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Abstract  
The article considers the types of DSA and ECDSA cryptosystems affected by side channel 

attacks. A method for identifying the type of impact based on lattice attacks has been 

developed, which showed that if there are common bits in ephemeral keys, the sender's private 

key can be restored in polynomial time, if there are the required number of messages, 

depending on the number of common bits. As countermeasure this attack an ephemeral key 

generation algorithm was developed, using a deterministic signature, to increase the crypto-

resistance of systems to lattice attacks, and a modular inverse algorithm was improved to 

perform the operation at a constant time to prevent sidechannel attack on modular inverse 

operation, which using for generation signature. 
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1. Introduction 

Cryptosystem is the implementation of cryptographic methods and their infrastructure for the 
provision of information security services [1]. Cryptosystems convert source data into unreadable form 
using encryption and decryption keys, which in turn allows for confidentiality of information. At the 

heart of any encryption system is the availability of information on the exchange of plaintext data only 
from the sender and recipient. Depending on the method of encrypting and decrypting information, 
cryptosystems are divided into two types [1]: 

1. A symmetric encryption system is based on the use of the same type of key, the information on 
the use of which is agreed by the parties before the data session. For example, cryptosystems of this 
type: DES, Triple-DES, BLOWFISH, IDEA, AES [2]. The main disadvantage of this encryption system 
is the complexity of key management in large networks. 

2. The asymmetric encryption system uses different types of keys, which are interconnected by a 
certain mathematical dependence. This approach allows you to get the original plaintext by using the 
inverse functions of mathematical operations. The main representatives of these cryptosystems 
encryption are DSA, DSS, RSA, ECDSA, El-Gamal [3 – 5]. The main disadvantages of these encryption 
systems are the availability of information about the public key of the sender and recipient when 
creating an encrypted message; the level of security of encryption systems is proportional to the level 
of complexity of operations based on various mathematical problems (integer factorization complexity, 

discrete logarithm problem [6]).  
For some encryption systems, an ephemeral key (nonce) is used, which is needed to add more 

complexity to the encryption algorithm, the main requirement for it, the ephemeral key must be used 
only once. For DSA, ElGamal, ECDSA encryption systems - when creating encrypted messages, an 
ephemeral key is additionally used, which in turn leads to attacks on side channels, FLUSH+RELOAD 
ephemeral key data, attacks on the pseudo-random number generator [7], using oscillography for 
timings attack [8], using masked digital signal [9]. All of these attack types result in the substitution or 
interception of individual bits of ephemeral key data, giving third parties access to encrypted messages, 

which in turn compromises the sender's secret key. A particularly dangerous cryptoattack types are side 
channel attack,  which allow, by analyzing the time of generation of the ephemeral key, to find the most 
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or least significant bits of the ephemeral key. Then using special methods the sender's private key is 
searched. Articles [11, 12] show a crypto attack on a DSA-type encryption system, in which the sender's 
private key can be found using methods for solving number theory problems, namely the problem of 
hidden numbers, to solve which uses the method of short vectors or the method of close vectors. by 

collecting from the n-number of encrypted messages less and / or more significant bits of the ephemeral 
key, using a side channel attack, but this attack is not possible if the numerical value of these bits is 
unknown.Scientific research [12] investigates the cryptoattack type on the private key of the sender 
using the method of fast Fourier transformation, which allows you to effectively search for a private 
access key among a large number of encrypted messages. The high efficiency of this crytoattack leaves 
open the question of developing a reliable method of protecting systems from such cryptoattack.   

The article [14, 15] reveals the issue of protection against side channel attack, using the method of 
constant-time addition of numbers when creating encrypted messages. Using this method requires 

significant system resources, which generally slows down the process of generating encrypted 
messages. Therefore, it is important to increase the level of resilience of cryptosystems to various 
sidechannel attack, which will increase the overall level of security of data encryption when exchanging 
information. The aim of the work is to increase the degree of protection of the process of information 
exchange in system networks on the basis of the developed effective data encryption algorithm. 

 To achieve this goal it is necessary to determine the vulnerability type of cryptosystems to 
sidechannel attack, as well as to develop an effective method protection cryptosystems from 

sidechannel attack to prevent unauthorized access to encrypted information. 

2. A summary of the main material 

To identify a potentially dangerous type attack on private key, in based on the DSA encryption 
algorithm (ECDSA), it is necessary to analyze the mathematical description of this algorithms.  

To use the DSA algorithm, the signer selects two prime numbers p and q, and generator g,  where p 
– prime number of size between 512 and 1024 bits, with increments of 64 bits; q – prime number, 
recommended by NIST standards [14] with size at least 160 bits, and corresponds to equality 

12 2N Nq   , where {160,224,256}N  , and | 1q p  ; g – generator of order q subgroup G of finite 

field p

F  abelian group. Furthermore, he selects randomly {1,..., 1}a q   and computes

modaА g p . The public key of the signer is ( , , , )p q g A  and his private key a. He also publishes a 

hash function
*:{0,1} {0,..., 1},h q   for mapping message into range{1, , 1}q  . 

To sign a message m, signer selects randomly {1,..., 1}k q  , which is the ephemeral key (or 

nonce), and computes: 
1( mod )mod ; ( ( ) )modkr g p q s k h m ar q   . (1) 

The signature of m is the pair (r, s). The signature (1) is valid if and only if: 
1 1( )mod mod(( )mod )mods h m q s r qr g A p q
 

 . (2) 

For the ECDSA the signer chooses an elliptic curve E over finite field pF , a point ( )pP E F  

(respectively to DSA is generator) with prime order q with size at least 160 bits. Appropriately, to FIPS 
186-3 binary length of prime number p must be in set {160, 224, 256, 512}. Furthermore, for randomly 

chosen {1, ..., 1}a q  computes Q aP . The public key of signer is ( , , , , )E p q P Q  and his private 

key a. Also, signer publishes hash function
*:{0,1} {0,..., 1}h q  . To sign a message m, signer 

chooses random number {1, ..., 1}k q  , computes ( , )kP x y  (where x and y is integers in range

{0, , 1}p  . Further, computes the signature of message m, is pair of integers (r, s): 
1mod ; ( ( ) ) modr x q s k h m ar q   . (3) 

For verification the signatures, receiver computes: 
1 1

1 2 1 2 0 0( ) mod , mod , ( , )u s h m q u s r q u P u Q x y     . (4) 
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The signature (3) is valid if and only if, when
0 modr x p . The security of the two systems s relied 

on the assumption that the only way to forge the signature is to recover either the secret key a, or the 
ephemeral key k. Thus, the parameters of these systems were chosen in such a way that the computation 
of discrete logarithms is computationally infeasible. 

To perform a potentially dangerous crypto attack by an attacker, which will reveal the signer private 

key, an attacker can block some bits of register or memory that contain the value of the ephemeral key 
k, while the value of the blocked bits is unknown. Assume that an attacker was able to collect n-number 
encrypted messages mi (i=1, …, n) with the associated signatures (ri, si), where all the corresponding 
ephemeral keys ki shared total ẟ bits between more significant (MSB) and less significant (LSB) bits 
independent of i. In this way, they will meet the following dependency for all i=1, ..., n: 

'2 2 't t

i ik k k k   . (5) 

where 
'0 2 ,0 ' 2 , ' ,0 2t N t N

ik k t t k          ,  with k and k  ́common for all ki. 

Figure 1 shows a diagram of the placement of bits in the ephemeral key. 

 

 Figure 1: Scheme of the ephemeral key 
 k – numerical value of the total more significant bits (MSB), k′ – numerical value of common less 

significant bits (LSB), ik - numeric value of the current bits, t – number of common more significant 

bits, t′ – number of common less significant bits 

It should be noted that the values of the variables , , , 'i ik k k k  are unknown. In the n of equations 

(4), which define the signature: 

1 1 1 1

2 2 2 2

0 (mod );

0 (mod );

0 (mod ),n n n n

m ar s k q

m ar s k q

m ar s k q

  


  


   

 (6) 

where mi – message, a – signer private key, ri – numerical value of the first part of the signature, si – 
numerical value of the second part of the signature, ki – ephemeral key, 
i-message index. 

If in the system of equations (6) replace the parameters mi, ri, si  with the value (5) and eliminate 
common variables k and k′, then we obtain: 

1 1 1 1

1 1 2 2 1 1 2 2 1 2

1 1 1 1

1 1 3 3 1 1 3 3 1 3

1 1 1 1

1 1 1 1 1

( ) ( ) 2 ( ) 0(mod );

( ) ( ) 2 ( ) 0(mod );

( ) ( ) 2 ( ) 0(mod ).

t

t

t

n n n n n

s m s m a s r s r k k q

s m s m a s r s r k k q

s m s m a s r s r k k q

   

   

   

      


     


      

 (7) 

Let ,i i i Z     be such that: 

1 1

1 1

1 1

1 1

1

: 2 ( ) mod ;

: 2 ( ) mod ;

: .

t

i i i

t

i i i

i i

s m s m q

s r s r q

k k







  

  

  


 


 

 (8) 

Then, system of equalities (7) becomes: 
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2 2 2

3

0 (mod );

0 (mod );

0 (mod ),n n n

a k q

a q

a q

 

  

  

 

  


  
   

 (9) 

where a, κi and αi, βi  – are known value and unknown value.  

The set of solutions: 
1

0 1 0 1{( , ,..., ) | 0 (mod )}n

n i i iL x x x x x x q     Z , (10) 

forms an (n+1)–dimension lattice spanned by the row vectors of the following basis matrix: 

1 0

0 1

0 0 0

0 0 0 0

n

n

M q

q

 

 





 
 
 
 
 
 
 
 

. (11) 

To find the short vector in the matrix (11), LLL or BKZ algorithms [17, 18] can be used. If the 

system of equations (7) has a solution ((determining the value of a short vector 
0  with elements 

0 (1, , )nv a        , which will be identical to the element of the system of solutions (10), then 

the value of the signer’s private key a will be obtained. However, the norm 
0  is lower bounded by 

secret key a, which can be an integer of approximately N  bits. Then the next element of the vector 
0  

is much larger than the next ones, which are N-ẟ integers. Vector 
0  there is no ground to be a short 

vector L, when signer private key a is upper-bounded. Therefore, assuming that private key a, smaller 

than 2N 
, then, it is necessary to adapt the method described above to find the signer’s private key a 

length of N bits, to solve this problem can be used one of methods described below:  
If the value ẟ is small (no more then 8) , then the method goes to the previous, with searching for 

most significant bits of a, then we have 2 'Na a a  , where 2Na  and ' 2a  . Then, in (8) αi 

changing to 
1 1 1 1

1 1 1 12 ( ) '2 ( )t t

i i i i is m s m a s r s r          . 

Removing the second column from the matrix (11), then get the matrix: 

'

1

0

, 2.0 0

0 0 0

n

n

M nq

q

 

 





 
 
 
  
 
 
 
 

 (12) 

But this method requires more messages and larger matrix that negatively smashes the speed of 

work.  Using a weighted Euclidean product of vectors to get a vector 
0v  in the basis of reduced 

algorithms using knowledge about the size of the target vector ν0. For example, we take a weighted 
Euclidian product while performing reduction of basis: 

2 02( [log ( , )])

0 0

0

( ,..., ), ,..., ) : 2 i

n
N v

n n i i

i

x x y y x y




 , (13) 

The use of this method reduces the number of common bits ẟ. Weights can be used without changing 
the norm that in reality corresponds to the multiplication of all columns to the corresponding weight. 

The previous method is used when the ephemeral keys are shared by multiple bits blocks. Now assume 
that we have n messages mi (i = 1, …, n) with the associated signatures  (ri, si), where ephemeral keys 
ki share a total ẟ bits distributed between l block of bits. Denote by ẟi the number of bits i-th block at 
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position pi . Let t = (t1, …, tl) be a l-set of integers, then set 12 (2 , ...,2 )lttt  . Then ephemeral key ki 

has form: 

2 2p t

i ik b k    , (14) 

where b=(b1, …, bi) is the vector of shared bits blocks, p=(p1, …, pl) is vector of position a l blocks, 
ki=(ki,0, …, ki,l) the vector of no shared bits blocks at positions t = (t0, …, tl). 
On figure 2, depicts the scheme of location of bits blocks. 

 

Figure 2: Scheme of bits location 

After stating that : 0t  and 
1 :lp N  , it follows  that for all i =1, …, n і and for all j = 1, …, n: 

1( )

,, , 0 2 , 0 2j j jp t

j j j j j i j

j

t p b k


    
       . (15) 

Values of ,, ,i i j jk k b  are unknown. In signatures (7), substitute ki by (15) and eliminate the common 

variable b: 
1 1 1 1

1 1 2 2 1 1 2 2 1, 2,0

1 1 1 1

1 1 3 3 1 1 3 3 1, 3,0

1 1 1 1

1 1 1 1 1, ,0

( ) ( ) 2 ( ) 0 (mod );

( ) ( ) 2 ( ) 0 (mod );

( ) ( ) 2 ( ) 0 (mod ).

j

j

j

l t

j jj

l t

j jj

l t

n n n n j n jj

s m s m a s r s r k k q

s m s m a s r s r k k q

s m s m a s r s r k k q

   



   



   



      

      




     







 (16) 

Let ,i i  Z  та , l

i t Z  are those: 

1 1

1 1

1 1

1 1

1,1 1, ,1 ,

1

: mod ;

: mod ;

: ( , ...., ) ( , , );

: ( , ...., ),

i i i

i i i

i l i i l

l

s m s m q

s r s r q

k k k k

t t t







 

 

  


 


 
 

 (17) 

then (16) becomes: 

2 2 2 1,0 2,0

3 1,0 3,0

1,0 ,0

2 (mod );

2 (mod );

2 (mod ),

t

t

t

n n n n

a k k q

a k k q

a k k q

  

  

  

 

    


   


     

 (18) 

where a and κi – unknown αi and βi known. Embedding this equation in a lattice L, 
spanned by row vectors  of the following basis matrix. 

( 1) 2

1 ( 1)

( 1) 2

( 1) 2

1 ( 1)

( 1) 2

2

2

( 1)

2

2

0

l n

n

l n

l n

n

l n

n

n

t I

t I

n

I

I
M

I

I

qI

 

 

 



 

 



 



 
 
 
 
 

  
 
 
 
 
 

. 
(19) 
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Then , ,i i i   Z  be this form: 

1 1

1 1

1 1

1 1

1,1 ,1

: ( ) mod ;

: ( ) mod ;

: .

i i i

i i i

i i

s m s m q

s r s r q

k k







 

 

  


 
  


 (22) 

In this case, (18) be this: 

1

1

1

2 2 2 1,0 2,0

3 1,0 3,0

1,0 ,0

2 (mod );

2 (mod );

2 (mod ).

t

t

t

n n n n

a k k q

a k k q

a k k q

  

  

  

 

    


   


    

 (23) 

Then, lattice L spanned by row vectors of the following basis matrix be such that: 

1

1

2

2

1 0 0 0

0 1 0 0

0 0 1 0 2 0

0 0 0 1 0 2

0 0 0 0 0

0 0 0 0 0

n

n

t

t

a

M

q

q



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 (24) 

Target element L is a vector: 

0 2 1,0 2,0 1,0 ,0 2 2(1, , ,..., , ,..., ) (1, , ,...., , ,...., )n n n nv a k k k k a M          . (25) 

To search for a private key a length of N bits, can also apply the methods described above. 
The developed approach to obtaining access to private keys from signed messages proves that the 

DSA (ECDSA) algorithm is vulnerable to side-channel attack, in case when the ephemeral keys of each 
encrypted message have shared bits in less and/or more significant bits. Figure 3 shows the relationship 

between the number of shared bits and the number of necessary messages to the success rate. 

 

Figure 3: Diagram of dependence between the number of shared bits and the number of messages 
necessary to the percentage of the probability attack success 
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To achieve this goal, a function for generating an ephemeral key in the form of a pseudocode, which 
will receive a message (m) and private key of the sender (d), is proposed – algorithm 1 (Deterministic 
Ephemeral Key Generation Algorithm): 

1

( ) _ ( , )

( )

_ ( , )

( , ) ( ) #

mod #

( mod )mod #

0

( )mod

0

( , ).

p

k

EC DSA SIGN m d

e H m

u HMAC SIZE d e

x y uP E for ECDSA

r x q for ECDSA

r g p q for DSA

r

s u e dr q

s

r s







 







 



function

repeat

repeat

until

until

return

F
  

The feature of the represented function for ephemeral key generation, from others, is the use of an 
HMAC algorithm, which allows you to generate more reliable random numbers, and prevents attacks 
by side channels. Due to the use of additional hash function that hides bits of ephemeral key from a 
potential attack, when other algorithms are presented in various cryptographic libraries use direct 

operations with the bits of the ephemeral key in the memory registers, which leads to attacks on side 
channels. The use of a new generation algorithm does not require changes to the message verification 
procedure, and will provide protection against attacks by side channels, thanks to the use of additional 
hash function that follows the integrity of the data, and mixes the ephemeral key for greater randomness. 

Also, one of the vulnerable points in the creation of signatures (1), (3) is modular inverse operation 
in the – algorithm 2 (Not constant-time modular inverse algorithm [17]): 

  

, , 0, 1, 0

1

0 (mod2)

/ 2, 2

0 (mod 2)

/ 2, 2

( ) / 2, , 2

( ) / 2, , 2

1

( , ).

u a v b r s k

v

u

u u s s

v

v v r r

u v

u u v r r s s s

v v u s r s r r

k k

s k

    





  



  



     

     

 

while do

if then

elseif then

elseif then

else

endif

endwhile

return
 

The execution time of the algorithm 2 depends on both values a and b, namely the number of 

iterations of the cycle while, namely the number of iterations of the While cycle, as well as the degree 

Input:
0, gcd( , ) 1,0a b with a b b a   Z , 

Output: 
1

2 2

( 2 mod , )

[log ( )] 2[log ( )].

kb a k

a k a

 


 
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of two, which should be removed in the end of the algorithm, are significantly different for input data. 
Therefore, to convert an algorithm 2 into an algorithm performed by a constant time for a given wn bit 
module m, it is necessary to save the following requirements: 

1. One iteration is always calculated by the same amount of time, it means to calculate all four 

branches from the algorithm 2 and select the correct values for a constant time. This ensures that the 
time of execution of one iteration does not depend on the branch taken, but means that the calculation 
time increases until the calculation of all branches; 

2. The algorithm must perform the one-time number of iterations (for a constant time), which 
means that it is necessary to calculate the worst number of 2wn iterations. This can be realized by 
determining when the algorithm 2 is completed (when v=1). Depending on this condition, we create a 
bit mask and choose the input value for this iteration (when v=1), or the value, calculation with iteration 

with constant time ( 1v  ). 

After making modifications in the algorithm 2, we will receive a new algorithm 3 that will perform 
a modular inverse operation for a constant time – algorithm 3 (Constant-time algorithm of modular 
inverse): 
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return k

 

 

3. Conclusions 

The vulnerability type of cryptosystems is determined for side channel attack, which is concluded 
in blocking the bits of the ephemeral key or determining the signature time of each message. Using the 
developed method, the signers private key can be determined in the presence of a sufficient number of 
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messages in less than a minute, bypassing a discrete logarithm problem, which in turn fully 
compromises the stability of cryptosystems.  

Was developed a effective method for protecting cryptosystems to attack by side channels to prevent 
unauthorized access to encrypted information, based on a new ephemeral key generation algorithm to 
prevent attacks by side channels, which increases the count a mathematical operation to 2N. The use of 
the developed constant time algorithm of modular inverse, provides a constant number of clock cycles, 
namely, the number of bits of 256, the number of cycles will not be constant 50-60. When using this 
algorithm, the number of clock cycles is always 486, which provides resistant to the attack. 
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