. ■ 

Corollary 3. Let  nx  be a sequence, generated by Algorithm 3 with 
1

2
n

L



 . Then for the means 

sequence 1
1 11

N

N nN n
z x 

   the next inequality holds 

 1Gap Nz   1sup ,
y C

L
d y x

N





 . 
 

6. Conclusions 

Three new extragradient-type algorithms for solving monotone variational inequalities in a Banach 
space are studied in the paper. 

The first two algorithms are natural modifications of Tseng's method [14] and “Extrapolation from 
the Past” method [18] for problems in Banach spaces using generalized Alber projection. Iteration of 
each of these algorithms is more economical than iteration of the extragradient method. The first 
algorithm has less projections, the second has less operator calculations. 

The third algorithm, called the method of operator extrapolation, is a variant of the Malitsky–Tam 
forward-reflected-backward algorithm [20]. Generalized Alber projection is used instead of the metric 
projection onto feasible set. An attractive feature of the algorithm is only one computation of the 
operator value and of the generalized projection onto the feasible set at the iterative step. For variational 
inequalities with monotone Lipschitz operators acting in a 2-uniformly convex and uniformly smooth 

Banach space,  1O


 complexity bounds are proved in terms of the gap function. 

Let us point out two actual questions, related to the current research. First, fast and stable algorithms 
for computing generalized Alber projection for a wide range of sets are needed to efficiently apply 
algorithms to nonlinear problems in Banach spaces. Second, all results were obtained for the class of 

2-uniformly convex and uniformly smooth Banach spaces, which does not contain spaces pL  and m

pW  

( 2 p   ), which are important for applications. It is highly desirable to get rid of this limitation. 
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