
Dowsing for Answers to Math Questions: Doing
Better with Less
Andrew Kane, Yin Ki Ng and Frank Wm. Tompa1

1David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada, N2L 3G1

Abstract
We present our application of a new math-aware search engine to the 2022 ARQMath Lab. This extends
the annual submissions from the University of Waterloo’s “MathDowsers,” for which we twice produced
the best Task 1 participant run.

This year the major improvements result from greatly reducing the number of math tuples used to
represent a math formula, which not only saves considerable space in the index and reduces query terms,
but also improves retrieval effectiveness as measured by normalized discounted cumulative gain with
unjudged documents removed (nDCG’). In addition, we have re-implemented math tuple generation in a
stand alone code base and replaced Tangent-L, the previous Lucene-based search engine, with a new
engine that simplifies experimentation.

Experimental results show that the new system has substantially better performance than its pre-
decessor in terms of nDCG’, MAP’, and P’@10, both when trying to find answers to math questions
(Task 1) and when trying to find similar formulas (Task 2). From this we conclude that traditional text
retrieval systems can easily be enhanced to become effective math-aware search engines using the tools
we have developed.

Keywords
Community Question Answering (CQA), Mathematical Information Retrieval (MathIR), Symbol Layout
Tree (SLT), math tuples, Mathematics Stack Exchange (MSE), ARQMath Lab, formula matching

1. Introduction

The ARQMath Lab at CLEF 2022 [1] continues previous years’
Labs [2, 3] to examine how best to search a community ques-
tion answering (CQA) repository to find answers to questions
involving math data. The Labs use a collection of questions and
answers from Math Stack Exchange2 (MSE) between 2010 and
2018 consisting of approximately 1.1 million question-posts and
1.4 million answer-posts. Task 1, the CQA task, asks participants to return potential answers
to unseen mathematical questions among existing answer-posts in the collection. Task 2 is
the formula retrieval task, where formulas in the context of specific unseen questions serve

CLEF 2022: Conference and Labs of the Evaluation Forum, September 5–8, 2022, Bologna, Italy
$ arkane@uwaterloo.ca (A. Kane); kiking0501@gmail.com (Y. K. Ng); fwtompa@uwaterloo.ca (F. Wm. Tompa)
� https://www.linkedin.com/in/arkane/ (A. Kane); https://www.linkedin.com/in/kiking0501/ (Y. K. Ng);
http://www.cs.uwaterloo.ca/~fwtompa/ (F. Wm. Tompa)
� 0000-0002-1907-9535 (F. Wm. Tompa)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

2https://math.stackexchange.com

mailto:arkane@uwaterloo.ca
mailto:kiking0501@gmail.com
mailto:fwtompa@uwaterloo.ca
https://www.linkedin.com/in/arkane/
https://www.linkedin.com/in/kiking0501/
http://www.cs.uwaterloo.ca/~fwtompa/
https://orcid.org/0000-0002-1907-9535
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://math.stackexchange.com

as queries for matching relevant formulas from question-posts and answer-posts in the same
collection. Task 3, added this year, asks participants to formulate an answer to an unseen
mathematical question using any resources and techniques available to them.

In the first year, the Waterloo team of MathDowsers participated in Task 1 only. We demon-
strated how tagged mathematical questions can be automatically transformed into formal
queries consisting of keywords and formulas and how the resulting formal queries can be
effectively executed against a corpus [4]. In particular, the corpus of MSE question-answer pairs
was indexed by a traditional math-aware search engine, namely Tangent-L [5] built on top of
Lucene using a traditional text-based ranking algorithm (BM25+ [6]) with simple adaptations
to handle math formulas within the engine. A key component of this approach is to represent
formulas as a set of math tuples that reflect certain features found in the formulas and to treat
the tuples as words in the engine.

In the second year, we participated again as the MathDowsers team for Task 1 and for Task 2,
with the goal to continue exploring the potential of a traditional math-aware query system in
tackling both tasks [7]. We demonstrated, among other things, that augmenting the set of math
tuples with tuples that capture repeated symbols slightly increases retrieval effectiveness, that
reducing noise in the data makes a substantial impact, and that searching a corpus of visually
distinct formulas is effective for Task 2.

The success of Tangent-L in both ARQMath-1 and ARQMath-2 could result from several
factors, but chief among them is (1) the use of a carefully constructed corpus of documents to
be searched and (2) the extraction of features that serve well in representing math formulas. It
is clear that anyone could adopt the former, and this year we show how anyone can incorporate
the latter into their approach.

To this end, in this paper we present our re-implementation of the math feature extraction as
a standalone code base. We also show that it can be applied universally by using that sub-system
with a different, more conventional, text-based search engine. As it turns out, the first author had
been developing such an engine in order to explore various aspects of search technology, and
the ARQMath Lab provides an opportunity to test the new engine against a realistic application.
We hope that with this presentation of our tools, others can use our constructed documents and
math tuple generator as a basis on which to apply even smarter processing, regardless of the
search engine they choose.

In addition to separating the math extraction code, we re-examine the mapping from formulas
to sets of math tuples and show that capturing certain features only, and ignoring other features,
improves effectiveness for both Task 1 and Task 2. We also show that including some extracted
text from the LATEX representation of formulas improves formula matching in Task 2. (We did
not participate in Task 3.)

This paper first describes the three large processing steps used in our system:

1. document and query construction, described in Section 2;
2. math tuple generation, described in Section 3; and
3. indexing and querying with the core engine, described in Section 4.

Next, this year’s experimental results are detailed in Section 5, and the conclusions follow
thereafter.

2. Document and Query Construction

2.1. Document Corpus for Task 1

For ARQMath-3, we continue to use enhanced question-answer pairs as indexing units for
the document corpus, because worse performance can be observed for the ARQMath-1 and
ARQMath-2 benchmarks if the content of the associated question is dropped and only text from
each answer is indexed [8]. As before, for every answer-post in the MSE database, we use a series
of preprocessing steps3 to create a document consisting of an “enhanced question” (including
the Question Title, Question Body Text, Question Tags, Question Comments, Duplicate Post
Titles, and Related Post Titles) together with an “enhanced answer” (including the Answer
Body Text and the Answer Comments). Figure 1 illustrates the fields indexed as part of each
question-answer pair.

Figure 1: Structure of a corpus document containing a question-answer pair and its associated data.

Note that to be consistent with other search systems and datasets, we use a simple TREC
encoding format for documents: each document starts and ends with the tags <DOC> and
</DOC> and the first element inside a document is the document identifier tagged with
<DOCNO>...</DOCNO> [9, p. 24]. In the Task 1 corpus, the DOCNO value encodes the year,
threadid (id for the question-post), and postid of the answer-post. By using this convention,
many documents can be stored in a single (compressed) file and still be appropriately identified,
which saves space and avoids extensive file openings and closings.

2.2. Document Corpus for Task 2

Last year we determined that searching a corpus of visually distinct formulas outperforms
picking the best formula from the Task 1 results [7]. Therefore, for ARQMath-3, we again

3https://github.com/kiking0501/MathDowsers-ARQMath

https://github.com/kiking0501/MathDowsers-ARQMath

create a corpus of visually distinct formulas appearing in either question or answer posts and
represented in Presentation MathML. Searching this corpus gives us a ranking 𝑅 of visually
distinct formulas, from which any occurrence in a question or answer post can be determined
arbitrarily. (In this corpus, the DOCNO value for each document encodes the formula-id, the
post-id containing the formula, and the visual-id representing the visually distinct form of the
formula.)

Because some formulas failed to be converted from LATEX into MathML and because there
is potentially useful text buried in math tuples (particularly within tuples generated from text
nodes in the symbol layout tree), we build a variant corpus in which each document includes
the math tuples for a visually distinct formula together with words selected from the LATEX
representation of that same formula (Figure 2). More specifically, given a LATEX formula, the
text extractor treats all non-alphanumeric characters as white space and removes all resulting
tokens that are shorter than three characters in length. Thus, for example, the expression
$x\in \mathbb{Q} \land x=\frac pq \text{ in lowest terms}$

(encoding “𝑥 ∈ Q ∧ 𝑥 = 𝑝
𝑞 in lowest terms”) produces “mathbb land frac text lowest terms.”

Figure 2: Structure of a corpus document containing the MathML representation for a visually distinct
formula and text extracted from its LATEX representation.

2.3. Query Formation

As in previous years, we represent queries using a simple XML encoding format as shown
in Figure 3, and we convert the given MSE questions (“topics”) to this form using the code
originally developed for ARQMath-14 [4].

<Topics>
<Query topic="topic-id">

<input id="input-id" type="formula">...</input>
...

<input id="input-id" type="keyword">...</input>
</Query>

...
</Topics>

Figure 3: Structure of a query stream.

4https://github.com/kiking0501/MathDowsers-ARQMath

https://github.com/kiking0501/MathDowsers-ARQMath

𝑥

2

= 3

𝑥

+ 2 𝑥

↗
→ →

↗

→ → →

Figure 4: Symbol Layout Tree for 𝑥2 = 3𝑥 + 2𝑥 with repetitions highlighted.

Our Task 2 queries do not use keywords, so they are not generated during conversion. In
addition, to search the variant formula corpus, a second processing step augments each query
with text extracted from the LATEX corresponding to the given formula-id.

3. Representing Formulas by Math Tuples

3.1. Math Tuples in Tangent-L

The ability to match formulas is what makes a search engine “math-aware,” though clearly
there are many approaches to implementing this. The mechanism piloted by Tangent [10]
and further developed for Tangent-L [5, 7] is to convert a symbol layout tree (expressed in
Presentation MathML) into a set of features called math tuples. Since last year’s Lab, the set of
features supported by Tangent-L include symbol pairs, terminal symbols, compound symbols,
duplicate symbols, and augmented locations, as shown in Table 1 for the symbol layout tree
depicted in Figure 4. This year we use the same set of features, but restrict the number of tuples
as explained in the remainder of this section.

3.2. Revisiting Tuple Generation for Duplicated Symbols

If a symbol repeats 𝑘 times where 𝑘 > 1, then
(︀
𝑘
2

)︀
duplication tuples (math tuples representing

duplicated symbols) are generated for that symbol. As such,𝑂(𝑛2)math tuples are generated and
indexed for a formula containing 𝑛 symbols. This becomes problematic for large polynomials,
matrices with repeated symbols in the entries, and many other formulas that include one or
more specific symbols many times. In fact, some documents in the ARQMath collection produce
huge numbers of repetitions. As a relatively small example, question post #2274526 includes
the matrix

𝑋 0 1 2
𝑌
0 𝑝0,0 𝑝0,1 𝑝0,2
1 𝑝1,0 𝑝1,1 𝑝1,2
2 𝑝2,0 𝑝2,1 𝑝2,2.

which contains 8 repetitions of 0, 8 repetitions of 1, 8 repetitions of 2, and 9 repetitions of 𝑝,
resulting in 240 duplication tuples and another 240 corresponding location tuples. Including all
these tuples deteriorates ranking performance and bloats the index. (We hypothesize that this
blowup is the reason that based on the ARQMath-2 Lab, we recommend weighting duplication

5These were previously called Repeated symbols [7].

Table 1
Math tuples for the formula in Figure 4.

Tuple Type Math Tuples Generated Remark

Symbol pairs: (𝑥 , 2, ↗) (𝑥 , =, →) Pairs of adjacent symbols with
(= , 3, →) (3 , 𝑥, ↗) connecting edge
(3 , +, →) (+ , 2, →)
{2 , 𝑥, →}

Terminal symbols: (2 , 𝜑) (𝑥 , 𝜑) Symbols with no outedges
(𝑥 , 𝜑)

Compound symbols: (𝑥 , →↗) (3 , →↗) Symbols multiple outedges

Duplicate symbols5: {𝑥, →→↗} {𝑥, →→→→→} Repeated symbols on the same
{𝑥, →→→,↗} {2, →→→→,↗} path or on two paths from a

common ancestor

Augmented locations: (𝑥 , 2, ↗, -) (𝑥 , =, →, -) Every tuple also represented
(= , 3, →, →) (3 , 𝑥, ↗, →→) with its path from the root
(3 , +, →, →→) (+ , 2, →, →→→)
(2 , 𝑥, →, →→→→)
(2 , 𝜑, ↗) (𝑥 , 𝜑, →→→→→)
(𝑥 , 𝜑, →→↗)
(𝑥 , ↗→, -) (3, ↗→, →→)
{𝑥, →→↗, -} {𝑥, →→→→→, -}
{𝑥, →→→,↗, →→} {2, →→→→,↗ , -}

tuples so much lower than other math tuples when scoring how well a query matches a
document [7].)

Two alternatives for limiting the number of tuples generated when a symbol repeats many
times are to limit the number of repetitions to represent (e.g., only extract tuples for all pairs of
the first few occurrences of a symbol in a formula), or to choose a subset of duplication tuples
such that the cardinality is linear in the size of the formula rather than preserving all pairs of
duplicated symbols. For either approach, it is important that small changes to a formula do not
cause radically different tuples to be generated so that query formulas that are close to a corpus
formula can be matched.

After some experimentation with the ARQMath-1 and ARQMath-2 benchmarks, we recom-
mend the latter option: selecting a linear number of duplication tuples. More specifically, we
perform a recursive traversal of the symbol layout tree (being sure to traverse the out-edges
from a node in consistent order) and create a duplication tuple for each adjacent pair of repeated
symbols in post-order. Thus, for the tree in Figure 4, the tuples {𝑥,→→→,↗} and {𝑥,→→↗}
would be produced, but {𝑥,→→→→→} would not be produced because it would reflect a
repetition between the first and third 𝑥 encountered in a post-order traversal. For the example
matrix shown above, this results in 29 duplication tuples plus another 29 corresponding location
tuples, almost a 90% reduction. With this change, duplication tuples can be given the same

weight as the other math tuples generated, removing the need for a tuning parameter to choose
a relative weighting.

A second characteristic of duplication tuples is that they include the repeated symbol in the
first field. However, in many situations when a duplicated variable is matched in a formula,
the specific value for that variable is not important; rather it is the fact that some variable is
repeated with this particular pattern of relative paths. For the example in Figure 4, replacing
the variable 𝑥 by 𝑦 should still be considered a good match.

Thus, instead of storing the specific variable name, it may be better to record that some
variable is repeated with a specific relative path. Similarly, it may be more important to record
that some operator repeats or some number repeats than to record which specific number or
operator is duplicated. To accommodate this, a second modification to duplication tuples is
to augment (or replace) the tuple with one that includes a wildcard that reflects the type of
the symbol that is duplicated. For example, the wildcard equivalents of the selected duplicated
tuples in Table 1 are {?𝑉 , →→↗}, {?𝑉 , ↗,→→→}, and {?𝑁 , ↗,→→→→}, as well as these
tuples augmented with location.

3.3. Revisiting Tuple Generation for Augmented Locations

The bag-of-words model implemented by BM25 scoring means that the order of math tuples
is immaterial. As a result, only the tuples that include locations (the path from the root to
the feature being represented) anchor the feature with respect to the formula. Using the
NTCIR benchmarks, we found that including location tuples improves ranking performance [5],
although it doubles the index space for math tuples and increases the length of all documents
that include formulas. However, at that time we did not explore whether all tuples should be so
augmented or whether the benefit arises from having only some tuples augmented by location.

In fact, the original description states that in addition to indexing math tuples for symbol
pairs: “we recommend including features to reflect terminal symbols, compound symbols,
and locations of symbol pairs” [5], which would generate only the first seven math tuples for
augmented locations in Table 1. However, the implementing code referenced by that paper
augments tuples representing terminal symbols and compound symbols as well! Thus the first
variant is to capture this distinction by allowing a user to specify which subset of the three
types of tuple (symbol pairs, terminal symbols, or compound symbols) should be augmented
with location tuples.

A second observation is that as features appear farther from the root of a query formula, they
are increasingly less likely to be located in exactly the same locations in a closely matching
document formula. Furthermore, those features are increasingly less likely to appear in any
formula, and so when there happens to be a match, the inverse document frequency might be
overwhelmingly high. Thus long location paths might be problematic in two ways: they might
not match when they should and they might strongly match when they shouldn’t. A solution
is to generate augmented location tuples only for features that do not meet or exceed some
maximum path length for their locations. If the cutoff for location paths is set at 4, for example,
then location paths must have fewer than three nodes (and thus, two edges). With this setting,
four of the location tuples shown in Table 1 would not be generated.

A related observation is that math tuples need not be anchored with respect to the root

Table 2
Location tuples for the formula in Figure 4.

Anchored at root only Anchored at root or = operator

(𝑥 , 2, ↗, -) (𝑥 , =, →, -) (𝑥 , 2, ↗, -) (𝑥 , =, →, -)
(= , 3, →, →) (3 , 𝑥, ↗, →→) (= , 3, →, -) (3 , 𝑥, ↗, →)
(3 , +, →, →→) (3 , +, →, →) (+ , 2, →, →→)
(2 , 𝜑, ↗) (2 , 𝜑, ↗)

(𝑥 , 𝜑, →↗)
(𝑥 , ↗→, -) (3, ↗→, →→) (𝑥 , ↗→, -) (3, ↗→, →)
{𝑥, →→↗, -} {𝑥, →→→,↗, →→} {𝑥, →↗, -} {𝑥, →→→,↗, →}
{2, →→→→,↗ , -} {2, →→→,↗ , -}

of the formula only: other locations within the formula might well also serve as anchors for
determining paths. One such set of potential anchors is the set of relational operators (i.e., =,
<, ̸=, ≡, etc.). If relational operators can also serve as anchors, then symbols on the left side
of the equation in Figure 4 would be anchored with respect to the root of the formula, but
those on the right side of the equation would be anchored with respect to the location of the
equality operator. Table 2 contrasts the augmented location tuples for root-only anchors vs.
anchoring at relational symbols as well, assuming that the cutoff location length is set at 4 in
both cases. Notice that all features on the left of the equals sign remain the same, but those
on the right have (in this case) one fewer node preceding them. One side-effect of enabling
additional anchors is that the “relative positions” stored in duplication tuples are now modified
to reflect the fact that there are multiple anchor positions and each symbol is measured with
respect to its nearest ancestor anchor. For example, because its path is measured from the equals
sign, the superscript 𝑥 on the right side is treated as if it were located one step closer to the 𝑥
on the left side. A second side-effect is that more of the location tuples fall within the maximum
path length threshold.

3.4. Converting With the Tuple-Generator

To support this year’s experiments, the mathtuples program released last year was updated to
support the extensions described in the previous two subsections of this paper. The revised
program (Version 2) is now available,6 and its interface is depicted in Table 3.

For each type of math tuple (e.g., symbol pair, terminal symbol), the user can specify whether
or not that tuple should be included and whether or not it should be augmented by a corre-
sponding location tuple. Thus, for example, -T 0 indicates that no terminal symbols should be
included; since all paths from the root include at least one node, -T 1 indicates that terminal
symbols should be included but not augmented with location tuples; because we reserve the
value 99 to represent “unlimited,” -T 99 indicates that terminal symbols should be included
and all should be augmented by location tuples; and (the default) -T 8 indicates that terminal
symbols should be included, and for each terminal symbol tuple, if the path from the root to the
corresponding symbol includes fewer than 8 nodes, it should be augmented by a location tuple.

6https://github.com/fwtompa/mathtuples

https://github.com/fwtompa/mathtuples

Table 3
The math tuple generator.

Optional Arguments Explanation Default

-W size Size of the window for symbol pairs (99 ⇒ unlimited) 1
-S loc_lim Include Symbol pairs* 8
-R loc_lim Include Relationship edge pairs* 0
-T loc_lim Include Terminal symbols* 8
-E loc_lim Include End-of-line symbols* 0
-C loc_lim Include Compound symbols* 8
-L loc_lim Include Long pairs without relationships* 0
-A loc_lim Include Abbreviated relationships for long pairs* 0
-D loc_lim Include Duplicate symbols* 8
-docid tag String preceding each document identifier "<DOCNO>"
-a e|d Enable/disable “equality” operators as anchors e
-c Return the math tuples in context tuples only
-d dups Include duplication tuples for subset of ‘VNOMFRTW’** all
-s Expand all tuples to include wildcard synonyms no expansion
-w wild_dups Include wild dupl’n tuples for subset of ‘VNOMFRTW’** all

*tuple inclusion: (loc_lim ≤ 0) ⇒ include no tuples of this type
(0 < loc_lim < 99) ⇒ augment with location tuples

whenever path has fewer than loc_lim nodes
(loc_lim ≥ 99) ⇒ augment with all location tuples

**node types: V(ariables), N(umbers), O(perations), M(atrices and par-
enthetical expressions), F(ractions), R(adicals), T(ext),
W(ildcard of unknown type)

Specifying which tuples to include for duplicate symbols is more complex because several
options are involved. If -D is specified to be greater than 0, then the argument for -d signals
which tuples should be created for duplication nodes. For example, -d VN specifies that
duplication tuples for Variables and Numbers should be generated with the specific variable
or number that is repeated being included in the first field. Similarly, the argument for -w
signals which tuples with wildcards in the first field should be created for duplication nodes.
For example, -w VOT specifies that duplication tuples for Variables, Operators, and Text should
be generated with the corresponding typed wildcard in the first field. Finally, the argument for
-D indicates whether or not the corresponding location tuples should also be generated.

Other arguments for the tuple generator indicate what window size to use for symbol pairs
(-W) [5], whether (and where) document identifiers are included in the input (-docid), whether
or not relational operators (equality et al.) are to serve as location anchors (-a), whether all
the text outside each MathML expression is to be preserved (-c) or mathtuples only should
be returned without the text within which the math expressions appear, and whether or not
wildcard equivalents for every tuple should be generated (during indexing) so that wildcards in
a query can be matched (-s) [5].

With these changes, every run in this year’s experiments includes the math tuple generator
in its pipeline, using arguments that match the experimental conditions being investigated.

4. Search System Architecture

The goal of the 𝜇TextSearch engine7 is to produce state-of-the-art research level performance
(both efficiency and effectiveness) with a very small amount of code. However, the variant used
here only partially realizes this goal. In particular, query execution efficiency and extreme index
compression have not yet been addressed.

The value in such a search engine is more than just demonstrating that complicated search
engines might not add much value. Having an engine implemented in a small amount of code
also makes it easier to understand the entire engine and, it is hoped, to implement changes. As
such, this engine should make it easier to try new research experiments, as it did for us during
the work presented in this paper.

4.1. Core Search Engine Components

The core 𝜇TextSearch engine is very simple and is constructed as a series of components that
can be implemented (and understood) separately.

The mstrip component removes data that should not be indexed, such as tags and comments.
A command line parameter allows interpretation of queries, converting each to a single line
starting with the query identifier followed by a semicolon and then a list of tokens.

The minvert component splits the input data into documents and then into a stream of tokens
of two types: text (stemmed using the Porter stemmer [11]) and math (each surrounded by #
symbols). Document names and sizes are stored in a dictionary. The tokens are added to their
respective in-memory postings lists stored in another dictionary. To reduce memory fragmenta-
tion, the dictionaries store a copy of the token keys flattened into a set of large sequential byte
arrays. Each in-memory postings list is a byte array that grows by doubling its size and encodes
a header followed by a variable byte (vbyte [12]) compressed list of {delta-id,frequency}
pairs, each indicating the increment for the next document id and the number of occurrences of
the given term in that document. When the input data ends, the document names and sizes
are output, followed by all pairings of tokens with their corresponding postings lists. Since
each postings list is already stored compressed in a byte array, the relevant portion of that array
can be written directly to the output stream. The format of the resulting mindex allows for the
simple implementation of a mmerge component that combines indexes produced from separate
data partitions.

The mencode component reads in an mindex file and outputs an mindex.meta file containing
the total token sizes and a dictionary mapping tokens into the location of the corresponding
postings list within the mindex file. The mindex.meta file allows the search engine to quickly
start processing queries instead of having to read the entire mindex file at startup.

Note that by splitting the indexing into two steps, both the inversion and merge components
are simplified. In addition, multiple variants of the encoding step can be implemented without
changing the previous steps. For example, the vbyte encoding of the mindex file is compact
enough for most purposes, but the encoding step could output the index to a separate file using
a different compression format if needed. For faster query execution, skips over the postings
lists could be added to the mindex or mindex.meta files.

7https://github.com/andrewrkane/mtextsearch

https://github.com/andrewrkane/mtextsearch

extract

construct

construct

mstrip

minvert mmerge mencode

.mindex .mindex.meta

msearch

database

queries results
𝜇TextSearch

Figure 5: Indexing and querying pipelines.

The msearch component takes the mindex and mindex.meta files on the command line and
loads the meta information into memory. Queries are read from stdin, one per line, then the
postings lists’ disk locations are found in the meta dictionary and read into memory. Next, the
query is executed as an exhaustive-OR query,8 and the top-1000 results are written to stdout.

In order to make the core engine “math-aware,” the tokenizer code (shared between the
minvert and msearch components) must recognize the encoded math tuples. Additionally, the
search ranking code must be extended to support the 𝛼 tuning parameter described in Section 4.3.
Finally, to participate in the Lab, the query results must be converted to the specified formats.

4.2. Indexing and Querying Pipelines

Our system comprises several series of processing steps that can be piped together, connecting
stdout from one step to stdin for the next. As a result, the output of any step can also be
easily saved as a file for later reuse. The intermediate files passed from step to step can also be
compressed using gzip and piped to the next step using gunzip -c. The separation of our pipelines
into steps allows some parallel processing, since each step is run in a separate operating system
process. In addition, if the data is extracted in separate partitions, for example by year, then
those partitions can be processed in parallel for many steps, then joined back together later in
the pipeline.

Recall from Section 2 that documents are enclosed by TREC-like tags. With this convention
in mind, the processing steps for indexing, as depicted in Figure 5, are as follows:

1. construct documents : ARQMath data files → trec(html+mathml)
2. extract math features : trec(html+mathml) → trec(html+mathtuples-mathml)
3. core engine indexing

3.1. mstrip unused (tags,comments) : trec(html+mathtuples) → trec(text+mathtuples)
3.2. minvert and compress : trec(text+mathtuples) → .mindex file
3.3. mmerge : (.mindex file)+ → .mindex file
3.4. mencode metadata : .mindex file → .mindex.meta file

8that is, scoring all documents found on all inverted lists associated with query terms

Our query pipeline follows similar steps to indexing. As depicted in Figure 5, the processing
steps for searching are as follows:

1. construct queries : ARQMath query files → xml(qid+text+mathml)
2. extract math features : xml(qid+text+mathml) → xml(qid+text+mathtuples-mathml)
3. core engine searching

3.1. mstrip unused (tags,comments) : xml(qid+text+mathtuples) → (qid+text+mathtuples)*
3.2. msearch : (qid+text+mathtuples)* →.mindex + .mindex.meta queryresults

4.3. Ranking

Unlike Tangent-L which uses BM25+ [6], the msearch engine ranks documents using standard
BM25 [13]. It has been shown elsewhere that this difference does not likely lead to significant
differences in ranking effectiveness [14].

Given a collection of documents 𝐷 containing 𝑁 documents and a query 𝑞 consisting of a
set of query terms, the BM25 score for a document 𝑑 ∈ 𝐷 is defined as the sum of scores for
each query term as follows:

BM25(𝑞, 𝑑) =
∑︁
𝑡∈𝑞

ln

(︂
𝑁 − df 𝑡 + 0.5

df 𝑡 + 0.5
+ 1

)︂
· tf td · (𝑘1 + 1)

tf td + 𝑘1 ·
(︁
1− 𝑏+ 𝑏 ·

(︁
𝐿𝑑
𝐿avg

)︁)︁ (1)

where the log factor is the Inverse-Document-Frequency component with df 𝑡 being the docu-
ment frequency for 𝑡, the number of documents in 𝐷 containing term 𝑡; and the other factor
is the Term-Frequency component with tf td being the term frequency of 𝑡 in document 𝑑; 𝐿𝑑

being the document length; 𝐿𝑎𝑣𝑔 being the average document length; and 𝑘1 and 𝑏 are constants
chosen to be 1.2 and 0.75, respectively, in the absence of specific data training.

Because the scoring function is a sum over the query terms, it can be split into two sums,
one for math terms and the other for text terms, and a weighting parameter 𝛼 can be used to
determine how heavily to rely on matching math terms:

BM25w(𝑞𝑚 ∪ 𝑞𝑡, 𝑑) = 𝛼 · BM25(𝑞𝑚, 𝑑) + (1− 𝛼) · BM25(𝑞𝑡, 𝑑) (2)

where 𝑞𝑚 is the set of math terms in a query 𝑞, and 𝑞𝑡 is the set of text terms in 𝑞. It turns out
that setting an appropriate value for 𝛼 is critical to retrieval effectiveness. Note: the 𝛼 used
here covers all math tuples, as compared to our work from the previous year which split some
math tuples into a separate tuning parameter.

4.4. Calculating Document Lengths

The calculation of BM25 depends on relative document length in the denominator of the term
frequency factor. The rank should reflect the unexpectedness of seeing tf td instances of term 𝑡
in document 𝑑, and the inclusion of 𝐿𝑑

𝐿avg
is intended to reflect the fact that a longer document

can be expected to have a higher term frequency.
In standard search engines, the length of a document 𝐷 is measured by the number of terms

in 𝐷. However, when there are two types of terms (math tuples and text tokens) and the formula

is split into two sums as in Equation 2, should the number of text terms influence the likelihood
of seeing tf td instances of a math tuple and the number of math tuples influence the likelihood
of seeing tf td instances of a text term? Better effectiveness might result from using the number
of math tuples in 𝐷 for the document length (and average document length) when calculating
BM25 for 𝑞𝑚 and from using the number of text terms in 𝐷 when calculating BM25 for 𝑞𝑡.

Disappointingly, this change does not seem to give improved ranking performance with
either the ARQMath-1 or the ARQMath-2 benchmarks.

5. Experimental Results

5.1. Conventions for Naming MathDowser Runs in ARQMath-3

We refer to experimental runs using the following naming convention that reflects the parameter
settings used.

L𝑖: All default values for the math tuple generator are used (Table 1), except that location
tuples are created for symbol pairs, terminal symbols, compound symbols, and duplicate
symbols for paths having fewer than 𝑖 nodes. Thus “L1” has no location tuples, “L8” uses
all default values, and “L99” includes augmented location tuples for all symbol pairs,
terminal symbols, compound symbols, and duplicate symbols.

L𝑖(𝑋1=𝑗1,...,𝑋𝑛=𝑗𝑛): Settings are like L𝑖, but with argument 𝑋𝑘 specified with value 𝑗𝑘. For
example, “L8(D=0)” is like “L8” but with no duplicate symbols (i.e., -D 0) and “L99(a=d,s)”
is like “L99” but with anchoring on equality operators disabled and all wildcard synonyms
included (i.e., -a d -s).

For some experiments, all queries are executed against an index that was created with
different parameters. In this case, the name of the run specifies the query parameters, followed
by “on” and the parameters used for indexing. For example, “L1on8” indicates a run in which
queries use parameters for “L1” against an index that was built using parameters for “L8,” and
“L99(a=d)on99(a=d,s)” indicates a query with parameters for “L99(a=d)” run against an index
built with parameters “L99(a=d,s).”

Note that experiments run in the ARQMath-2 Lab with Tangent-L [7] use a configuration that
is close to, but not identical to, “L99(a=d,w=)on99(a=d,s)”: all four types of tuples are augmented
with arbitrarily long locations, locations are anchored at the root only, duplicate tuples include
the symbol that is duplicated but not the wildcard equivalents, and the index additionally
includes all available wildcard variants (even though these are never used in ARQMath queries).
Tangent-L also includes all possible pairings when generating tuples for duplicate symbols and
creates tuples that attempt to account for commutative operations and symmetric relations,9

but these options have not been made available through the math tuple generator.
In addition to setting parameters for the math tuple generator, a run must set the value of 𝛼

to specify the relative weight of math tuples vs. text terms (Equation 2). This is indicated in the

9The superficial approach for handling commutative operations and symmetric relations considered last year
has negligible effect on performance and is therefore deemed not worth re-implementing.

run’s name by appending “_a0𝑖𝑗” for 𝛼 = 0.𝑖𝑗. For example, “L8_a018” indicates a run using
“L8” for generating math tuples and 𝛼 = 0.18.

5.2. Task 1: Finding Answers to Math Questions

For the main task, participants are given mathematical questions selected from MSE posts from
year 2019 (for ARQMath-1), year 2020 (for ARQMath-2), or year 2021 (for ARQMath-3). Each
question is formatted as a topic that contains a unique identifier, the title, the question body
text, and the tags. Participant systems should return the top-1000 potential answer-posts from
the MSE collection for each of the topics.

0.1 0.2 0.3 0.4 0.5

0.
40

0.
45

0.
50

0.
55

α

nD
C

G
'

(nDCG'=0.457)

●

(0.14,0.513)

−

L8
L8on99(a=d,s)
L99(D=0)on99(a=d,s)
L1on8
previous year

Figure 6: Effect of 𝛼 on performance for ARQMath-1 Task 1 benchmark.

Experiments with the ARQMath-1 and ARQMath-2 benchmarks show that (1) when using
a linear subset of tuples for duplicated nodes, storing both the form with the symbol that is
duplicated and the form with the wildcard equivalent for that symbol gives the best performance;

0.1 0.2 0.3 0.4 0.5

0.
40

0.
45

0.
50

0.
55

α

nD
C

G
'

(nDCG'=0.462)

●

(0.18,0.510)

●

(0.30,0.507)

−

L8
L8on99(a=d,s)
L99(D=0)on99(a=d,s)
L1on8
previous year

Figure 7: Effect of 𝛼 on performance for ARQMath-2 Task 1 benchmark.

and (2) limiting the augmented locations for symbol pairs, terminal symbols, compound symbols,
and duplicate symbols to having fewer than 8 nodes on the locating path outperforms other
settings for locations. Figures 6 and 7 show the results for four of the experiments. (For
comparison, the nDCG’ value of the best performing configuration from 2021 is also included.)

It is apparent from these figures that the value of 𝛼 has a substantial effect on the average
nDCG’ (and, although not illustrated here, on the average MAP’ and P’@10 measures as well).
Examination of the effect of 𝛼 on individual queries reveals that larger values are better for some
queries and smaller values are better for others. However, as in the past [8, 15], we could find
no correlation between the best value for 𝛼 and the number of formulas in a query, the relative
number of text terms in a query, the sizes of query formulas, the frequency of occurrence of
math tokens or their inverse document frequencies, or any other query characteristics. For
now, we have no better approach than choosing a value for 𝛼 heuristically, based on observed

average performance on some training data.
Because re-indexing the corpus is quite time-consuming, our initial experiments varied the

location length cutoff at query time, but ran against an index storing all locations. When we
found that using a cutoff value of 8 improves performance, we created an index with that setting
and found that running queries with cutoff 8 against an index with cutoff 8 (L8) outperformed
running queries with cutoff 8 against an index with all locations stored (L8on99). However, we
found that running queries with cutoff 1 against an index with cutoff 1 (L1) performed worse
than running those queries against an index with cutoff 8 (L1on8)!

We are surprised that using an index containing tuples that are never queried can substantially
alter ranking performance.10 Looking at the BM25 ranking formula, the only explanation can
be that the somewhat increased document sizes and average document size in the larger index
have a noticeable effect on ranking scores. This portion of the ranking algorithm is also affected
by the 𝑘1 and 𝑏 constants (Equation 1), where 𝑏 balances the document length normalization.
Scoring matches instead with Anserini’s default values (namely, 𝑘1 = 0.9, 𝑏 = 0.4)11 [17]
produces similar performance for ARQMath-1, slightly better performance for ARQMath-2, and
slightly worse performance for ARQMath-3. It would seem that, in spite of the disappointing
results reported in Section 4.4, more experimentation regarding how to calculate document
length and the BM25 constants is justified.

Figure 6 indicates that using L8 with 𝛼 ∈ [0.13, 0.20] might be suitable for ARQMath-3: on the
ARQMath-1 benchmark, these achieve improvements of at least 0.05 over last year’s best nDCG’
value. Figure 7 indicates that “L8_a018” may be a good configuration with an improvement near
0.05 over last year’s best nDCG’ value for the ARQMath-2 benchmark. To vary our submitted
runs, we also include “L8_a014” to cover the range indicated by the ARQMath-1 benchmark.

Surprisingly, “L1on8” performs almost as well on the ARQMath-2 benchmark, even though it
does not perform very well on the ARQMath-1 benchmark. In case the ARQMath-3 benchmark is
more similar to the latter than it is to the former, we include “L1on8_a030” as another alternative.

In summary, for ARQMath-3, we prepared three automatic runs:

L8_a018: The primary submitted run with all default values for the math tuple generator
(including augmented location tuples for paths having fewer than 8 nodes and 𝛼 = 0.18;

L8_a014: An alternate run that uses the same setup as the primary run, but with 𝛼 = 0.14;
and

L1on8_a030: An alternate run that indexes the corpus using the default values (including
location tuples for paths having fewer than 8 nodes), but searches it with no location
tuples generated for the queries (i.e., “L1” for querying but “L8” for the index). For this
configuration, 𝛼 is set to 0.30.

The results of these runs for all three years are shown in Table 4. In general, after parameter
selection based on the ARQMath-1 and ARQMath-2 benchmarks, our updated system produces

10This may be a similar effect to changes in ranking performance observed by others after text cleaning, i.e.,
removing various forms of non-content-related markup [16].

11These are also the values used to compare BM25 implementations [14].

Table 4
Task 1: Evaluation of the MathDowsers runs in three years’ ARQMath Labs and the best runs for other
participants in ARQMath-3. Italics indicate MathDowser runs for which parameters were tuned on the
same data.

ARQMath-1 (77 Topics) ARQMath-2 (71 Topics) ARQMath-3 (78 Topics)
nDCG′ MAP′† P′@10† nDCG′ MAP′† P′@10† nDCG′ MAP′† P′@10†

MathDowsers
¶L8_a018 0.511 0.261 0.307 0.510 0.223 0.265 0.474 0.164 0.247
*L8_a014 0.513 0.257 0.313 0.504 0.220 0.265 0.468 0.155 0.237
*L1on8_a030 0.482 0.241 0.281 0.507 0.224 0.282 0.467 0.159 0.236

MathDowsers (year 2021)
duplicateTerms 0.457 0.207 0.267 0.462 0.187 0.241 0.447 0.159 0.236
¶primary 0.433 0.191 0.249 0.434 0.169 0.211 - - -

holisticSearch 0.405 0.192 0.266 0.414 0.167 0.225 - - -
*proximityReRank 0.373 0.117 0.131 0.335 0.081 0.049 - - -

MathDowsers (year 2020)
*alpha05-noR 0.345 0.139 0.162 - - - - - -
*alpha02 0.301 0.069 0.075 - - - - - -
*alpha05-trans M 0.298 0.074 0.079 - - - - - -
¶alpha05 0.278 0.063 0.073 - - - - - -
*alpha10 0.267 0.063 0.079 - - - - - -

Best runs for each other participating team (year 2022)
¶Approach0 M 0.462 0.244 0.321 0.460 0.226 0.296 0.514 0.219 0.349
¶MSM 0.422 0.172 0.197 0.381 0.119 0.152 0.504 0.157 0.241
¶MIRMU 0.466 0.246 0.339 0.487 0.233 0.316 0.498 0.184 0.267
¶TU-DBS 0.446 0.268 0.392 0.454 0.228 0.321 0.436 0.158 0.263
¶DPRL 0.508 0.467 0.604 0.533 0.460 0.596 0.283 0.067 0.101
*DPRL 0.587 0.519 0.625 0.582 0.490 0.618 0.278 0.055 0.022
¶SCM 0.254 0.102 0.182 0.197 0.059 0.149 0.257 0.060 0.119

Hybrids of primary runs
Approach0400+MSM M - - - - - - 0.594 0.234 0.345
MIRMU500+L8_a018 - - - - - - 0.554 0.201 0.267

¶ submitted primary run * submitted alternate run M manual run † using H+M binarization

results that have a statistically significant (p<.001)12 improvement in nDCG’, and substantially
improved results for MAP’ and P’@10 compared with those from last year’s system over the
previous two years’ topics.

Although the performance of the system is nearly identical for ARQMath-1 and ARQMath-2,
it apparently deteriorates slightly for all three configurations and with respect to all three
effectiveness measures when used with the ARQMath-3 benchmark. Nevertheless, all three

12Throughout this section, statistical significance is determined by a paired t-test comparing the nDCG’ scores
for individual queries, assuming those scores are normally distributed. The p value indicates the likelihood that
there is no difference in the average value over all possible queries.

runs significantly outperform a run using last year’s Tangent-L configuration (duplicateTerms,
but run on this year’s corpus), with p=.002, p=.018, and p=.016, respectively. The changes
introduced this year are indeed effective in improving ranking performance.

The apparent deterioration in performance might be caused by the parameter values being
overfit to the training data. However, an examination of the setting of 𝛼 for L8 and L1on8 shows
performance curves shaped essentially like those in Figure 7, but with uniformly lower nDCG’
values. We conclude that the choice of 𝛼 is appropriate (at or near the peak performance), and
so not overfit to the training data.

Comparing to other systems, we find that Approach0, which outperformed our system
on Task 2 last year, also outperforms our system on Task 1 this year, as do runs from MSM
and MIRMU. The differences in nDCG’ scores (as compared to L8_a018) on the ARQMath-3
benchmark are statistically significant for Approach0 (p=.029) and for MSM (p=.037), but not for
MIRMU (p=.103). Similarly, the difference in performance with respect to TU-DBS is statistically
significant (p=.031).

The nDCG’ scores vary substantially from topic to topic (with L8_a018 having a low of 0.028
for Topic A.327, a high of 0.781 for topic A.325, a mean of 0.474, and standard deviation of 0.165).
With a closer look at the effectiveness breakdown by topic category in Table 5, we observe that,
in spite of a different set of math topics being evaluated, the observed strengths and weaknesses
are not much different from those of our best participant runs from previous years [4, 7], where
we found that Text, Both, Concept, and Medium queries lagged the average nDCG’ performance.
Nevertheless, it appears that the system’s performance substantially improves for topics that
depend primarily on text and for topics concerned with mathematics of medium difficulty, and
that it performs very well on topics fitting the new category Proof and Concept. A possible
hypothesis that the decrease in performance is due to the increase in topics of medium difficulty
(now 43 of 78 judged queries) is thus unjustified. There is a moderate correlation (with Pearson
coefficient of 0.573), however, between the number of judged answers among the top-1000
results from L8_a018 and nDCG’; perhaps the scores would be higher if more of our submitted
answers had been judged.

Table 4 shows that on the ARQMath-2 benchmark, some systems outperform others with
respect to P’@10 yet have poorer nDCG’ ratings. In light of the fact that ensemble runs often
perform better than their constituent systems [18], this leads us to propose an alternative
ensemble scheme: combine two runs by taking the top-𝑘 from the first run and the remainder
from the second run (with duplicates removed and results limited to 1000). When exploring this
simple approach on the primary runs of the different teams, we note that the nDCG’ values
improve substantially with 𝑘 values as high as 500. Two example hybrid runs are presented at
the bottom of Table 4, giving the hybrid configurations with the best nDCG’ scores from our
exploration containing either a manual run or two automatic runs. We acknowledge that these
particular hybrid configurations may be overfit to the ARQMath-3 benchmark, but note there
are improvements from all combinations we explored between group runs. There seems to be no
substantial gain from combining two of our own runs, so the inter-team nDCG’ improvement
implies that the various teams’ runs include many non-overlapping relevant results. Continued
exploration of ensemble methods is certainly warranted.

Table 5
Category performance of the L8_a018 run in ARQMath-3. The best performance measure for each
sub-category and each evaluation measure is highlighted in bold.

Topic L8_a018
Count nDCG′ MAP′ P′@10

Overall 78 0.474 0.164 0.247

Dependency
Text 10 0.544 0.144 0.190
Formula 22 0.516 0.231 0.354
Both 46 0.439 0.137 0.209

Topic Type
Computation 21 0.481 0.202 0.286
Concept 16 0.491 0.151 0.244
Proof 36 0.455 0.147 0.222
Proof and Concept 5 0.536 0.175 0.280

Difficulty
Low 17 0.489 0.226 0.312
Medium 43 0.472 0.147 0.233
Hard 18 0.467 0.149 0.222

5.3. Task 2: In-context Formula Retrieval

For Task 2, participants are asked to retrieve the top matching formulas, together with their
associated posts, for each formula query chosen from the set of topics used for Task 1. As in
2021, the relevance of a retrieved formula is evaluated in context: both the associated post of
a retrieved formula and the associated topic content of the formula query are presented to
the assessors for evaluation. Assessments are then aggregated so that each visually distinct
formula is assigned the maximum of the relevance scores of the instances for that formula in
context. Thus, if any instance is judged to be relevant, the formula is deemed to be relevant:
the performance of a system is determined by its performance with respect to visually distinct
formulas only.

For ARQMath-3, we include three automatic runs:

L8: The primary submitted run over a corpus of visually distinct formulas only (thus 𝛼 is not
needed, as there are no text terms), with the default settings for the math tuple generator;
for each matching visually distinct formula, we simply return the first formula_id and
post_id we encounter for that formula during our extraction;

L8_a035: An alternate run with the same settings as the primary run, but running over a
corpus of visually distinct formulas augmented with text extracted from the LATEX encoding
and 𝛼 = 0.35, the value that maximized nDCG’ for ARQMath-1; and

L8_a040: An alternate run with the same setup as above, but with 𝛼 = 0.40, the value that
maximized nDCG’ for ARQMath-2.

Table 6
Task 2: Evaluation of MathDowsers runs, the best participant runs, and baseline runs. Italics indicate
MathDowser runs for which parameters were tuned on the same data.

ARQMath-1 ARQMath-2 ARQMath-3
nDCG′ MAP′† P′@10† nDCG′ MAP′† P′@10† nDCG′ MAP′† P′@10†

Baseline
Tangent-S 0.691 0.446 0.453 0.492 0.272 0.419 0.540 0.336 0.511

MathDowsers
L8_a040 (cleaned) M - - - - - - 0.682 0.485 0.601
L8_a035 (cleaned) M - - - - - - 0.681 0.485 0.601
L8 (cleaned) M - - - - - - 0.672 0.477 0.601

*L8_a040 0.657 0.460 0.516 0.624 0.412 0.524 0.640 0.451 0.549
*L8_a035 0.659 0.461 0.516 0.619 0.410 0.522 0.640 0.450 0.549
¶L8 0.646 0.454 0.509 0.617 0.409 0.510 0.633 0.445 0.549

MathDowsers (year 2021)
¶formulaBase 0.562 0.370 0.447 0.552 0.333 0.450 - - -
*docBase 0.404 0.251 0.386 0.433 0.257 0.359 - - -

Best runs for each other participating team (year 2022)
¶Approach0 M 0.647 0.507 0.529 0.652 0.471 0.612 0.720 0.568 0.688
¶DPRL 0.648 0.480 0.502 0.569 0.368 0.541 0.694 0.480 0.611
*DPRL 0.733 0.532 0.518 0.550 0.333 0.491 0.575 0.377 0.566
*XYPhoc 0.492 0.316 0.433 0.448 0.250 0.435 0.472 0.309 0.563
¶JU_NITS 0.238 0.151 0.208 0.178 0.078 0.221 0.161 0.059 0.125

Best participant run (year 2021)
*Approach0 M 0.507 0.342 0.441 0.555 0.361 0.488 - - -
*DPRL 0.738 0.525 0.542 0.445 0.216 0.333 - - -

Best participant run (year 2020)
*DPRL 0.563 0.388 0.436 - - - - - -

¶ submitted primary run * submitted alternate run M manual run † using H+M binarization

The results of all three runs over the three years’ benchmarks are shown in Table 6, together
with the baseline run, the best participant runs during the previous years’ Labs, and the best run
from each team for ARQMath-3. The differences in the nDCG’ values among the best runs from
each participating team are all statistically significant (p<.05), except that the difference between
the best run from Approach0 and that from DPRL is not statistically significant (p=.106).

The three unsubmitted MathDowser runs, annotated as “cleaned,” manually correct an
oversight in processing the ARQMath-3 queries, where several of the SLT formulas include
invalid MathML (namely, instances of &, <, and > symbols that are not escaped). For all three
configurations, performance is improved after cleaning: not enough to change the rankings,
but the differences in performance of L8_a040 (cleaned) with respect to DPRL and Approach0
are no longer statistically significant (p=.243 and p=.053, respectively).

The improvements to the selection of math tuples this year results in L8 achieving better

scores on the ARQMath-1 and ARQMath-2 benchmarks than any of last year’s systems, includ-
ing Tangent-L’s formulaBase approach which similarly searches a corpus of visually distinct
formulas. Comparing the three MathDowser runs, however, shows that including text from
the LATEX encoding of the formulas further improves performance, with statistically significant
differences (p=.009 for latex_L8_a040 and p=.026 for latex_L8_a035). The success of the Ap-
proach0 team, which augments query formulas with manually chosen text terms, supports the
hypothesis that augmenting math tuples with suitably chosen text is beneficial. We recommend
exploring the inclusion of text terms that appear within formulas for Task 1, where some
benefit might also accrue from cross-matching extracted text with terms found elsewhere in
the documents.

It is possible that the approach of arbitrarily choosing a single instance of each formula to
be assessed is overly naive. Perhaps choosing candidate instances for assessment based on
matching text, or even just presenting additional candidate instances chosen at random, would
have resulted in more favourable assessments for the formulas matched by our system and
thus higher scores. Unfortunately, this hypothesis can only be tested by performing additional
assessments.

5.4. Efficiency

All experiments were run on a Mac OSX 10.11.6 laptop with an Intel Core i7-4770HQ Processor
(4 Cores 8 Threads, 2.2GHz up to 3.4Ghz) and 16GB RAM with a 256GB flash disk.

Preparing the data for Task 1 using the L8 configuration is quite time-consuming, but the
indexing itself is relatively efficient, as shown in the following table:

Step Processing See Section Indexing Speed (sec)

1. Construct - generate corpus 2.1 46581
2. Extract math tuples 3.4 15272
3a. mstrip 4.1 2376
3b. minvert 4.1 4176
3c. mencode 4.1 154

Clearly, many steps in our indexing pipeline can take a long time to run. However, the data
can be partitioned so that most individual steps can be split and run in parallel. In addition,
multiple steps can run in parallel, each as a separate process. For the experiments presented in
this paper, we used the same constructed output stored in compressed files, so step 1 needs to
be re-run only when the data itself changes.

The corpus construction steps for Task 1 output 15.9GB of data, which compresses down to
1.6GB using gzip. The resultant index size includes 1.9GB output from minvert, plus an additional
174MB of metadata output from mencode. This encoding step allows the msearch process to
load the index information in less than one second. Currently the msearch exhaustive-OR query
execution is slow: to run all 298 queries from the three ARQMath years on this L8 index requires
3326 seconds giving an average of 11 seconds per query.

6. Conclusions and Further Work

Replacing Tangent-L by a new search engine proved to be fairly straightforward, and the
particular search engine we used proved itself to be effective. The indexing and query pipelines
that we describe in this paper can be used with any search engine to make it “math-aware”
and suitable for addressing both Task 1 and Task 2. Furthermore, using compressed data
between each step of the indexing pipeline is a straightforward technique that greatly improves
the efficiency of experiments when intermediate results are reused. There are also several
opportunities to improve the engine’s efficiency, including more compact representations for
postings lists, smarter algorithms for combining postings lists, and incorporation of parallel
and distributed engine technology.

Comparing this year’s results to experiments from previous years shows that trying to match
too many features for each formula can be detrimental to effectiveness, as well as wasting space
in the index and processing time to make those matches. Furthermore, we have shown that the
choice of the tuning parameter 𝛼 to balance the weight of math tuples against conventional text
terms is crucial to effectiveness, and the optimal value depends on parameter settings used for
generating tuples. Unfortunately, determining which characteristics of the data and the queries
affect the optimal value of 𝛼 remains somewhat of a mystery, and thus further work is required
to understand the dependency.

We believe that we have now pushed the traditional IR approach as far as we can, and
that substantial gains in effectiveness will require new techniques rather than merely better
tuning of the parameters we have introduced. Because 𝛼 is tuned based on experiments using
earlier benchmarks, choosing an appropriate value tailored to each query may be a perfect
opportunity to apply machine learning to improve math-aware search systems. Ensemble
methods to combine the results from several diverse approaches also holds much promise.

Acknowledgments

The NTCIR Math-IR dataset used as a source of relevant keywords when translating topics to
queries for Task 1 [4] was made available through an agreement with the National Institute of
Informatics. We thank the anonymous ARQMath participant reviewers for their constructive
comments, which helped us to improve the explanations in this paper.

References

[1] B. Mansouri, V. Novotný, A. Agarwal, D. W. Oard, R. Zanibbi, Overview of ARQMath-3
(2022): Third CLEF lab on Answer Retrieval for Questions on Math, in: CLEF 2022, volume
13390 of LNCS, Springer, 2022.

[2] R. Zanibbi, D. W. Oard, A. Agarwal, B. Mansouri, Overview of ARQMath 2020 (updated
working notes version): CLEF lab on answer retrieval for questions on math, in: CLEF
2020, volume 2696 of CEUR Workshop Proceedings, 2020.

[3] B. Mansouri, R. Zanibbi, D. W. Oard, A. Agarwal, Overview of ARQMath-2 (2021): second

CLEF lab on answer retrieval for questions on math, in: CLEF 2021, volume 12880 of LNCS,
Springer, 2021, pp. 215–238.

[4] Y. K. Ng, D. J. Fraser, B. Kassaie, F. W. Tompa, Dowsing for math answers, in: CLEF 2021,
volume 12880 of LNCS, 2021.

[5] D. J. Fraser, A. Kane, F. W. Tompa, Choosing math features for BM25 ranking with
Tangent-L, in: DocEng 2018, 2018, pp. 17:1–17:10.

[6] Y. Lv, C. Zhai, Lower-bounding term frequency normalization, in: CIKM’11, 2011, pp.
7–16.

[7] Y. K. Ng, D. J. Fraser, B. Kassaie, F. W. Tompa, Dowsing for math answers to math questions:
Ongoing viability of traditional MathIR, in: CLEF 2021, volume 2936 of CEUR Workshop
Proceedings, 2021.

[8] Y. K. Ng, Dowsing for Math Answers: Exploring MathCQA with a Math-aware Search
Engine, Master’s thesis, University of Waterloo, Cheriton School of Computer Science,
2021.

[9] S. Büttcher, C. L. A. Clarke, G. V. Cormack, Information Retrieval - Implementing and
Evaluating Search Engines, MIT Press, 2010.

[10] D. Stalnaker, Math expression retrieval using symbol pairs in layout trees, Master’s thesis,
Rochester Institute of Technology, Golisano College of Computer and Information Sciences,
2013.

[11] M. F. Porter, An algorithm for suffix stripping, Program: Electron. Lib. and Infor. Sys. 14
(1980) 130–137.

[12] H. E. Williams, J. Zobel, Compressing integers for fast file access, Comput. J. 42 (1999)
193–201.

[13] S. Robertson, H. Zaragoza, The probabilistic relevance framework: BM25 and beyond,
Foundations and Trends in Information Retrieval 3 (2009) 333–389.

[14] C. Kamphuis, A. P. de Vries, L. Boytsov, J. Lin, Which BM25 do you mean? A large-scale
reproducibility study of scoring variants, in: ECIR 2020, Part II, volume 12036 of Lecture
Notes in Computer Science, Springer, 2020, pp. 28–34.

[15] D. J. Fraser, Math Information Retrieval using a Text Search Engine, Master’s thesis,
University of Waterloo, Cheriton School of Computer Science, 2018.

[16] D. Roy, M. Mitra, D. Ganguly, To clean or not to clean: Document preprocessing and
reproducibility, ACM J. Data Inf. Qual. 10 (2018) 18:1–18:25.

[17] P. Yang, H. Fang, J. Lin, Anserini: Enabling the use of lucene for information retrieval
research, in: SIGIR 2017, ACM, 2017, pp. 1253–1256.

[18] V. Novotný, P. Sojka, M. Štefánik, D. Lupták, Three is Better than One Ensembling Math
Information Retrieval Systems, in: CLEF 2020, volume 2696 of CEUR Workshop Proceedings,
2020.

	1 Introduction
	2 Document and Query Construction
	2.1 Document Corpus for Task 1
	2.2 Document Corpus for Task 2
	2.3 Query Formation

	3 Representing Formulas by Math Tuples
	3.1 Math Tuples in Tangent-L
	3.2 Revisiting Tuple Generation for Duplicated Symbols
	3.3 Revisiting Tuple Generation for Augmented Locations
	3.4 Converting With the Tuple-Generator

	4 Search System Architecture
	4.1 Core Search Engine Components
	4.2 Indexing and Querying Pipelines
	4.3 Ranking
	4.4 Calculating Document Lengths

	5 Experimental Results
	5.1 Conventions for Naming MathDowser Runs in ARQMath-3
	5.2 Task 1: Finding Answers to Math Questions
	5.3 Task 2: In-context Formula Retrieval
	5.4 Efficiency

	6 Conclusions and Further Work

