CEUR-WS.org/Vol-3180/paper-09.pdf

Applying Structural and Dense Semantic Matching for
the ARQMath Lab 2022, CLEF

Wei Zhong'?, Yuqing Xie*? and Jimmy Lin?

!(two authors contributed equally to this work)
’David R. Cheriton School of Computer Science, University of Waterloo

Abstract

This work describes the participation of our team in the ARQMath 2022 Lab, where we have applied two
highly complementary methods for effective math answer and formula retrieval. More specifically, a
lexical sparse retriever (Approach Zero) capable of first-stage structure matching is combined with a
fine-tuned bi-encoder dense retriever (ColBERT) to capture contextual similarity and semantic matching.
The dense retrieval model is further pretrained to adapt to math domain content containing KIEX tokens.
In the Open Domain QA task, we take an extractive approach and filter sentences using heuristic
rules applied to top-ranked answers returned from our retrievers. We provide an analysis of both the
effectiveness and efficiency of our models. In this contest, our effectiveness is ranked at the top among
all three tasks.

Keywords

Mathematics information retrieval, structure search, dense retrieval, math-aware search.

1. Introduction

The steady growth of scientific publications and the need to retrieve math-related content by
formulas have attracted the attention of many researchers into the Mathematics Information
Retrieval (MIR) field recently. The core task in MIR is to retrieve relevant information from
documents that contain math formulas. However, the heterogeneous data presented in math
content (including rich-structured formulas and their textual context) require special treatment
to create a truly effective search engine. The difficulty arises not only because the usage of math
notation demands a special tokenizer for processing, but also because of the rich structures and
special semantic properties implied by math languages such as expression commutativity and
symbol substitution equivalence. Furthermore, the general challenge in understanding math
content in MIR imposes another hurdle compared to other IR tasks.

The ARQMath Labs have been one of the few tasks facing this challenge. The ARQMath-1
(2020) [1] and ARQMath-2 (2021) [2] include two tasks: Task 1 is a Community Question and
Answer (CQA) task that asks to retrieve relevant answer posts from a limited set of Math
StackExchange (MSE)' corpus between the year 2010 to 2018, given queries of real-world
questions sampled from later-year MSE threads. Task 2 is a formula-centered task where it asks
to return relevant formulas (considering their context) in the documents given one specified

CLEF 2022: Conference and Labs of the Evaluation Forum, September 5-8, 2022, Bologna, Italy
Q w32zhong@uwaterloo.ca (W. Zhong); yuqing.xie@uwaterloo.ca (Y. Xie); jimmylin@uwaterloo.ca (J. Lin)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
=1 CEUR Workshop Proceedings (CEUR-WS.org)
'https://math.stackexchange.com/

mailto:w32zhong@uwaterloo.ca
mailto:yuqing.xie@uwaterloo.ca
mailto:jimmylin@uwaterloo.ca
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://math.stackexchange.com/

query formula appeared in a Task 1 topic. To encourage formula diversity, this task requires at
most 5 visually distinct formulas to be returned, otherwise, the result will not be judged. This
time, i.e., ARQMath-3, an additional Open Domain QA task (Task 3) has been introduced. Task
3 requires participants to return a single answer for each topic in Task 1, and the answer can
be automatically generated or extracted from existing data, potentially outside the ARQMath
collection.

To deal with formulas in math content, not only do the structured expressions need to be paid
special attention to but also the context where a math formula occurs needs to be considered for a
better understanding of the formula itself. Moreover, the context helps to discover math formula
similarities even if formulas look different in structure. This resembles the synonym issue in
regular full-text retrieval, where exact lexical matching prevents the return of semantically
relevant documents having only synonyms to the query keywords. In both cases, recent studies
using bi-encoder dense retrieval models [3, 4, 5, 6, 7, 8] have shown success for in-domain
effectiveness and the ability to discover semantic similarities even if content lacks of lexical
agreement. On the other hand, the structure of math formulas itself is an important aspect of
similarity in MIR. For example, being a large substructure of another math expression is a good
indicator of similarity.

In this work, we combine a structure-aware search engine with a bi-encoder dense retriever
(See Lin [9] for this classification) to capture both the important structure similarity and semantic
similarity. According to our recent findings [10], we adopt the ColBERT model [4] due to its
high effectiveness demonstrated in our evaluation of previous MIR tasks.

2. Related Work

Early work on MIR simply applies specialized tokenizers to handle math formulas [11]. Later,
different intermediate tree representations are utilized to extract features for capturing structure
similarities.

The Operator Trees (OPT) representation represents a math formula by identifying operators
and operands in the expression, and constructing a tree recursively where each internal node is
the operator of its children’s operands. To our best knowledge, Hijikata et al. [12], Yokoi and
Aizawa [13] are the first to use the OPT representation for math retrieval. They extract leaf-root
paths from OPT (alternatively in representational MathML) as features that are invariant to
operand positional mutation (e.g., due to commutativity) for retrieval. Later, Zhong et al. 14, 15]
extend OPT leaf-path matching to more strict structure matching with real-time efficiency.
Their system (i.e., Approach Zero) defines a meaningful metric for formula structure similarity
by finding the maximum common subtree(s) between two math formula OPTs. This approach
has achieved the best effectiveness for the formula search task in the ARQMath 2021 [2].

On the other hand, the Symbol Layout Tree (SLT) [16, 17] represents a lower level structure
semantics for math formulas. Similar to the BIEX representation, it only captures the layout
or the topology of a formula. This creates an advantage of little ambiguity in parsing. SLT is
adopted as the main representation by a line of MIR works, e.g., the Tangent and Tangent-S
systems [18, 19, 20], and the Tangent-L or the MathDowsers system [21, 22, 23, 24, 25]. Local

?Approach Zero or approach0 gets its name from the word “asymptotics”, the core concept to define a limit.

features such as symbols on adjacent nodes or nodes within a distance window and their spatial
relations are together tokenized into math tuples® and used for retrieval. As an example, the
up-to-date MathDowsers system extracts more than five types of features from SLT [25].

There are other systems such as the MCAT system [26] and the Tangent-S system [27] which
incorporate both SLT and OPT representations. Both use linear regression to interpolate scores
contributed from SLT and OPT features. The Tangent-CFTED system [28], an upgraded version
of Tangent-S, further applies the FastText algorithm [29] to learn structural embeddings from
SLT and OPT local features for candidate retrieval, then it reranks them by tree edit distance.

More recently, Transformer models for MIR have entered the MIR domain. Although it
has been shown Transformer-based language model may still be relatively weak at math
tasks [30, 31], these Transformer models have nevertheless demonstrated their good effectiveness
at MIR. The MathBERT model [32], evaluated on the NTCIR-12 collection [33], introduces
structure mask pretraining on top of the pretraining objectives used in BERT [34, 35]. It uses
the last two layers’ feature vectors for reranking. The previous ARQMath tasks [1, 2], however,
have witnessed more widespread use of deep models in MIR. Among them, Novotny et al.
[36, 37] use a SentenceBERT-based Transformer (i.e., CompuBERT) [38] to regress QA pair
scores based on user-generated data in the original MSE thread. And Rohatgi et al. [39, 40]
reranks search results using the full token embeddings generated from a pretrained RoOBERTa
Transformer. The DPRL QASim method [41] uses two Transformers as similarity assessors, one
question-question SentenceBERT [38] assessor pretrained on the Quora website and fine-tuned
using related/duplicate links on the MSE website, as well as a question-answer TinyBERT [42]
assessor pretrained on the MS-MARCO dataset [43] and fine-tuned on the ARQMath-1 training
data. The similarity produced by QASim is a product of these two assessor scores where the
question-question model evaluates the topic question and the question to which the document
answer is given. Similarly, the TU_DBS systems [44, 45] uses a cross encoder as a major model in
the ARQMath 2021, moreover, they apply the deep model to the Task 2 of formula retrieval. For
the backbone model, they use an ALBERT Transformer [46] further pretrained on the ARQMath
corpus directly with a 512 maximum token input.

However, the aforementioned models are either mostly cross encoders that require a full
pass through the Transformer model to evaluate a pair of query and document, or they only
use pretrained model embeddings without finetuning for better QA similarity assessment. As
a result, they have to either only evaluate partial collections (e.g., considering only answers
shared at least one tag with the topic), or use a simplified model architecture (e.g., using the
TinyBERT or ALBERT instead) for fast inference on the million-scale ARQMath dataset. Prior to
this ARQMath-3 Lab, to our best knowledge, only the CompuBERT model [36, 37], the ColBERT
model [4] explored by the TU_DBS system [45], and our recent work [10] have used fine-tuned
bi-encoder Transformer models (which are practically efficient) in the MIR domain. In this
work, we will incorporate the ColBERT model into our structure-aware search system Approach
Zero [14, 15] for the ARQMath-3 Lab.

’See an open-source parser package for examples: https://github.com/fwtompa/mathtuples

https://github.com/fwtompa/mathtuples

Figure 1: Operator Tree representation for formula “U,, = n? + n” (Topic B.285). Operator and leaf
(i.e., operand) are denoted by circle and box respectively. In order to improve recall, operands with or
without subscript (sub) or superscript (sup) are represented canonically under a subsup token.

3. Models

3.1. Lexical and Structural Search

Similar to our approach in the ARQMath 2021 [47], we use the Approach Zero system [14, 15]
for searching for lexical text words and structural math formulas. Approach Zero constructs a
customized OPT representation internally to extract structure features, specifically, it uses leaf-
root path extracted from OPT and their path prefixes as “keywords”. Figure 1 shows an example
of OPT we use for representing an ARQMath topic formula. Compared to the representation we
use in 2021 [47], it no longer requires a “sign” node on top of an operand, instead, we downplay
its importance and include the operand sign into the “fingerprint” of the path where symbols
are hashed into a single value to be scored and counted for symbol similarity rather than for
structure similarity. Moreover, we have fixed a few inconsistencies in the grammar reduction
rules which we use to construct the OPT tree. These engineering aspects of improvements,
including a few bug fixes, turn out to greatly impact the effectiveness.

Given extracted leaf-root paths (and their prefixes), we tokenize all the nodes along each path
to boost search recall. These paths are used as the vocabulary keys in a specialized inverted
index [15] for mapping any query path (extracted from the OPTs of query formulas using the
same way) to the corresponding posting lists which store relevant document path information.
More specifically, each posting list item includes document ID, root-end node IDs, formula ID,
formula length, the frequencies of paths under each subtree, leaf-end symbols (i.e., operand
symbols), and path fingerprints. The matched query and document paths are evaluated one
formula at a time at query processing.

For structure similarity, we calculate a common structure score w(Q(™), D) of node m
in query formula () and node n in document formula D by summing the number of common

paths under each substructure and weighted by a path idf [47]:

PathIDF, = log — (1)
p dfp

where N is the total number of paths in the index and df), is the document frequency of path

p. The overall structure score w*(Q, D) is given by the maximum common structure score

between query and document formulas:

w*(Q, D) = max w(Q™, D™)

= max Z min(‘ th) @
;1 p

p{"

) - PathIDF,

9

where ‘ng) ‘ and ‘Dgn) ‘ are the number of paths which have the same tokens (or vocabulary

key) t under query node m and document node n respectively, and we look up them at retrieval
time by grouping hit document paths by their root-end nodes and their (indexed) frequency of
path ¢. The modeled structure similarity w*(Q, D) can also be viewed as the sum of path idf in
the largest common subtree between query and document formula OPTs. This resembles the
tf—idf scoring except for the “term frequency” here counts for common structure “width”, i.e.,
the number of matched leaves in the common subtrees.

In addition to the aforementioned structure weight, we multiply a few other factors to the
path idf for the final similarity score. First, paths in the maximum common structure are paired
by their symbols (if they have the freedom to match another path of a different symbol in the
counterpart). Then, the operand symbol and the fingerprint value associated with each path
will determine the symbol score by summing the match points by the following rules:

+ 1 point if both the operand symbol and the fingerprint match
« alower point b; if only operand symbol match
« a nonzero base point by otherwise (by < b1)

where the fingerprint is a hash value of the symbols of up to 4 operator nodes on top of the path
leaf, it also takes into account the sign value (i.e., 1, —1) induced for each operator (this includes
the sign of the operand itself since the sign of an operand is induced into the subsup node which
is always placed on top of an operand). A greedy matching algorithm MarkAndCross [48] is
used to pair them such that a higher number of points is likely achieved, then we normalize it
with the number of matched paths and produce the (normalized) symbol score S,,,. For query
formula () and document formula D, the final symbol score factor we multiply is a rescaled

version: 1
Ssym(QvD | w) = 1 _|_ (1 _ S/)2 (3)

sym

Second, we add penalties to long formulas in a document. Assume the original formula length
is Lp, the penalty P(D;n) is parameterized by n € [0, 1]:

1
P(D;n)zl—nJrn-log((4)

1+ Lp)

Finally, the overall formula score for math formula similarity S(Q, D) is given by
S(Q, D) = wH(@Q, D) - Ssym(Q, D | ") - P(D;1) ()

This scoring process is accelerated by the GBP-LEN dynamic pruning strategy [15].

To handle text keywords, we adopt the BM25+ scoring schema [49]. The overall score in
Approach Zero is a weighted sum (using a math path weight [47] to weigh a math match over
text-word match) of all partial scores obtained by BM25+ in normal text keywords and those by
formula scoring in formula keywords.

3.2. ColBERT

The ColBERT model [4] is a dense retrieval model based on a BERT backbone. It is considered a
bi-encoder model because it has two independent encoders, i.e., a query encoder and a document
encoder. The interaction between them is deferred until the similarity scoring takes place, and
this similarity is only dependent on their encoded embeddings and it is calculated using the
MaxSim operation [4]. In addition, unlike other dense retrievers that use passage-level [CLS]
embedding, the ColBERT model preserves all output embeddings associated with each token.
However, to reduce space footprint and speed up indexing, ColBERT pools each BERT output
into a smaller dimension embedding (d = 128 by default). Because each output embedding is
pretrained for the MLM objective [35], they represent fine-grained contextualized semantics for
individual tokens. This also makes ColBERT easier to visualize the contribution of similarity by
tokens.

For a query in token sequence ¢ = qo,q1,...q; and a passage in token sequence p =
dy,ds, ...d,, the ColBERT model calculates either dot product or L2 distance for the token-
level score s(g;, d;) over the normalized output embeddings between the corresponding tokens
i € [E(q)],j € [E(p)] of the query and passage. The overall scoring of query g and passage p
is conducted by the MaxSim operation which locates the maximum matched token d; in the
passage for each query token ¢;, and then it sums over their token-level scores:

S(q,p) = Z max_s(gj,d;). (6)

eipi PSP

During the training, a triple of query and a contrastive passage pair, i.e., (¢,p™,p~) is fed to
the model to optimize a pairwise cross-entropy loss. At encoding, the model always prepends
an unused token [Q] or [D] to differentiate the encoding of a query or a passage. In practice,
the authors also use query augmentation by rewriting the padding query tokens [PAD]s to
[MASK] tokens before query encoding. This has been demonstrated to boost effectiveness and
it gets rid of the need to mask query tokens in batch processing.

In order to perform end-to-end retrieval, the index of ColBERT needs to include all encoded
passage tokens as well as document IDs and their lengths to locate the offset of passage tokens.
And for efficient query processing, a two-stage retrieval is done: (1) An approximate nearest
neighbors (ANN) search (e.g., using the product quantization method [50]) is first performed to
filter a pool of top candidate tokens for each query token individually. (2) Then it locates unique
documents associated with the top candidate tokens and loads their entire passage embeddings

into GPU for fast MaxSim operation. Notice that the above candidate selection stage comes at
a cost, it has rendered the end-to-end retrieval an approximate version of what is originally
defined in Eq. 6.

Our implementation of the ColBERT model and its backbone are based on the Hugging Face
Transformer [51] package and we use the Faiss package [52] to do first-stage ANN with product
quantization. We use dot product for token-level scoring in both reranking and end-to-end
retrieval. To accommodate the memory limit in our experimental environment, we choose to
split the index into multiple shards and load them sequentially into memory and GPU. We
adjust the division of shards to make sure each shard will not generate candidate embeddings
that exceed the capacity of memory and GPU.

4. Handling ARQMath Tasks

Except for minor corpus fix, format changes, and topic renewal, Task 1 and Task 2 remain
mostly unchanged compared to ARQMath 2021. However, the ARQMath Lab 2022 adds another
open-domain QA task (i.e., Task 3) where it re-uses the same topics from Task 1 but only one
single answer should be returned for each topic (potentially through extraction or generation).

In the following, we will focus more on our newly introduced model ColBERT and our
handling of Task 3. For the Approach Zero system, only changes to the previous-year system [47]
are described in detail. Both the Approach Zero and the ColBERT model are described in the
beginning of this section because they are applied uniformly to all the tasks. *

4.1. Approach Zero Changes

The version of Approach Zero we use in this ARQMath Lab is basically the same as what we have
used in ARQMath 2021 [47]. We do notice a leap in effectiveness when we evaluate Approach
Zero on previous-year tasks. However, except for a list of major engineering improvements
below, the model remains unchanged.

« Improved OPT: This includes unwrapping parentheses if it is redundant and directly
under a fraction operator. And we unify some malformed BIgX tokens with their correct
forms, such as sin and \sin.

« Simplified OPT: Merge sign node into symbol hash value, delete unnecessary ADD
nodes, and fix inconsistent grammar reduction. (See Section 3.1)

+ Bug fix: Fixed a bug that prevents many paths from being indexed.

In Section 5.2, we will further evaluate the impact of effectiveness as a result of these changes.

4.2. Training Data

For pretraining, we use a corpus made by ourselves. ° It is made of 1.69M documents crawled
from the MSE and the Art of Problem Solving community (AoPS) website. During training, we

*For reproducibility, our system pipelines and model checkpoints are made available: https://github.com/
approach0/pya0/tree/arqmath3
*To download our raw corpus: https://vault.cs.uwaterloo.ca/s/G36Mjt55HWRSNRR

https://github.com/approach0/pya0/tree/arqmath3
https://github.com/approach0/pya0/tree/arqmath3
https://vault.cs.uwaterloo.ca/s/G36Mjt55HWRSNRR

exclude MSE posts after 2018. Sentence pairs are generated and concatenated with a [SEP]
token where sentences are extracted by the following strategy: We set an input threshold for
two sentences to at most 1/4 of the maximum tokens of the Transformer 10% of the time, and the
other 90% of the time we use the default maximum number of tokens in Transformer. Then the
length threshold for the first sentence is randomly selected between 1 and the input threshold,
the second sentence is selected by filling up the rest input space. Sentences are concatenated
until it exceeds their length threshold for the first time, and are truncated if it exceeds the
maximum number of tokens in the Transformer. Compared to our previous work [10], we have
improved the sentence splitting algorithm to include fewer short and meaningless sentences.

For training ColBERT, we use the ARQMath corpus which contains questions, answers, the
number of upvotes by users, and links to the accepted answer as well as duplicate questions. The
training triples only sample question-answer pairs. In particular, we use the accepted answer,
or the accepted answer in a duplicate question, or any answer posts receiving more than 7
upvotes for a question as positive answers; while we mine hard negatives from the corpus by
sampling random answers related to the same tags of the question. Finally, we have extracted
607K triplets for ColBERT training.

4.3. Preprocessing for Math

In this ARQMath Lab, we follow a similar way to handle math tokens: First, we add BIEX math
tokens as additional vocabulary before further pretraining. This helps to reduce the number of
tokens for the input of the Transformer, which further allows more information to be considered
for assessing similarity. Second, the existing KIEX lexer used in Approach Zero is utilized
(by calling a Python binding PyAo0 [53]) to determine the added vocabulary. This additionally
reduces the newly added vocabulary size as Approach Zero focuses on semantically relevant
tokens and ignores unimportant tokens such as color and spaces in BIEX commands.

Different from our previous work [10], we have adjusted our lexer slightly and pretrained a
new backbone: We used to create a new token for each number less than 2 digits and create
an extra special token BIGNUM for any other number tokens. However, this prevents decimals
to be meaningfully represented and it disables the Transformer to learn any differences in
larger numbers. We modified the way to tokenize a number by using the CHARACTER scheme
proposed by Nogueira et al. [54], this orthography is robust to handle various user-created
content and it has shown to help certain simple arithmetic downstream tasks to accurately
calculate numbers to the 5th digit.

4.4. Training

We further pretrain a bert-base model and then we fine-tune a ColBERT model based on it. In
a recent work [10], we have demonstrated the benefits for downstream MIR tasks to create
a further pretrained backbone. Therefore, we pretrain the bert-base checkpoints with math
vocabulary using the MLM and NSP objectives [35]. Instead of treating math and text separately
as seen in [45], we generate sentence pairs by splitting passages containing math tokens just
like normal full text, this creates a more diverse mixture of text and math tokens, presumably
covering more heterogeneous data distributions.

On top of our pretrained backbone, we train the ColBERT model directly using the triples
described in Section 4.2. In addition, we mask out punctuation symbols in a sentence to make
more space for meaningful tokens. We apply the training procedure described in Section 3.2 for
the ColBERT model.

4.5. Task 1: Answer Retrieval

Task 1 is about retrieving answers relevant to a question in full text.

For the Approach Zero pass, similar to our system in ARQMath 2021 [47], we prepend each
answer post with its original question text before indexing to improve recall. In addition, we
switch from the Lancaster stemmer to mainly using the Porter stemmer as we observe minor
effectiveness gain for the latter one in the up-to-date Approach Zero. Furthermore, we use
manually extracted text and formula keywords ¢ for Approach Zero in Task 1, this not only
mimics the ad-hoc search queries but also avoids hurting the effectiveness of a system based on
strict matches when a misleading keyword or formula in the original topic is used. However,
our manual topic for Task 1 is available 7 for anyone who wants to compare to our results
directly.

In contrast to the Approach Zero pass, we use the complete topic content as the input for the
ColBERT model as it can automatically encode tokens for similarity and this aligns with the
way it is trained.

Finally, we combine the two systems by linear interpolation using the best parameters based
on our previous K-fold cross validation on ARQMath-2 [47]. We also use ColBERT to rerank a
base run produced by Approach Zero with no stemmer because reranking has generated the
highest precision in one of our previous evaluations [47].

4.6. Task 2: Formula Retrieval

Task 2 asks to retrieve formulas relevant to the specified topic formula in a corresponding Task
1 question, given the formula’s context.

For formula retrieval, we directly query the specified formula without considering the context
in the Approach Zero pass. Similar to our approach in ARQMath 2021 [47], we rewrite the
topic manually ° to ensure the KIEX can be correctly parsed into a clear OPT. For example, we
manually insert a comma in B.336 to separate two conditions in a set expression (the original
expression uses a long space to separate them), and we replace the text mode “m++” to “m+1" so
that our parser can handle the rare increment expression correctly. If not manually corrected,
we believe these changes are going to be difficult for being automatically suggested so that every
user-generated formula can be converted to construct a clear OPT. In total, we have manually
refined 20 topics in Task 2 for ARQMath 2022, and our rewritten topics for Task 2 are also made
available.

We use two approaches in the ColBERT pass to handle Task 2. The first one does not consider
the context of the query formula even though the ColBERT is trained from both math and

®Our only manual intervention occurs at keywords extraction from official topics, other phases are automatic.
"https://github.com/approach0/pya0/blob/arqmath3/topics-and-qrels/topics.arqmath-2022-task1-manual.txt
®https://github.com/approach0/pya0/blob/arqmath3/topics-and-qrels/topics.argmath-2022-task2-refined. txt

https://github.com/approach0/pya0/blob/arqmath3/topics-and-qrels/topics.arqmath-2022-task1-manual.txt
https://github.com/approach0/pya0/blob/arqmath3/topics-and-qrels/topics.arqmath-2022-task2-refined.txt

surrounding text. Thus it only passes an isolated formula to both the query encoder and
document encoder, considering only the visual appearance of formulas. On the other hand, the
second approach (we name it colbert_ctx) adds the dependency to the query formula context in
the following way: We use the query formula ID (i.e., qid) to identify the specified formula in
the full-text question, and mask every other formula except the query formula by rewriting
each one to the special [MASK] token. Then, we feed ColBERT the modified tokens of the entire
topic question.

Similarly, we generate a few fusion runs to combine the two passes by linear interpolation
using the best parameters which are the same as what we choose to use in Task 1. However, we
do not generate reranked results in Task 2.

To make sure we do not return more than 5 visually distinct formulas for a topic, we simply
index at most 5 document formulas. For the colbert_ctx method, we index the full-text embed-
dings of a document, each formula in the document will get indexed with its formula ID and
the complete document, masking out all other formulas. To reduce the number of embeddings
to be indexed, we only consider formulas with original string lengths greater than 2 or those in
the visually distinct formula set of our Task 1 index. For other methods (except the colbert_ctx),
we only index formulas.

4.7. Task 3: Open Domain Question Answering
4.7.1. Model Selection

There are many choices for handling the open-domain QA problem. Parametric generative
models are trained with questions as input and it outputs question-answer pairs without access
to external knowledge. Such models store the required knowledge in the model parameters.
On the other hand, non-parametric models mostly adopt a retrieve-and-read framework: they
first retrieve relevant documents from the corpus given a question, and then produce the final
answer based on these documents [55]. We adopt non-parametric models, which require smaller
model sizes and less training data.

In non-parametric models, there are generative or extractive readers. Generally speaking,
generative readers either need much training data to transfer themselves to the target domain or
atleast need a few examples to familiarize themselves with the answer formatting. Unfortunately,
we do not have a good amount of training data for MIR, furthermore, generative models tend to
recall non-overlapping spans in the training data, which leads to non-logical answers that are
not desired for math question answering. Therefore, we adopt extractive readers in this task.

4.7.2. Generating Candidate Answers

We use our Task 1 runs for producing a set of candidate answers. As a principle, we choose to
base our answer on a single post because different answer posts together will introduce different
notations and dialects which create difficulties to align them in the final answer.

We design three strategies for post candidates:

+ Original: A straightforward way to narrow down answer posts is to take the top-1 result
from Task 1, we will use this as our first strategy

« Re-rank: The next strategy is simply considering a larger set of top results — here we
use the top-20 results from Task 1 — and select one of them using the methods in the next
subsection (Section 4.7.3).

« Re-map: Another strategy to look at the problem is to trust the community: we first
try to retrieve the most similar corpus question post given a topic question (through the
methods we use in Task 1), then we pick the accepted answer post, if non-exists, the top
voted answer post as our candidate answer post.

4.7.3. Snippet Selection

A candidate post might be either inappropriately long or exceeding the length limit imposed
by the Task 3 requirements, therefore we add a snippet selection step based on the candidate
answer post(s). We split the answer post(s) into sentences with the PyA0 sentence splitting
utility which takes care of the punctuations and avoids cutting them in the middle of a KTgX
string. Then a window of varied sizes (from a minimum of 5 up to 10 sentences) will go through
the beginning of a post to its end to select a combination of sentence spans to form candidate
snippets.

It is worth noting the beginning of a post usually contains some conclusive answers, or it
serves as a good start for smooth reasoning, therefore we also add a selection strategy that
always starts the window from the beginning of candidate answer post(s), but removes the limit
of the window size unless it hits the end of an answer post.

We will generate candidate snippets according to all the above strategies, at the meantime,
we also filter out a snippet if it:

« is shorter than 20 tokens,
» is longer than 1200 characters,

+ has an odd number of “$”s, meaning that some math delimiters are very likely not placed
correctly (admittedly, this is only a heuristic rule).

Finally, we use the same ColBERT model to score the snippets and pick the top 1 snippet as the
final answer. Lastly, we also double-check the produced answers manually, if there are cases the
final selected snippet is still too short, or there is no candidate available, or the math delimiters
are still incorrect but not detected by the odd-“$” checking, we will randomly copy an answer
from a parallel run among our (manually selected) 5 best runs for submissions. As a result, we
mark our Task 3 runs as manual runs.

5. Experiment

5.1. Setup

For Approach Zero, we uniformly apply the same configuration as we choose for the primary
run in 2021 (See Table 1). Rather than exploring different configurations, we fix the Approach
Zero pass for all three tasks in 2022.

We have further pretrained a bert-base checkpoint with 5.8 M sentence pairs extracted
from the MSE and AoPS corpus. The pretraining takes 9 epochs with only ~1100 added math

Table 1
Configuration for Approach Zero.

Math path weight | Formula length penalty | BM25+ (b, k1) | Symbol match points (by, by)

2.5 | 0.3 | 07520 | 0.94,0.9

Table 2
Effectiveness impact evaluated by the ARQMath-2 topics for major changes in Approach Zero since
2021. Changes are shown in chronological order. (see Section 4.1 for detailed descriptions)

Changes | Checkpoint SHA1 | NDCG’ | MAP’ | P’@10
(Our 2021 run) eae6690e 0351 | 0.137 | 0.189
Improved OPT 14d311b2 0365 | 0.174 | 0.216
Simplified OPT 77e3571b 0372 | 0176 | 0.227
Bug fix 35afeb50 0374 | 0178 | 0.231
Switch stemmer etc. (up to date) 0.383 0.190 0.235

vocabulary on three A6000 GPUs using a batch size of 114. Based on our backbone, we train
ColBERT for 7 epochs also using three A6000 GPUs but with a batch size of 48. Following Reusch
et al. [45], we set the maximum number of tokens to 512 for both pretraining and finetuning.
The training, inference, and scoring are all done in half-precision.

In all the experiments, we use the AdamW optimizer [56] with a weight decay of 0.01, and a
fixed learning rate of 1 x 1075,

5.2. Approach Zero Improvements

We have investigated the impact of major improvements after our previously published system
run, results are shown in Table 2. It shows the most impactful changes are representational -
after two major OPT improvements, we boost the official MAP ranking metric and precision
metric by at least 28% and 20% over the result we have reported in 2021 — this has demonstrated
that the design of representation in our structure search method is crucial for effectiveness.

5.3. ARQMath-1 and 2 Results

Table 3 and 4 show the evaluation results on ARQMath-1 and 2 topics using our systems in
2022. We compare ours to the official runs of the most effective systems in ARQMath 2021. We
exclude comparing to this-year systems on previous topics because other systems may train on
previous labels. Some of these systems are briefly mentioned in Section 2, however, here we
describe relevant runs shown in these tables.

Task 1 Runs: The TU_DBS_P primary run from the TU_DBS team uses an official ALBERT
cross encoder which is further trained for 750k steps and fine-tuned for 125k steps on the
ARQMath data pairs split by sentence [45]. The DPRL_RRF is a Reciprocal Rank Fusion (RRF)
between a run relying on MSE upvote and the DPRL_QASim run produced by the QASim
method [41]. The MathDowsers_P is the primary run generated from the Tangent-L system [24],

Table 3

Effectiveness evaluation for previous ARQMath Labs (Task 1). Top-5 most effective systems for the year
2021 are compared to ours. In addition to the official measurements, we have also reported the BPref
metric as well as the average number of judged hits per topic.

Runs ARQMath-1 ARQMath-2

NDCG* MAP’ P'@10 BPref Judged | NDCG® MAP’ P'@10 BPref Judged
Year 2021
TU_DBS_P 0.380 0.198 0.316 0.208 49.6 0.377 0.158 0.227 0.158 82.6
DPRL_RRF 0.422 0.247 0.386 0.257 37.8 0.346 0.101 0.132 0.083 83.5
DPRL_QASim 0.417 0.234 0.369 0.242 37.8 0.388 0.146 0.193 0.135 83.4
MathDowsers_P + 0.433 0.191 0.249 0.178 72.0 0.434 0.169 0.211 0.145 105.7
A0-B60 T 0.359 0.170 0.255 0.174 43.9 0.351 0.137 0.189 0.118 81.3
Year 2022
colbert ? 0.375 0.177 0.266 0.179 45.5 0.349 0.139 0.224 0.144 67.6
aOnone 1’ 0.376 0.202 0.269 0.205 40.0 0.383 0.190 0.235 0.182 69.8
aOporter 0.373 0.204 0.270 0.204 39.5 0.383 0.185 0.241 0.172 71.4
rerank_nostemmer 0.382 0.205 0.322 0.202 40.0 0.385 0.187 0.276 0.187 69.8
fusion_alpha02 0.455 0.243 0.309 0.233 51.2 0.443 0.217 0.266 0.197 87.9
fusion_alpha03 0.460 0.246 0.312 0.236 52.5 0.450 0.221 0.278 0.208 89.0
fusion_alpha05 0.462 0.244 0.321 0.235 53.9 0.460 0.226 0.296 0.211 91.0

“p”: unsubmitted runs, “1”: using unsupervised method.

Table 4

Effectiveness evaluation for previous ARQMath Labs (Task 2). Top-5 most effective systems for the year
2021 are compared to ours. In addition to the official measurements, we have also reported the BPref
metric as well as the average number of judged hits per topic.

Runs ARQMath-1 ARQMath-2
NDCG* MAP’ P'@10 BPref Judged | NDCG® MAP’ P’@10 BPref Judged

Year 2021

Tangent-S & 0.691 0.446 0.453 0.412 39.1 0.492 0.272 0.419 0.290 48.2
DPRL_CFTED 0.648 0.480 0.502 0.475 31.4 0.410 0.253 0.464 0.260 33.5
DPRL_ltrall 0.738 0.525 0.542 0.495 39.0 0.445 0.216 0.333 0.228 46.2
MathDowsers_P T 0.561 0.370 0.447 0.374 28.6 0.552 0.333 0.450 0.348 51.9
A0-P300 T 0.507 0.342 0.443 0.343 19.5 0.556 0.361 0.488 0.361 47.6
Year 2022

colbert ? 0.563 0.398 0.460 0.396 23.4 0.542 0.362 0.510 0.373 41.4
colbert_ctxb 0.256 0.168 0.252 0.188 7.4 0.228 0.120 0.308 0.135 11.4
approach0 + 0.582 0.446 0.477 0.455 229 0.573 0.420 0.588 0.417 37.1
fusion02_ctx 0.575 0.448 0.496 0.461 21.6 0.575 0.417 0.590 0.411 37.4
fusion_alpha02 0.633 0.502 0.513 0.502 26.4 0.646 0.469 0.597 0.457 48.6
fusion_alpha03 0.644 0.513 0.520 0.510 27.2 0.649 0.470 0.603 0.459 49.2
fusion_alpha05 0.647 0.507 0.529 0.501 27.1 0.652 0.471 0.612 0.468 50.1

“b”: unsubmitted runs, “”: using unsupervised method, and “£”: supervised only in reranking fusion.

it additionally captures repeated symbols and commutative operands based on manipulating
the features extracted from the SLT representation, e.g., by enumerating the combination of all
possible repeated symbol pairs and indexing all of them. The A0-B60 is our best previous-year
submission for Task 1, produced by a combination of Approach Zero with Lucene/Anserini [47].
Our a0Onone and aOporter runs are Approach Zero runs using no stemmer and a Porter stemmer
respectively. The rerank_nostemmer run is produced by reranking aOnone using the ColBERT
scorer. Finally, the fusion_alpha* runs are a linear fusion interpolated by a convex combination
where o = 0.2,0.3 and 0.5 respectively:

Sf:a-Sd-f—(l—Oé)‘Sa (7)

where Sy, S, are the scores produced from the dense retriever and Approach Zero respectively,
and Sy is the fusion score.

Task 2 Runs: The Tangent-S [27] is a formula search engine using both SLT and OPT, it has
been used as a baseline for formula search in ARQMath-1 and 2. Tangent-S makes no use of
the question text in Task 2. The DPRL_Itrall reranks a list of 6 signals using SVM-rank [57],
the training data includes all ARQMath-1 judgments (77 queries). The DPRL_CFTED reranks
the results from Tangent-CFT using tree-edit distance, the latter learns fastText [29] n-gram
embedding from SLT, SLT operators, and OPT structure features. The MathDowsers_P is
generated by the same system from the MathDowsers team [23, 24] in Task 1, except it adds a
strategy to rank a set of visually distinct formula candidates by utilizing their Task 1 result. Our
approacho run is the formula-only retrieval for Task 2 by the up-to-date Approach Zero system.
The fusion02_ctx and fusion_alpha* runs are the convex combination (See Equation 7) with
the approach0 run by the colbert_ctx run (v = 0.2) and the colbert run (o = 0.2,0.3 and 0.5)
respectively.

5.4. ARQMath-3 Results

We present the results for ARQMath-3 in Table 5, 6, and 7. In this ARQMath Lab, a total of
9 teams have participated, and we achieve the best results in all three tasks. Here we briefly
describe some of the top systems we are comparing in this paper. For a complete overview of
other participant systems, please refer to Mansouri, Novotny, Agarwal, Oard, and Zanibbi [58].

Task 1 Baselines: According to Geletka et al. [59], the selected MSM run is produced from an
ensemble model in which each method is mainly developed as part of an Information Retrieval
course taught at the Faculty of Informatics, Masaryk University, Brno, Czech Republic. And
the MIRMU run is produced by a dense retriever pipeline that uses a miniLM as a bi-encoder
(first-stage) retriever and a RoOBERTa model as a cross-encoder reranker.

Task 2 Baselines: The DPRL Tangent-CFTED uses tree-edit distance to rerank a set of
candidates retrieved by formula FastText embeddings trained on structure features, see Section 2
for detail. And the latex_L8_a040 from MathDowsers is the default configuration for a newly
rewritten and improved system on their previous Tangent-L system, with a relative weight of
0.40 on math tuples (over text terms).

Task 3 Baselines: In Task3, text-davinci-002, the most capable model of GPT-3 [60] is used
as the baseline system. Another generative run amps3_sel_hints by the TU_DBS team uses

Table 5

Results for the ARQMath-3 (2022) main task. Our baseline and submission runs are compared to a
selected set of the best results from other participating teams. We are ranked at the top in terms of all
effectiveness metrics. In addition to the official measurements, we have also reported the BPref metric
as well as the average number of judged hits per topic. Our baseline runs using structure search without
learning on data can still be competitive among top systems.

ARQMath-3 Task 1

Runs) ;)

NDCG* MAP’ P’@10 BPref Judged
Others (team / run)
MSM / Ensemble_RRF 0.504 0.157 0.241 0.138 154.9
MIRMU / MiniLM+RoBERTa 0.498 0.184 0.267 0.169 120.8
Ours
colbert 0.418 0.162 0.251 0.165 89.0
alnone Tb 0.397 0.154 0.262 0.160 77.8
alporter T 0.397 0.159 0.271 0.164 76.9
rerank_nostemmer 0.418 0.172 0.309 0.189 77.8
fusion_alpha02 0.483 0.195 0.305 0.184 105.2
fusion_alpha03 0.495 0.203 0.317 0.192 107.6
fusion_alpha05 0.508 0.216 0.345 0.207 110.0

“b”: unsubmitted runs, “+”: using unsupervised method.

the GPT-2 model [61] but is further fine-tuned on the AMPS dataset [31]. They additionally
prepend the prompt word “HINT” to the beginning during decoding. On the other hand, the
DPRL run, SBERT-SVMRank, uses an extractive approach based on SVM and Sentence-BERT
models.

As required, we apply the same methods that generate our runs for Task 1 and Task 2 in all
evaluations. For Task 3 in ARQMath-3, our methods are described in Section 4.7.2.

5.5. Effectiveness Discussion

Analysis: Our system has advanced substantially from 2021, this comes in with two folds,
i.e., the Approach Zero improvements and the introduction of ColBERT: (1) The boost in
Approach Zero scores is mainly attributed to our engineering improvements, this includes the
enhancement of our OPT representation (see Section 3.1 and 4.1). These changes make our
Approach Zero base runs alone very effective, especially in formula retrieval, outperforming
other systems in almost every metric without using any training data. (2) Because this year
we have introduced a strong dense retriever and it is demonstrated to be a complementary
component to the structure search. Although combining a much more efficient DPR dense
retriever [3] may still be very effective according to our previous study [10], we find the ColBERT
model more effective and robust as it provides fine-grained contextualized embeddings.

Our implementation of the ColBERT is among the few bi-encoder dense retrievers being able
to achieve effective results in the formula-centered retrieval task, i.e., Task 2, despite the fact
that we are using the same ColBERT model from Task 1, trained on math QA posts with text
around formulas. However, we notice the ranking on structure search does not provide such

Table 6

Results for the ARQMath-3 (2022) formula retrieval task. Our baseline and submission runs are compared
to a selected set of the best results from other participating teams. We are ranked at the top in terms
of all effectiveness metrics. In addition to the official measurements, we have also reported the BPref
metric as well as the average number of judged hits per topic. Our baseline run using structure search
without learning on data can also outperform other systems except for NDCG’.

ARQMath-3 Task 2

Runs) ;)

NDCG' MAP* P’@10 BPref Judged
Others (team / run)
DPRL / Tangent-CFTED 0.694 0.480 0.611 0.471 61.7
MathDowsers / latex_L8 a040 t 0.640 0.451 0.549 0.443 60.3
Ours
colbert 0.604 0.436 0.622 0.446 42.8
colbert_ctx b 0.152 0.080 0.218 0.093 6.4
approachO T 0.639 0.501 0.615 0.505 459
fusion02_ctx 0.631 0.490 0.611 0.499 45.0
fusion_alpha02 0.715 0.558 0.659 0.553 55.3
fusion_alpha03 0.720 0.565 0.665 0.562 55.8
fusion_alpha05 0.720 0.568 0.688 0.560 56.2

“b”: unsubmitted runs, “1”: using unsupervised method.

Table 7

Effectiveness evaluation for ARQMath-3 Labs (Task 3). The Posts column lists the candidate selection
strategy described in Section 4.7.2. The Start column lists whether we select the answer sentence from
the beginning of the answer posts or not, as described in Section 4.7.3. The Type column lists the type of
the QA model: ’E’ for extractive and ’G’ for generative.

Runs ‘ Base Run Posts Start Type ‘ AP’ P@1
Others (team / run)

GPT-3 (baseline) - - - G 1.346 0.500
DPRL / SBERT-SVMRank - - - E 0.462 0.154
TU_DBS / amps3_sel_hints | - - - G 0.325 0.078
Ours

runs colbert Re-map middle E 0.949 0.282
rung rerank_nostemmer Re-map middle E 1.115 0.321
run3 fusion_alpha05 Re-rank middle E 1.179 0.372
run2 fusion_alpha05 Original beginning E 1.231 0.397
runi rerank_aOporter Re-rank middle E 1.282 0.436

benefits as it is compared to fusion results with first-stage ColBERT search. This indicates that
ColBERT provides fewer benefits in boosting the precision of a structure search system than it
provides through adding recall to the base run.

Interestingly, the powerful GPT-3 model, i.e., text-davinci-002, can answer math questions
very well, even better than our extractive approach based on a highly effective retriever. Al-
though it is unclear to us whether this GPT-3 model simply recalls some holdout answers in the

[CLS]
[unused0]
inequality

between

norm

norm
$infty$
of
matrices

[SEP]

R EEEEEEEEEEEEEY:
o % § v g £ w» wn S w g ©» g 2 w g v g £ £ »w W
S g 3 > 5 2 > > 5 > > 5 e i)
3 @ & 2 & & & 2 & T
=] =3 =3 =3
— w " "

& - -

Figure 2: Visualization for the ColBERT token matching between two heterogeneous tokenized sen-
tences extracted from an example topic (A.301). Tokens wrapped in dollar signs are those that originally
appear inside math-mode BTEX. The highlighted grids in red demonstrate the model is capable to link
the same math entities from math mode and non-math mode.

ARQMath dataset from its training data, its performance is surprising to us.

Visualization: To illustrate the benefits that ColBERT can provide, we visualize its final
scoring matrix during the MaxSim operation (See Figure 5.5). The heatmap in Figure 5.5 are
ColBERT partial scores of each pair of tokens in two similar but heterogeneous sentences, i.e.,
“Inequality between norm 1, norm 2 and norm oo of matrices” and “||Al|2 < /|| A]J1]| 4]0
The ColBERT model is able to (1) identify the same math entity even if they are from different
modes, (2) handle formulas even if they are malformed and cannot be handled correctly by
our existing parser, and (3) capture the similarity between relevant formulas even if they are
structurally different. For example, it can associate text entity inequality, norm, and matrices to

» o«

the correct “<”,

» «“

math tokens, and the variable “a” (it actually associates to an uppercase “A”
in the original topic, this is because the Huggingface tokenizer changes the input to lowercase
by default. However, this is unintended behavior, we may need to fix it in the future). In addition,
the [CLS] embedding may also capture high-level passage semantics. These strengths will
offset some of the most important weaknesses in our structure search system.

Approach Zero ColBERT

) o
1.4 g S0
1.2 —
%] °
210 o o o 240
o o
g ° 3 1
~ ° ~
g ° <] 9 30
£ 06- E E
g 5 8 g
- 1 o
1 ; __
10
0.0 o
toplK top100 top50 top20 toplK

Figure 3: Query run times of Approach Zero and our implementation of ColBERT evaluated by the
ARQMath-3 Task 1 topics. Approach Zero latencies are shown for different threshold values, and the
distribution is averaged over 5 runs. In the ColBERT case, we need to load 14 shards into GPU memory
subsequently for each query topic due to our GPU memory limit.

Overall Latency MaxSim Latency

[66.3%
e 24.4%
N 6.1%
e 3.3%

score sort

faiss lookup

prepare

Figure 4: Latency decomposition for our ColBERT implementation. This graph only reflects single-shard
latencies in the MaxSim operation. In practice, we need to load multiple shards into GPU when GPU
memory is not sufficient to perform the matrix multiplication for all candidates.

5.6. Efficiency Discussion

We report our efficiency for both Approach Zero and our implementation of ColBERT in Figure 3.
The Approach Zero run times are reported on a personal workstation with Intel Core i5-8600K
CPU, 32 GiB memory, and Toshiba HDWD110 hard drive. The ColBERT is running on a server
with Xeon(R) 4210 CPU, 370 GiB memory and A6000 GPUs. Both passes are running in a
single-thread experimental environment.

As illustrated in Figure 3, the Approach Zero system is able to finish a query in a sub-second
on average even if it is configured to return top-1000 results. Compared to a 3 times higher
average run time we have reported in 2021 [47] where we run evaluation on a potentially
heavily loaded shared server, we believe our evaluation this time on a personal workstation in a
low workload environment reflects the efficiency more accurately. In addition, we find that the
run times become much smaller after one “warm-up” run. To investigate this, we use the Linux
strace -cw command to summarize the wall clock times for the query processing of the first
10 ARQMath-3 topics. We find that the first-time run spends 62.10% of the time on the read
system calls which are invoked about 300K times in total and they mainly reflect the disk IO
wait times. After the first run, only 16.46% of the time is spent on the read system calls. This
indicates that the index is implicitly cached into memory (e.g., by the OS or filesystem) during
the first run, and this first-time run could cause a high variance if not explicitly caching the
index into memory. Because our run times are reported after running queries a few times, they
should not be considered as entirely on-disk runs.

For the ColBERT model, because we use 512 maximum number of embeddings and the
ARQMath topics contain a lot of math tokens and are generally long enough, it is suboptimal in
efficiency. Furthermore, the way our ColBERT was initially implemented considers this large
GPU memory consumption (quadratic in query length) and low memory resource constraints
imposed on the cluster we were running. As a result, it has to load and spill multiple shards
of the index in sequence for each query to cope with different resource limits, resulting in the
notable inefficiency in our ColBERT pass. In our case, it takes more than 20 seconds to run a
single topic on average, each loading 14 shards of the 312 million embeddings in total. In fact,
the majority of the query processing in latencies is to locate candidates in the main memory
and load them to GPU (See Figure 4). Obviously, the resource requirement and time cost for
our current ColBERT model implementation are impractical. However, recent developments of
ColBERT [7, 8] have shown the potential to lower the order of magnitude of the space footprint
and query latencies. Additionally, other effective sparse retrieval systems based on learned
dense representations [62, 63, 64] also show promising results. These could be the alternatives
to be studied by us while keeping our system at the same effectiveness level.

6. Conclusion

It is shown that a structure-match search method, when combined with a dense retriever in an
end-to-end pipeline, can be very effective in the math answer retrieval tasks. This is because
the ColBERT model can discover related connections and overcome the issue of imposing
too many lexical or structural constraints over search candidates. However, the need to keep
multiple embedding vectors makes it expensive in resources. We believe an important direction
to continuously advance MIR in the future is to efficiently and effectively capture semantic
similarities lacking lexical agreements and, additionally, to capture math transformations beyond
structure matching. Lastly, we are truly at the dawn of an exciting time where large language
models like the GPT-3 and others [65, 66] keep surprising us with their capabilities. It remains
to be seen whether a generative approach in the future can serve as a dominant role to directly
and fully handle queries in the domain of math IR.

Acknowledgments

As ARQMath has come to an end in the CLEF Lab, we greatly appreciate task organizers and
the National Science Foundation (NSF) for hosting and funding the CLEF ARQMath tasks for
the past three years. Without these opportunities, we could not identify our weaknesses and
advance our system continuously.

This research was supported in part by the Natural Sciences and Engineering Research
Council (NSERC) of Canada. Computational resources were provided by Compute Ontario and
Compute Canada.

References

(1]

(2]

(8]

B. Mansouri, A. Agarwal, D. Oard, R. Zanibbi, Finding old answers to new math questions:
The ARQMath Lab at CLEF 2020, in: J. M. Jose, E. Yilmaz, J. Magalhies, P. Castells,
N. Ferro, M. J. Silva, F. Martins (Eds.), Advances in Information Retrieval, 2020. URL:
https://www.cs.rit.edu/~rlaz/filess/ ARQMATH_Lab_overview_.pdf.

B. Mansouri, R. Zanibbi, D. W. Oard, A. Agarwal, Overview of ARQMath-2 (2021): Second
CLEF lab on answer retrieval for questions on math (working notes version), in: Working
Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, 2021. URL: http:
//ceur-ws.org/Vol-2936/paper-01.pdf.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, W. Yih,
Dense passage retrieval for open-domain question answering, arXiv:2004.04906 (2020).
arXiv:2004.04906.

O. Khattab, M. Zaharia, ColBERT: Efficient and effective passage search via contextualized
late interaction over BERT, in: SIGIR, 2020. URL: https://dl.acm.org/doi/abs/10.1145/
3397271.3401075.

L. Gao, J. Callan, Condenser: A pre-training architecture for dense retrieval,
arXiv:2104.08253 (2021). arXiv:2104.08253.

S. Hofstitter, S.-C. Lin, J.-H. Yang, J. Lin, A. Hanbury, Efficiently teaching an effective
dense retriever with balanced topic aware sampling, in: SIGIR, 2021. URL: https://doi.org/
10.1145/3404835.3462891.

K. Santhanam, O. Khattab, J. Saad-Falcon, C. Potts, M. Zaharia, ColBERTv2: Effec-
tive and efficient retrieval via lightweight late interaction, arXiv:2112.01488 (2021).
arXiv:2112.01488.

K. Santhanam, O. Khattab, C. Potts, M. Zaharia, Plaid: An efficient engine for late interac-
tion retrieval, arXiv:2205.09707 (2022). arXiv:2205.09707.

[9] J. Lin, A proposed conceptual framework for a representational approach to information

[10]
[11]
[12]

retrieval, 2021. arXiv:2110.01529.

W. Zhong, J.-H. Yang, J. Lin, Evaluating token-level and passage-level dense retrieval
models for math information retrieval, 2022. arXiv:2203.11163.

B. R. Miller, A. Youssef, Technical aspects of the digital library of mathematical functions,
in: AMAL 2003. URL: https://link.springer.com/article/10.1023/A:1022967814992.

Y. Hijikata, H. Hashimoto, S. Nishida, Search mathematical formulas by mathematical

https://www.cs.rit.edu/~rlaz/files/ARQMATH_Lab_overview_.pdf
http://ceur-ws.org/Vol-2936/paper-01.pdf
http://ceur-ws.org/Vol-2936/paper-01.pdf
http://arxiv.org/abs/2004.04906
https://dl.acm.org/doi/abs/10.1145/3397271.3401075
https://dl.acm.org/doi/abs/10.1145/3397271.3401075
http://arxiv.org/abs/2104.08253
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
http://arxiv.org/abs/2112.01488
http://arxiv.org/abs/2205.09707
http://arxiv.org/abs/2110.01529
http://arxiv.org/abs/2203.11163
https://link.springer.com/article/10.1023/A:1022967814992

[14]

[15]

[16]

[17]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

formulas, in: SHI (Symposium on Human Interface), 2009. URL: https://link.springer.com/
content/pdf/10.1007/978-3-642-02556-3_46.pdf.

K. Yokoi, A. Aizawa, An approach to similarity search for mathematical expressions using
MathML, in: DML (Digital Mathematics Library), 2009. URL: https://dml.cz/handle/10338.
dmlcz/702557.

W. Zhong, R. Zanibbi, Structural similarity search for formulas using leaf-root paths in
operator subtrees, in: ECIR, 2019. URL: https://par.nsf.gov/servlets/purl/10124342.

W. Zhong, S. Rohatgi, J. Wu, L. Giles, R. Zanibbi, Accelerating substructure similarity
search for formula retrieval, in: ECIR, 2020. URL: https://link.springer.com/chapter/10.
1007/978-3-030-45439-5_47.

R. Zanibbi, D. Blostein, Recognition and retrieval of mathematical expressions, in: IJDAR,
2012. URL: https://link.springer.com/article/10.1007/s10032-011-0174-4.

T. Schellenberg, B. Yuan, R. Zanibbi, Layout-based substitution tree in-
dexing and retrieval for mathematical expressions, in: DRR, 2012. URL:
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8297/829701/
Layout-based-substitution-tree-indexing-and-retrieval-for-mathematical-expressions/
10.1117/12.912502.short?SSO=1.

N. Pattaniyil, R. Zanibbi, Combining tf-idf text retrieval with an inverted index over
symbol pairs in math expressions: The tangent math search engine at ntcir 2014., in:
NTCIR, 2014. URL: https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/
NTCIR/Math-2/08-NTCIR11-MATH-PattaniyilN.pdf.

R. Zanibbi, K. Davila, A. Kane, F. Tompa, The Tangent search engine: Improved
similarity metrics and scalability for math formula search, arXiv:1507.06235 (2015).
arXiv:1507.06235.

R. Zanibbi, K. Davila, A. Kane, F. Tompa, Multi-stage math formula search: Using
appearance-based similarity metrics at scale, in: SIGIR, 2016. URL: https://dl.acm.org/doi/
abs/10.1145/2911451.2911512.

D. Fraser, A. Kane, F. Tompa, Choosing math features for BM25 ranking with Tangent-L,
in: DocEng, 2018. URL: https://dl.acm.org/doi/abs/10.1145/3209280.3209527.

F. Dallas, Math Information Retrieval using a Text Search Engine, Master’s thesis, University
of Waterloo, 2018. URL: https://uwspace.uwaterloo.ca/handle/10012/13329.

Y. K. Ng, D.]. Fraser, B. Kassaie, G. Labahn, M. S. Marzouk, F. Tompa, K. Wang, Dowsing
for math answers with Tangent-L, in: CLEF, 2020. URL: https://link.springer.com/chapter/
10.1007/978-3-030-85251-1_16.

Y. K. Ng, D. Fraser, B. Kassaie, F. Tompa, Dowsing for answers to math questions: Ongoing
viability of traditional MathlIR, in: CLEF, 2021. URL: http://ceur-ws.org/Vol-2936/paper-05.
pdf.

Y. K. Ng, Dowsing for Math Answers: Exploring MathCQA with a Math-aware Search
Engine, Master’s thesis, University of Waterloo, 2021. URL: https://uwspace.uwaterloo.ca/
handle/10012/17696.

G. Y. Kristianto, G. Topic, A. Aizawa, MCAT math retrieval system for NTCIR-12 MathIR
task, in: NTCIR, 2016. URL: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/
pdf/ntcir/MathIR/04-NTCIR12-MathIR-KristiantoGY.pdf.

K. Davila, R. Zanibbi, Layout and semantics: Combining representations for mathematical

https://link.springer.com/content/pdf/10.1007/978-3-642-02556-3_46.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-02556-3_46.pdf
https://dml.cz/handle/10338.dmlcz/702557
https://dml.cz/handle/10338.dmlcz/702557
https://par.nsf.gov/servlets/purl/10124342
https://link.springer.com/chapter/10.1007/978-3-030-45439-5_47
https://link.springer.com/chapter/10.1007/978-3-030-45439-5_47
https://link.springer.com/article/10.1007/s10032-011-0174-4
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8297/82970I/Layout-based-substitution-tree-indexing-and-retrieval-for-mathematical-expressions/10.1117/12.912502.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8297/82970I/Layout-based-substitution-tree-indexing-and-retrieval-for-mathematical-expressions/10.1117/12.912502.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8297/82970I/Layout-based-substitution-tree-indexing-and-retrieval-for-mathematical-expressions/10.1117/12.912502.short?SSO=1
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/08-NTCIR11-MATH-PattaniyilN.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/08-NTCIR11-MATH-PattaniyilN.pdf
http://arxiv.org/abs/1507.06235
https://dl.acm.org/doi/abs/10.1145/2911451.2911512
https://dl.acm.org/doi/abs/10.1145/2911451.2911512
https://dl.acm.org/doi/abs/10.1145/3209280.3209527
https://uwspace.uwaterloo.ca/handle/10012/13329
https://link.springer.com/chapter/10.1007/978-3-030-85251-1_16
https://link.springer.com/chapter/10.1007/978-3-030-85251-1_16
http://ceur-ws.org/Vol-2936/paper-05.pdf
http://ceur-ws.org/Vol-2936/paper-05.pdf
https://uwspace.uwaterloo.ca/handle/10012/17696
https://uwspace.uwaterloo.ca/handle/10012/17696
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/04-NTCIR12-MathIR-KristiantoGY.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/04-NTCIR12-MathIR-KristiantoGY.pdf

formula search, in: SIGIR, 2017. URL: https://dl.acm.org/doi/abs/10.1145/3077136.3080748.

[28] B. Mansouri, D. W. Oard, R. Zanibbi, DPRL systems in the CLEF 2020 ARQMath lab, in:
CLEF, 2020. URL: https://par.nsf.gov/servlets/purl/10198749.

[29] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with subword
information, arXiv:1607.04606 (2017). arXiv:1607.04606.

[30] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson,
R. Ring, S. Young, et al., Scaling language models: Methods, analysis & insights from
training gopher, arXiv:2112.11446 (2021). arXiv:2112.11446.

[31] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, J. Stein-
hardt, Measuring mathematical problem solving with the math dataset, arXiv preprint
arXiv:2103.03874 (2021).

[32] S. Peng, K. Yuan, L. Gao, Z. Tang, MathBERT: A pre-trained model for mathematical
formula understanding, arXiv:2105.00377 (2021). arXiv:2105.00377.

[33] R. Zanibbi, A. Aizawa, M. Kohlhase, I. Ounis, G. Topic, K. Davila, NTCIR-12
MathlR task overview, in: NTCIR, 2016. URL: http://research.nii.ac.jp/ntcir/workshop/
OnlineProceedings12/pdf/ntcir/OVERVIEW/01-NTCIR12-OV-MathIR-ZanibbiR.pdf.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, 1. Polo-
sukhin, Attention is all you need, in: NIPS, 2017. URL: https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[35] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional
transformers for language understanding, arXiv:1810.04805 (2019). arXiv:1810.04805.

[36] V. Novotny, P. Sojka, M. Stefanik, D. Luptak, Three is better than one: Ensembling math
information retrieval systems., in: CLEF, 2020. URL: http://ceur-ws.org/Vol-2696/paper_
235.pdf.

[37] V. Novotny, M. Stefanik, D. Luptak, M. Geletka, P. Zelina, P. Sojka, Ensembling ten math
information retrieval systems, in: CLEF, 2021. URL: http://ceur-ws.org/Vol-2936/paper-06.
pdf.

[38] N.Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,
arXiv:1908.10084 (2022). arXiv:1908.10084.

[39] S. Rohatgi, J. Wu, C. L. Giles, Psu at clef-2020 arqmath track: Unsupervised re-ranking
using pretraining., in: CLEF, 2020. URL: http://ceur-ws.org/Vol-2696/paper_121.pdf.

[40] S. Rohatgi, J. Wu, C. L. Giles, Ranked list fusion and re-ranking with pre-trained trans-
formers for arqmath lab (2021). URL: http://ceur-ws.org/Vol-2936/paper-08.pdf.

[41] B. Mansouri, D. W. Oard, R. Zanibbi, DPRL systems in the CLEF 2021 ARQMath lab:
Sentence-BERT for answer retrieval, learning-to-rank for formula retrieval, in: CLEF, 2021.
URL: http://ceur-ws.org/Vol-2936/paper-04.pdf.

[42] X.Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, Q. Liu, TinyBERT: Distilling
BERT for natural language understanding, 2019. arXiv:1909.10351.

[43] P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder, A. McNamara,
B. Mitra, T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Tiwary, T. Wang, Ms marco: A
human generated machine reading comprehension dataset, 2016. arXiv:1611.09268.

[44] A.Reusch, M. Thiele, W. Lehner, An ALBERT-based similarity measure for mathematical
answer retrieval, in: SIGIR, 2021. URL: https://dl.acm.org/doi/abs/10.1145/3404835.3463023.

[45] A.Reusch, M. Thiele, W. Lehner, TU_DBS in the ARQMath lab 2021, CLEF, in: CLEF, 2021.

https://dl.acm.org/doi/abs/10.1145/3077136.3080748
https://par.nsf.gov/servlets/purl/10198749
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2105.00377
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/OVERVIEW/01-NTCIR12-OV-MathIR-ZanibbiR.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/OVERVIEW/01-NTCIR12-OV-MathIR-ZanibbiR.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1810.04805
http://ceur-ws.org/Vol-2696/paper_235.pdf
http://ceur-ws.org/Vol-2696/paper_235.pdf
http://ceur-ws.org/Vol-2936/paper-06.pdf
http://ceur-ws.org/Vol-2936/paper-06.pdf
http://arxiv.org/abs/1908.10084
http://ceur-ws.org/Vol-2696/paper_121.pdf
http://ceur-ws.org/Vol-2936/paper-08.pdf
http://ceur-ws.org/Vol-2936/paper-04.pdf
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1611.09268
https://dl.acm.org/doi/abs/10.1145/3404835.3463023

[50]

[51]

[61]

URL: http://ceur-ws.org/Vol-2936/paper-07.pdf.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, Albert: A lite bert for
self-supervised learning of language representations, 2019. arXiv:1909.11942.

W. Zhong, X. Zhang, J. Xin, J. Lin, R. Zanibbi, Approach Zero and Anserini at the CLEF-2021
ARQMath track: Applying substructure search and BM25 on operator tree path tokens, in:
CLEF, 2021. URL: http://ceur-ws.org/Vol-2936/paper-09.pdf.

W. Zhong, A novel similarity-search method for mathematical content in LaTeX markup
and its implementation, Ph.D. thesis, University of Delaware, 2015. URL: https://udspace.
udel.edu/handle/19716/17656.

Y. Lv, C. Zhai, Lower-bounding term frequency normalization, in: Proceedings of the
20th ACM international conference on Information and knowledge management, 2011, pp.
7-16.

H. Jégou, R. Tavenard, M. Douze, L. Amsaleg, Searching in one billion vectors: Re-rank
with source coding, in: IEEE ICASSP, 2011. URL: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=5946540.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, A. Rush, Transformers: State-of-the-art natural language
processing, in: EMNLP, 2020. URL: https://aclanthology.org/2020.emnlp-demos.6.

J. Johnson, M. Douze, H. Jégou, Billion-scale similarity search with GPUs, IEEE Transac-
tions on Big Data 7 (2019) 535-547. URL: https://ieeexplore.ieee.org/document/8733051.
W. Zhong, J. Lin, PyA0: A Python toolkit for accessible math-aware search, in: SIGIR,
2021. URL: https://dl.acm.org/doi/abs/10.1145/3404835.3462794.

R. Nogueira, Z. Jiang, J. Lin, Investigating the limitations of transformers with simple
arithmetic tasks, arXiv:2102.13019 (2021). arXiv:2102.13019.

L. Liu, P. S. H. Lewis, S. Riedel, P. Stenetorp, Challenges in generalization in open domain
question answering, CoRR abs/2109.01156 (2021). URL: https://arxiv.org/abs/2109.01156.
arXiv:2109.01156.

L. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv:1711.05101 (2017).
arXiv:1711.05101.

T. Joachims, Training linear svms in linear time, in: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006. URL:
https://doi.org/10.1145/1150402.1150429.

B. Mansouri, V. Novotny, A. Agarwal, D. W. Oard, R. Zanibbi, Overview of ARQMath-
3 (2022): Third CLEF lab on Answer Retrieval for Questions on Math (Working Notes
Version), in: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum,
2022.

M. Geletka, V. Kalivoda, M. Stefanik, M. Toma, P. Sojka, Diverse semantics representation
is king: Mirmu and msm at arqmath 2022, in: CLEF, 2022.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, et al, Language models are few-
shot learners, NeurIPS (2020). URL: https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., Language models

http://ceur-ws.org/Vol-2936/paper-07.pdf
http://arxiv.org/abs/1909.11942
http://ceur-ws.org/Vol-2936/paper-09.pdf
https://udspace.udel.edu/handle/19716/17656
https://udspace.udel.edu/handle/19716/17656
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5946540
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5946540
https://aclanthology.org/2020.emnlp-demos.6
https://ieeexplore.ieee.org/document/8733051
https://dl.acm.org/doi/abs/10.1145/3404835.3462794
http://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2109.01156
http://arxiv.org/abs/2109.01156
http://arxiv.org/abs/1711.05101
https://doi.org/10.1145/1150402.1150429
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

are unsupervised multitask learners, OpenAl blog (2019). URL: https://openai.com/blog/
better-language-models/.

Y. Bai, X. Li, G. Wang, C. Zhang, L. Shang, J. Xu, Z. Wang, F. Wang, Q. Liu, Sparterm: Learn-
ing term-based sparse representation for fast text retrieval, 2020. arXiv:2010.00768.
T. Formal, B. Piwowarski, S. Clinchant, Splade: Sparse lexical and expansion model for
first stage ranking, arXiv:2107.05720 (2021). arXiv:2107.05720.

T. Formal, C. Lassance, B. Piwowarski, S. Clinchant, SPLADE v2: Sparse lexical and
expansion model for information retrieval, arXiv:2109.10086 (2021). arXiv:2109.10086.
M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan, et al., Show your work: Scratchpads for intermediate
computation with language models, arXiv:2112.00114 (2021). arxXiv:2112.00114.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, D. Zhou, Self-
consistency improves chain of thought reasoning in language models, arXiv:2203.11171
(2022). arxiv:2203.11171.

https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2010.00768
http://arxiv.org/abs/2107.05720
http://arxiv.org/abs/2109.10086
http://arxiv.org/abs/2112.00114
http://arxiv.org/abs/2203.11171

	1 Introduction
	2 Related Work
	3 Models
	3.1 Lexical and Structural Search
	3.2 ColBERT

	4 Handling ARQMath Tasks
	4.1 Approach Zero Changes
	4.2 Training Data
	4.3 Preprocessing for Math
	4.4 Training
	4.5 Task 1: Answer Retrieval
	4.6 Task 2: Formula Retrieval
	4.7 Task 3: Open Domain Question Answering
	4.7.1 Model Selection
	4.7.2 Generating Candidate Answers
	4.7.3 Snippet Selection

	5 Experiment
	5.1 Setup
	5.2 Approach Zero Improvements
	5.3 ARQMath-1 and 2 Results
	5.4 ARQMath-3 Results
	5.5 Effectiveness Discussion
	5.6 Efficiency Discussion

	6 Conclusion

