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Abstract  
Decision making processes in the modern world are based on the solutions of optimization 
problems. The variety of such problems, the corresponding objective functions and areas for 
finding optimal solutions is the reason for the development of new and improvement of the 
known optimization methods. This paper proposes a new method of fractal structuring, which 
is an evolutionary method from the category of soft computing methods. A feature of this 
method is a quick and in-depth study of the area in which the local extremum is located and 
the global optimum can also be found. A fractal structuring method has been developed for 
finding the optimum for one-dimensional, two-dimensional and n-dimensional objective 
functions. The first experiments were carried out, which prove the prospects and effectiveness 
of this method, and also indicate the possibility of its improvement.  
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1. Introduction 

A large number of modern practical problems belong to the class of constraint satisfaction problems 
[1]. The target functions in such tasks are, as a rule, undifferentiated and (or) poly-extremal 
dependencies.  The use of classical methods of continuous optimization and in many cases discrete 
optimization is impossible [2]. Сombinatorial optimization methods, evolutionary algorithms, etc - are 
used to solve such tasks. The functional dependencies can be set tabularly or algorithmically. In this 
case evolutionary algorithms are most often preferred.  

Exactly, the use of this algorithms does not require strict target functions constraints, but does not 
guarantee the finding of a global optimum, although according to certain conditions there is a 
probability convergence. The obtained solutions are considered suboptimal. 

Historically, the first methods of evolutionary optimization were genetic algorithms and 
evolutionary strategies [3, 4]. These methods allowed to consider optimization problems differently and 
expanded the subject base of optimization technologies. Also, these methods were based on the ideas 
of natural evolution. In particular, genetic algorithms traditionally use the principle that the best parents 
tend to have better children. Two parental potential solutions are involved in generating potential 
solutions-offspring. In evolutionary strategies, potential offspring solutions are generated around a 
single parent solution. This is the main difference between genetic algorithms and evolutionary 
strategies in the generation of offspring solutions. 

Our hypothesis is that more potential parent solutions that will be involved in generating potential 
successive solutions will improve the accuracy of the solutions and speed up the convergence of the 
optimum search algorithms. This progress will be achieved by in-depth study of potential promising 
solutions and by reducing the number of algorithm steps in non-perspective directions. 

2. A brief description of modern applications of evolutionary technologies 

John Holland, used the ideas of genetic algorithm to study and optimize the game with one-armed 

and two-armed bandits (slot machines). H.-P. Schwefel and Ingo Rechenberg tried to get the part with 
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the least resistance in the wind tunnel. The first results obtained using evolutionary methods testified to 

the prospects of this area. And the No Free Lunch Theorem [5] became the theoretical basis for the 

development of a set of optimization methods, each of which showed the best results in solving certain 

problems with a certain structure of the source data. 

Modern technologies of evolutionary modeling, as a rule, are focused on the further development of 

the theory of evolutionary optimization and its practical application. In the first direction, we will pay 

attention to only a few known results. In particular, in the field of evolutionary algorithms is the famous 

school of Kalyanmoy Deb, a famous Indian professor. Recent studies of this school are aimed at solving 

multicriteria optimization problems using additional options that allow you to solve relevant problems 

more accurately and quickly [6, 7]. An excellent overview of multicriteria optimization methods using 

such options in evolutionary algorithms, in particular with the choice of informative factors and data 

normalization methods, is proposed in [8, 9]. 

Hybrid evolutionary methods, which combine technologies of fuzzy set theory, particle swarm 

optimization and genetic algorithms, are proposed in [10]. Two more works are devoted to the 

development of new methods of evolutionary optimization: the evolutionary method based on centers 

of mass [11] and the method of deformed stars [12]. The latter method is based on the hypothesis of 

involving more potential parent solutions in the generation of potential descendant solutions, which 

makes the search for the global optimum more informative, as well as a deeper study of the perspectives 

of promising potential solutions. 

Thus, the results of this brief review indicate the continued development of the theory of 

evolutionary optimization and practical applications of evolutionary methods. 

3. The method of fractal structuring in one-dimensional case 

The known optimization problem in one-dimensional case can be mathematically formulated as 

follows: 

maximize ( )f x  

                                                           subject to x D R                                                               (1)   

where x  is a solution in the feasible region D , and D  is some segment [ , ]a b .    

There are no restrictions on the function ( )f x , in the general case. The function ( )f x  can be set 

analytically, tabularly or algorithmically. The proposed method contains such steps. 

Step 1. Initialize the method parameters: , 0, 7 , 1, .in t m i n    { n  is the number of potential 

parenting solutions in the population, t  is the iteration number, im  is the number of solutions-

offsprings of the i-th parent solution}. 

Step 2. Generate n  uniform distributed potential solutions ix of problem (1) on the segment 

[ , ], 1,a b i n  (population tP ). 

Step 3. For each solution ix , we find the value ( ), 1,if x i n . 

Step 4. Create solutions-offsprings , 1, , 1, , ( (0, ))i ij j

i i i i i ix j m i n x x N      for each ix , where 

( (0, ))iN   is the normally distributed random variable with mean 0 and standard deviation i . 

Step 4.1. 0, 0, 0, 0.L R L Rs s m m     

  Step 4.2. For each 1, :i ij m  

Step 4.2.1. If ij

i ix x , then { , 1}ij

L L i L Ls s x m m    , otherwise  

{ , 1}.ij

R R i R Rs s x m m     

  Step 4.3. 
* *1 1

, .
L RL R

L R

x s x s
m m

   

Step 4.4. If * *( ) ( )
L R

f x f x , then  *

L

H

ix x , else * .
R

H

ix x  
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Step 4.5. Write H

ix to the temporary population of an solutions-offsprings .test

tP  

Step 5. Write the elements tP  and test

tP to the population in

tP , find the values of the function f  for 

the elements of the population test

tP , arrange the elements of the population in

tP in descending order of 

the values of the function f  and determine the n  prospective potential solutions. 

Step 6. If the stop condition is not fulfilled, the iterative process continues (return to the step 3). If 

the stop condition is satisfied, then the value of the potential solution, which corresponds to the 

maximum value of the function will be the solution of the problem (1). 

Traditionally, in a classic evolutionary strategy, each potential parental solution generates the same 

number of potential solutions, no matter how promising that solution may be. Next, a new procedure 

will be proposed, according to which not all parent solutions will be able to generate child solutions. 

The number of descendant solutions in all parental solutions will be different. 

4. The method of fractal structuring in two-dimensional case 

In two-dimensional case the known search problem is considered  

maximize 1 2( , )f x x  

                                                     subject to 
2

1 2( , )x x x D R                                                          (2)   

where x  is a solution in the feasible region D , and D  is some rectangle 

1 2 1 1 2 2 1 2

1 2 1 2, , , .

{( , ) | [ ; ], [ ; ]},

p p q q R

D x x x p p x q q



  
  

The properties of the function f  are the same as in the previous one-dimensional case. The 

corresponding method will contain steps like this. 

Step 1. Initialize the parameters max1, , 0, .L T T t n    L is a parameter of the method, T  in 

similar methods plays the role of temperature and is initially equal to a large number maxT , t  is the 

iteration number, n  is the number of potential parenting decisions in the population. 

Step 2. Generate n  points-solutions 1 1 2 2

1 2 1 2 1 2{( , ),( , ),...,( , )}n n

tP x x x x x x  uniformly distributed in D . 

Step 2.1. Find the values of the function f  at points tP  and obtain 1 2, ,..., .nf f f  

Step 3. Plot virtual circles with centers at the points tP  and radiuses 1 2, ,..., .nr r r  We will require that 

the circles will be placed completely in .D  All radiuses must initially be considered as equal to each 

other, 2 1 2 1min{( ),( )} / .r p p q q n    

Step 4. Let .
1

L
L

t



 For each thi  point from tP  we generate 7  solutions-offsprings. If 

1 2( , )i ix x -   

potential parent solution, coordinates of the solution-offspring are 

1 1 1

2 2

2 2 1 1

( 3 ; 3 ),

( ) ,

{ 1;1}, 1,7, 1, .

k

k k

H i i

i i

H Hi i

i

x random x Lr x Lr

x x r x x

random k i n





  

   

   

 

Parental solutions and solutions-offsprings with coordinates 1 2( , ), 1,7k kH H
x x k   are recorded to the 

population .vP  

The population vP consists of 7 8n n n  potential solutions (fig.1). Arrange them in descending 

order of the objective function values.  
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Step 4 aims to explore the area around the potential solution of the optimization problem. This 

approach does not protect us from hitting the local extreme. To prevent this, we suggest the following 

steps: 

Step 5. Select 2n  best (upper) potential solutions from the population vP . Let's form 2n  pairs,

, {1,2,..., },i j random m i j   and get 2n  new potential solutions: 

1 1 2 2
1 ( , ), 1,2 .

2 2

i j i j
l x x x x

x l n
 

   

If a pair of promising solutions are close together, their average value will allow you to explore more 

deeper the area around these solutions (it is assumed that they are at short distances from each other) 

and possibly find a better solution.  

If the solutions are far from each other, then finding their average value is an attempt to expand the 

search area and, as in the previous case, it is possible to find a better solution. 

Step 6. Select the 2n worst solutions from the population vP . We find also the average value of the 

objective function avef  for the n  best solutions. For each of the worst solutions 
1 2( , )l lx x , take the 

following steps:                                                                   

Step 6.1. Give a small increment 
1 2( , )l lx x  , generated accordingly by a uniform distribution, 

where:  

2 1 2 1
1 1 1

2 1 2 1
2 2 2

( ; ),

( ; ), 1,2 .

l l l

l l l

p p p p
x x x

n n

q q q q
x x x l n

n n

 
   

 
    

 

 

Figure 1: Fractal structure of potential solutions 

If 
1 1 2 2( , ) ,l l l l

avef x x x x f    so 
1 2 1 1 2 2( , ) ( , )H H l l l lx x x x x x    - is a new potential solution and it 

is recorded to the population .wP  Otherwise, take a random number (0,1)r  and if  

1 2 1 2(min( , )) exp( min( , ) / ),l l l lr P x x x x T        

then 
1 2( , )H Hx x is recorded to the population .wP  

If 
1 2(min( , )),l lr P x x   we move on to the next solution from the set of the worst. 
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If the set of the worst solutions is exhausted and the stop criterion is not met, then , 1
2

T
T t t  

and we go to the step 4. If the stop criterion is met, then it is the end of the algorithm. Thus, the 

population of the new epoch is formed from better solutions obtained from 2n  elements of the 

population ;wP solutions ( 2n ) calculated in step 5 and solutions (8n ) from the population vP , so that the 

total number of them is equal to .n   

5. The method of fractal structuring in n -dimensional case 

In the n -dimensional case, the optimization problem  

                                                              maximize 1 2( , ,..., )mf x x x                                                          (3) 

is considered, where x  is a solution in the feasible region D ,  

1 2( , ,..., ) m

mx x x x D R    

and D  is some rectangular hyperparallelepiped  

1 2{( , ,..., ) | [ , ], 1, }m i i iD x x x x a b i m   , , , 1,i ia b R i m  . 

In some cases, data normalization is applied and the area D  is a hypercube 

1 2{( , ,..., ) | [0,1], 1, }m iD x x x x i m   . 

The following algorithm for solving problem (3) is proposed. 

Step 1. Perform the initialization of the algorithm parameters.  Iteration number (population of 

potential solutions) is 1.t   

Step  2. Generate a sample of uniform distributed in the hypercube points  

1 1 1

1 2 1 2{( , ,..., ),...,( , ,..., )},n n n

t m mP a a a a a a  (0,1), 1, , 1, .j

ia i m j n      

Step 2.1. Find the value of the function f  at the points in the sample tP  and get 

1 2, ,..., .nf f f   

Step 3. Assume that each point in the sample tP  is the center of hypersphere with radius 
1

.r
n

 We 

will require that each point of the hypersphere lie completely inside the hypercube [0,1] .n   

The equation of such hyperspheres: 

2 2

1

( ) , 1, .
m

j

i i

i

x a r j n


    

Step 4. For each j -th hypersphere we generate 7 offsprings solutions (points) that will lie on its 

surface and are the centers of the hyperspheres with radius .
1

r
r

t



 To find such a point we generate 

a uniformly distributed random number {1,2,.., }.k random m  Next we generate a random vector 

1 2 1 1( , ,..., , ,..., ),k k mx x x x x   such that    

2 2

1

( ( , ), ) ( ( ) ),
m

j j j

i i i i i

i
i k

x a r a r i k або x a r



       

and calculate 

2 2

1

{ 1;1} ( ( ) )
m

j j

k k i i

i
i k

x a random r x a



      . 
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We obtain a point with coordinates 1 2( , ,..., ),mx x x  lying on the parent hypersphere. Let's recognize 

its elements ,jl

i ib x where i  determines the coordinate, j  is the number of the parent solution, l  is 

the number of the offspring-solution, 1,7l  . We generate such points for each potential parental 

solution and record all parental and offspring solutions in the population vP . The number of such a 

population elements will be 8n . 

The next steps of the algorithm will be to ensure the "diversity" of the population of potential 

solutions and to avoid hitting the local optimums. Next, we propose data transformations that will play 

the role of mutations, as well as focus on a more detailed study of promising areas and a random search 

in a wide range of unpromising solutions. 

Step 5. If a pair of prospective solutions are close together, researching their averages and values 

around them will allow you to explore the prospective area more deeply (assuming they are at a short 

distance from each other) and possibly find a better solution. If the solutions are far from each other, 

then finding their average value is an attempt to expand the search area and, as in the previous case, it 

is possible to find a better solution. Let 1 2( , ,..., )ma a a a  and 1 2( , ,..., )mb b b b  are promising potential 

parenting solutions. Then the point that lies in the middle of the segment connecting the points a  and  

b  has the following coordinates 

1 1 2 2( , ,..., )
2 2 2

m ma ba b a b
c

 
 . 

Suppose, too, that the best offspring solutions may lie in the middle of the rectangle sides for which 

the segment connecting the points a  і b  is a diagonal. To generate them, we generate a random number 

{ 1,1}r  , where (-1) corresponds to the solution a , 1 corresponds the solution b  and the random 

number {1,2,..., }q m . Generate the descendant vector as follows: 

1 1( ( 1) ( 1) ,..., ,..., ( 1) ( 1) ).
2

q q

m m

a b
c r a r b r a r b   


          

 

 − parents, 

− offsprings 

Figure 2: Offspring solutions       

Thus, as a result of generating potential offspring solutions, the first  n   points will lie in the middle 

of the main diagonal of the hypercube (rectangular hyperparallelepiped) (the ends of this diagonal are 

the parent potential solutions), the other points will be in the middle of the side edges of such hypercube 

or hyperparallelepiped. This way of generating potential offspring solutions allows us to explore the 

area between the best solutions, as well as to test the hypothesis that parental solutions may be improved 

by changing one of the coordinates. 
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Step 6. Just as there may be an even better solution between the best potential solutions, so, given 

the relief of many polyextreme functions, the best solution may be among the worst potential solutions. 

So, like the two-dimensional case,          

 let's choose 2n  the worst solutions from the set vP .                  

Similarly, we find the average value of the objective function avef  for the n  best solutions. For each of 

the worst potential solutions 
1 2( , ,..., )l l l

mx x x , follow these steps. 

Step 6.1. Let's give a small random increment  

1 2( , ,..., )l l l

mx x x   , 

where 

1 1
( , ),l l l

i i ix x x
n n

     if 1 2{( , ,..., ) | [0,1], 1, }m iD x x x x i m    

and 

( , ),l l li i i i
i i i

b a b a
x x x

n n

 
     if 1 2{( , ,..., ) | [ , ], 1, }m i i iD x x x x a b i m   , , , 1, ,i ia b R i m       

1,2 .l n  

It is also possible when a random number {1,2,..., }p random m  is generated and a random 

increment of only one coordinate is provided: 

1 1
( , ),l l l

p p px x x
n n

     або ( , ).
p p p pl l l

p p p

b a b a
x x x

n n

 
     

Other coordinates of potential solutions remain unchanged, ie 

0 1, , .l

qx q m q p      

So, if 
1 1 2 2( , ,..., ) ,l l l l l l

m m avef x x x x x x f     then  

1 2 1 1 2 2( , ,..., ) ( , ,..., )H H H l l l l l l

m m mx x x x x x x x x      

Is a new potential solution that is being recorded in the population wP . Otherwise, generate a 

uniformly distributed random number (0,1)r  and if 

1 2 1 2(min( , ,..., )) exp( min( , ,..., ) / )l l l l l l

m mr P x x x x x x T         , 

then 
1 2 1 1 2 2( , ,..., ) ( , ,..., )H H H l l l l l l

m m mx x x x x x x x x     write to the new population wP . If so 

1 2(min( , ,..., ))l l l

mr P x x x    , let's move on to the next from 2n  worst solutions. 

If the set of the worst solutions have been exhausted and the stop condition is not met, then reduce the 

temperature , 1
2

T
T t t    and go to step 4. 

If the stop condition is satisfied, then we have the end of the algorithm. 

Thus, the population of the new iteration is formed from the best solutions obtained from 8n  population 

vP  solutions, 2n  solutions from population wP  and n  solutions obtained in step 5. 

6. Algorithm for improving the process of formation of the offspting solutions 

population  

According to the conditions of the implementation of the evolutionary strategy [13-15], we initially 

assume that each parent potential solution can have the same number of offspring solutions, which is 

the reason for the long-term convergence of the algorithm. In order to speed it up, we propose to use 

the following hypotheses. 
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Hypothesis 1. It is more probably that a better offspring solution lies around a better parental solution 

than a worse one. 

Hypothesis 2. To find a better offspring solution, it is rational to generate more offspring solutions 

in a neighborhood of better parent solution than in a worse one. 

We will propose an appropriate procedure for generating offspring solutions and verify it at the end 

of the study.  

Suppose there are n  parental solutions, we need to get all the 7n  potential solutions for posterity. 

Let the set of potential solutions contain the following elements: 

1 2( , ,..., ), 1,l l l l

mx x x x l n  . 

Find the values of the objective function at points: 

1 2( ) ( , ,..., ), 1, .l l l l l

mf f x f x x x l n     

Arrange the sequence 
1{ }l n

lx 
 in descending order of values lf . Let's divide this sequence into one 

of the ratios (50:50, or 60:40, or 70:30), where the first number means the percentage of the best 

solutions, the second number is the percentage of the worst solutions that will be removed. Let's take 

appropriate action. Let the number of remaining solutions z . 

Let's perform normalization of values , 1, :lf l n  

Then the l -th parental solution lx  will have [ 7 ]
llN f n   descendant solutions, 1, .l z  

The magnitude of the parent potential solution neighborhood in which potential offspring solutions 

will be generated is determined by the researcher and depends on the standard deviation value. 

The following hypothesis is to be studied. 

Hypothesis 3. Over time, the value of standard deviation used to generate potential offspring 

solutions for the best parents should decrease, and for the worst parents should increase. 

The realization of this hypothesis will be aimed at finding the best solution in the neighborhood of 

the best parent solutions, and the large value of standard deviation will play the role of mutations in 

evolutionary algorithms and allow us to explore a wider area with the prospect of finding a global 

optimum [16]. 

7. Experimental verification of the obtained results 

The developed new method of fractal structuring requires a large number of experiments that would 

confirm its effectiveness. In this paper, we present the results of only one of the simplest experiments 

for the one-dimensional optimization problem. However, further experiments for more complex cases 

also confirm the viability of the method. 

Consider the problem 

maximize 4sin(10 )
( ) ( 1) , [0,5;2,5].

2

x
f x x x

x


     

The graph of this function is shown in Fig. 3.  

The dynamics of the objective function by iterations of the fractal structuring method is shown in 

Fig. 4.  

Despite the fact that the stop criterion determined the maximum number of 100 iterations, the 

algorithm found the global maximum max 5.062389479647202f   at a point 

max  2.499984685195675x   in 9 iterations.  

Experiments with other algorithms showed that the optimal value of the objective function was 

found by the method of deformed stars in 14 iterations, the genetic algorithm - in 50 iterations, and the 

method of evolutionary strategy in 50 iterations to the global optimum did not match. Such results 

convincingly support the fractal structuring method. 
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Figure 3: Objective function 

 

Figure 4: The dynamics of the objective function by iterations 

8. Conclusion 

In this paper, we propose a new method of fractal structuring. Features of its realization for a one-

dimensional case, a two-dimensional case for a case of n -dimensional optimization are considered. In 

addition, a procedure has been developed to identify promising parental solutions and to determine the 

number of generated solutions in each of them. The method of fractal circles demonstrates convincing 

results in its effectiveness. The method is parametric and allows to search in the given region. Its main 

idea is a fractal search around some areas. The obtained results testify to the fast convergence of the 

algorithm of the fractal structuring method and considerable accuracy. 
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