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Abstract
There is a pressing need for advanced semantic annotation technologies of medical content, in particular
medical publications, clinical trials and clinical records. Search engines and information retrieval
systems require semantic annotation and indexing systems to support more advanced user search
queries. Considering the relevance of disease concepts for clinical coding, automated processing of
clinical trials and even patents, it is critical to provide access to high quality manually annotated
documents labelled by clinicians for the development and benchmarking of disease mention recognition
and grounding tools. This is particularly important for medical content beyond English, where even
fewer annotated corpora have been released. To address these issues, we have organized the DisTEMIST
(DISease TExt MIning Shared Task) track at BioASQ 2022. It represents the first community effort
to evaluate and promote the development of resources for automatic detection and normalization
of disease mentions from clinical case documents in Spanish. For this track we have released the
DisTEMIST corpus, a collection of 1000 clinical case documents carefully selected by clinicians and
annotated manually by a team of healthcare professionals following annotation guidelines and quality
control analysis for consistency. Disease mentions were exhaustively mapped by these experts to their
corresponding SNOMED CT concept identifiers. Moreover, we have created additional multilingual
Silver Standard versions of the corpus for 7 languages (English, Portuguese, French, Italian, Romanian,
Catalan and Galician), as well as mention normalization cross-mappings to 4 additional highly used
terminologies. We received 38 systems or runs from 9 teams, obtaining very competitive results. Most
participants implemented sophisticated AI approaches, mainly deep learning algorithms based on pre-
trained transformer-like language models (BERT, BETO, RoBERTa, etc.), with a classifier layer for named
entity recognition and embedding distance metrics for entity linking. Finally, some initial explorations
of applicability and adaptation of disease taggers trained on the DisTEMIST corpus to different clinical
records (discharge summaries, radiology reports and emergency records) were performed. DisTEMIST
corpus: https://doi.org/10.5281/zenodo.6408476
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1. Introduction

Systems able to detect and normalize disease mentions from medical content are crucial for a
diversity of applications such as semantic indexing for improved retrieval/classification, clinical
coding, drug repurposing, or relation extraction (disease-symptom, disease-drug/treatment,
disease-gene/mutation) [1].

Focusing on semantic indexing, it was estimated that more than 20% of PubMed queries are
related to diseases, disorders, and anomalies [2], stressing the importance for different users
(researchers, clinicians, Pharma, biologists) to extract this key information. Indeed, this category
has a significant presence in both scientific articles and clinical narratives [3] and it is also
relevant to process other kinds of content like social media (e.g. SMM4H/COLING2022 track -
SocialDisNER1). Consequently, the development of highly efficient systems capable of making
these types of entities accessible by search systems has a great interest in the biomedical field.
Detecting relevant disease entities can improve indexing systems by alleviating the need to
consider entire documents.

Disease detection and normalization has been explored from various perspectives and in
different languages. The earliest attempts consisted mostly of systems that tried to map the
content of free text to biomedical knowledge sources like MeSH or the UMLS Metathesaurus [4]
using lexical look-ups or rule-based methods. One example of such systems is MetaMap [5], a
popular program developed by the National Institutes of Health (NIH) to extract UMLS concepts
from text. MetaMap uses a fairly configurable algorithm and over 20 years after its release is
still being updated [6]. It is also one of the main tools used to index biomedical literature by the
National Library of Medicine (NLM)’s Medical Text Indexer [7].

Despite the usefulness of these systems, they have one main downside: concepts from
knowledge sources oftentimes do not correspond to the expressions used in texts, especially
when it comes to genres like Electronic Health Records, whose language can be noisy and more
informal. Annotated corpora opened the door to detection methods with better recall that
can tackle these problems, as well as more adequate system evaluation methods (which early
mapping systems mostly lacked).

Some notable disease corpora in English are the 2010 i2b2 corpus [8] and NCBI-Disease
corpus [9]. The former is a reference corpus of Clinical Records annotated for three tasks:
medical problem concept extraction (which includes diseases, although not as a separate entity
type), assertion detection (an extension of traditional negation and uncertainty extraction), and
relation classification. Originally, no normalization was provided for the concept extraction
task. However, a portion of the corpus was re-used as part of the n2c2 2019 shared task
[10] and multiple clinical concepts, including diseases, were normalized to SNOMED CT and
RxNorm. The NCBI-Disease corpus is a Gold Standard collection of PubMed abstracts annotated
with disease concepts which were later normalized to MeSH and OMIM that served as the
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foundation of one of the first machine-learning based disease normalization systems: DNorm
[11]. Similarly to DisTEMIST, the 2013 ShARe/CLEF eHealth evaluation lab data [12] also
proposed participants the challenge of identificating diseases and normalizing them to SNOMED
CT. The best performing systems in the strict evaluation setting obtained 0.75 and 0.58 F1-score
in detection and normalization, respectively.

In Spanish, there are already some corpora that consider diseases, each of them with different
characteristics. For instance, the IxaMed-GS corpus [13] is a collection of Electronic Health
Records with annotations for diseases and drugs and relationships between both when they
indicate adverse drug reaction events. DrugSemantics [14] is a corpus of summaries of product
characteristics with multiple entity types, including diseases. The Chilean Waiting List Corpus
[15] is another resource consisting of referrals from public Chilean hospitals.

Only two released corpora in Spanish include mappings to a knowledge source for its annota-
tions. On the one hand, Campillos-Llanos et al. [16] present a corpus of clinical trials annotated
with anatomical and chemical entities, disorders and procedures where a small fraction of the
annotations are mapped to UMLS. On the other hand, the CodiEsp shared task [17] challenged
its participants to associate clinical cases with their correct ICD-10 disease and procedure code
(ICD-10 stands for International Classification of Diseases, 10th edition), and to find the specific
mentions that supported the code choice. The CodiEsp corpus contains the same number of
documents as the DisTEMIST corpus. However, the annotated text mentions in CodiEsp are
targeted toward clinical coding with ICD-10 instead of SNOMED CT.

ICD-10 is an international standard for clinical coding designed to provide accurate statistics
globally. The scope and granularity of ICD-10 are limited regarding representation of clinical
language. In contrast, SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms)
is the most comprehensive and widely used multilingual clinical terminology [18]. The concepts,
descriptions, and relationships in SNOMED CT are intended to accurately represent clinical
information. The July 31, 2021 release of the SNOMED CT International Edition included more
than 350,000 concepts.

To data and to the best of our knowledge, there are no resources in Spanish that anno-
tate diseases and map them to SNOMED CT. To solve these limitations, we have created the
first Gold Standard text corpus of disease mentions, manually mapped to the SNOMED CT
terminology [19], the DisTEMIST Gold Standard corpus. DisTEMIST continues our efforts
to generate publicly accessible high quality corpora annotated with relevant clinical entities
[20, 21, 22, 23, 17, 24, 25] and for semantic indexing in Spanish [26, 3, 27]. It was built following
detailed annotation guidelines and exhaustive manual text labeling by clinical experts. The
DisTEMIST documents were also carefully selected to represent a wide range of diseases from
multiple medical specialties (cardiology, ophthalmology, infectious diseases, urology, oncology,
paediatrics, tropical diseases, internal medicine, dentistry and other), to facilitate knowledge
transfer to different fields and textual sources. The creation of the DisTEMIST Gold Standard
corpus was divided into two separate steps: 1) manual text annotation, where the annotator/s
recognizes and tags disease mentions in the text and 2) assignment of specific SNOMED CT
identifiers to each mention. The main challenges to the normalization to SNOMED CT reside
in the considerable variability of expressions used by clinicians to describe the same disease,
changes in medical terminology over time, and the richness of clinical entities and expressions,
which not always found an optimal SNOMED CT identifier. To increase the exploitation and



Figure 1: Overview of the DisTEMIST Shared Task.

impact of the DisTEMIST corpus, it was used for a shared task in the context of the CLEF 2022
evaluation initiative. This paper provides an overview of the results, data, methods, outcome
and future outlook of the DisTEMIST shared task.

To improve disease information extraction systems, the DisTEMIST Gold Standard and other
resources described in this manuscript are released to the community through the DisTEMIST
shared task -part of the CLEF and BioASQ 2022 initiative. DisTEMIST invites researchers,
biomedical industry professionals, natural language processing and ontology experts to develop
systems capable of indexing the content about diseases in biomedical texts, basing the choice
on the existing evidence in the text by using Named Entity Recognition (NER), entity linking,
and cross-ontology mapping techniques.

2. Task Description

2.1. Shared Task goal

The DisTEMIST shared task explores the automatic recognition of disease mentions in clini-
cal documents in the Spanish language, as well as the assignment of SNOMED CT codes to
each mention. DisTEMIST is the first community effort specifically focused on Named Entity
Recognition and normalisation of diseases mentions to SNOMED CT in clinical cases written in



Spanish.

2.2. Sub-tasks

The DisTEMIST track is structured into two independent sub-tasks, each taking into account a
particularly important use case scenario:

• DisTEMIST-entities sub-task. It requires automatically finding disease mentions in pub-
lished clinical cases. All disease mentions are defined by their corresponding character
offsets (start character and end character) in UTF-8 plain text clinical cases.

• DisTEMIST-linking sub-task. It requires automatically finding disease mentions in pub-
lished clinical cases and assigning a SNOMED CT term to each mention.

2.3. Shared Task setting

The DisTEMIST track was organized in two participation periods or phases:

• Training phase. In this first phase, the training subset of the complete corpus was released,
containing plain text documents and their annotations in the proper format (see section 3
for more details on corpus format). During this period, participants build their systems.

• Test phase. In this phase, the test set was released. Only the plain text documents
were provided to the participants. They had to use their systems to predict the correct
annotations for these documents. After the submission deadline, the organizers evaluated
the participants’ predictions against the manual annotations done by clinical experts.
Each team was allowed to submit up to 5 runs.

2.4. Evaluation metrics

In both sub-tasks, DisTEMIST-entities and DisTEMIST-linking, the main evaluation metric
has been micro-average f1-score. In addition, micro-average precision and recall have been
computed.

Precision (P) =
true positives

true positives + false positives

Recall (R) =
true positives

true positives + false negatives

F1 score (F1) =
2 * (𝑃 *𝑅)

(𝑃 +𝑅)

In the DisTEMIST-linking sub-task, only a set of SNOMED CT terms defined a priori were
considered in the evaluation (see Section 3.4) to narrow down the SNOMED CT space that
participants had to target. The DisTEMIST evaluation library is available on GitHub2.

2https://github.com/TeMU-BSC/distemist_evaluation_library



2.5. Baseline

For the DisTEMIST-entities sub-task, we prepared two baseline models to compare with partici-
pants’ systems.

• DiseaseTagIt-VT. This system uses a simple vocabulary transfer approach from training
to test set. It follows a Levenshtein lexical lookup approach using a sliding window of
varying length. For further reference, check out the CANTEMIST overview paper [17].
The code is available on GitHub3.

• DiseaseTagIt-Base. This competitive baseline is a deep neural network system trained
with the DisTEMIST training dataset. The network is a customization of the BiLSTM-CRF
architecture and it employs word embeddings optimized for biomedical Spanish language
[28]. For a more in-depth description of the system, check the PharmaCoNER tagger
paper [29]. The code is available on GitHub4. A web demo of the DiseaseTagIt-Base
system has also been made public5.

In the DisTEMIST-linking sub-task, a baseline model has been developed for comparison with
the participating systems. TEMUNormalizer-Fuzzy model applies a lexical similarity strategy
between mentions and each of the gazetteer entries to make predictions. For each mention-
lexical entry pair, the normalized Levenshtein distance is calculated, assigning the lexical entry
code when the value is greater than a threshold. In the case of the sub-task, we selected 0.9.
The code is available on GitHub 6.

3. Corpus and Resources

3.1. DisTEMIST Gold Standard Corpus

The DisTEMIST corpus is a collection of 1000 clinical case reports written in Spanish from mis-
cellaneous medical specialties. Clinical experts have manually annotated all corpus documents
with mentions of diseases (in Spanish, “enfermedad”). Every disease mention is manually linked
to a SNOMED CT term. Figure 3 shows an example of an annotated document fragment. The
DisTEMIST corpus is publicly available at Zenodo7.

Novelty. This is the first Gold Standard manually annotated corpus of diseases in Spanish
clinical documents with the mentions mapped to SNOMED CT. Additionally, the DisTEMIST
guidelines are part of a pioneer effort to facilitate the creation and usability of annotated
resources for clinical NLP in Spanish. The effort already includes other annotation guidelines
such as the PharmaCoNER [21], CANTEMIST [23] and MEDDOCAN guidelines [22].

Document selection. All clinical cases derived from various databases were gathered and
preprocessed, and the actual clinical case section was extracted, removing embedded figure
references or citations. These records were classified manually by a practicing oncologist and

3https://github.com/tonifuc3m/character-lookup
4https://github.com/TeMU-BSC/PharmaCoNER-Tagger
5https://textmining.bsc.es/ner/04
6https://github.com/TeMU-BSC/TEMUNormalizer
7https://doi.org/10.5281/zenodo.6408476



Figure 2: Annotated clinical case visualized with Brat tool [30] and annotation tab-separated format.

Figure 3: (A) Example sentence from DisTEMIST Gold Standard related to the complications caused
by a stent (translation): “Suspecting stent thrombosis, an arteriography was performed via the left
femoral artery confirming renal artery thrombosis (thrombolysis was attempted without success) and
stent migration, which was unsuccessfully repositioned.” (B) Example sentence from DisTEMIST Gold
Standard related to a work accident (translation): “38-year-old male member of the police force who
suffers a traffic accident as a motorcyclist with blunt trauma to the left hand in hyperextension.”

revised by a clinical expert to ensure that they were related to the medical domain and their
structure and content is relevant to process clinical content. The final collection of 1,000 clinical
cases has 16,678 sentences, with an average of 16.7 sentences per clinical case.

Corpus annotation. The DisTEMIST corpus was annotated and standardized by two clinical
experts from a Spanish tertiary hospital, with the support of a physician, who was also in
charge of reviewing the mentions and their associated codes to reach a final version. The corpus
annotation process took place between 2018 and 2020, with an approximate duration of 14
months, and the normalization process occurred in 2020 for approximately six months. The
annotation and normalization review process lasted around two extra months each.



Figure 4: Example of DisTEMIST-entities annotation.

Before starting the annotation, the first draft of these guidelines was created based on previous
works in the domain. The guidelines were refined through several rounds of inter-annotator
agreement (IAA) consisting of parallel annotation of 10% of the corpus. After several rounds,
a total IAA score of 82.3 (computed as the pairwise agreement between two independent
annotators) for the disease mentions was achieved.

In addition, during the DisTEMIST annotation process, an ongoing discussion took place on
the content of the corpus, especially on complicated and ambiguous cases, to achieve the highest
possible quality and refine these guidelines as much as possible. The DisTEMIST annotation
guidelines are further discussed in Section 3.2.

Corpus format. The DisTEMIST documents are released in plain text format with UTF-8
encoding. The annotations are included in a tab-separated document. For DisTEMIST-entities,
the annotations file has the following columns: filename, mark (identifier mention id), label
(ENFERMEDAD), off0 (starting position of the mention in the document), off1 (ending position
of the mention in the document) and text span (see Figure 4). For DisTEMIST-linking, in addition
to these six columns, the annotation file includes two more columns: codes (list of SNOMED
CT concept codes linked to the mention; composite mentions with more than one associated
code are concatenated by the symbol "+") and semantic relation (the relationship between the
assigned code and the mention) (see Figure 4). There are two possible semantic relation values:
EXACT –when the code corresponds precisely with the mention– and NARROW –when a
mention corresponds to a narrower concept than the assigned SNOMED-CT code. For instance,
the concept "Chorioretinal lacunae" does not exist in SNOMED-CT. Therefore, it was normalized
to the SNOMED-CT ID 302893000: "Chorioretinal disorder" and a NARROW relation has been
assigned to the mapping.

Corpus statistics. The DisTEMIST corpus contains 1,000 documents, which include 16,678
sentences and 406,318 tokens. The corpus was randomly split into two subsets: training and
test set. The test set is used for evaluation purposes of participating teams and consists of 250
records. All documents contain disease mentions. There are 10,665 disease mentions, and each
of them was manually mapped to a SNOMED CT term. There are 7,303 unique codes. During
the shared task, the entire training set was released annotated, but not all documents have the
mentions normalized to SNOMED CT: only 585 documents have their mentions normalized to
SNOMED CT, since we could not guarantee the quality of the normalization of the remaining
165 documents. The normalization of these 165 documents has been released after the shared
task. See Table 1 for the DisTEMIST corpus general statistics.



Figure 5: Example of DisTEMIST-linking annotation.

Figure 6: (A) Zipfs plot of all DisTEMIST ENFERMEDAD ["disease"] entities. (B) Most frequent
ENFERMEDAD ["disease"] mentions of the DisTEMIST corpus

Figure 6 (A) shows the statistical profile of the disease entities present in the entire DisTEMIST
corpus. It presents the relation between disease entity mention frequency and the corresponding
entity rank when listing diseases according to absolute frequency. It matches the statistical
corpus characteristics observed for token frequencies of other corpora. In Figure 6 (B), we can
appreciate that the most common mentions are generally short and composed of one or two
tokens (injury, lymphadenopathy, tumor, hypertension, etc). On the other hand, disease mentions
with frequency equal to one are usually longer and include mentions such as "bloque anquilótico
de la articulación témporomandibular" (temporomandibular joint ankylosis) or "atrofia del nervio
óptico derecho" (atrophy of the right optic nerve).

Cross-mappings. Although SNOMED CT terminology is commonly employed in clinical
scenarios, literature indexing applications are frequently based on Medical Subject Headings
(MeSH)8 or Descriptores en Ciencias de la Salud (DeCS)9, while clinical coders might be more

8https://www.ncbi.nlm.nih.gov/mesh/
9https://decs.bvsalud.org/E/homepagee.htm



Figure 7: Chord diagram of the DisTEMIST corpus. Here we show the co-mentions of the top 20
SNOMED CT codes in the entire DisTEMIST corpus. Instead of the SNOMED CT IDs, we show the
main terms to ease the understanding of the plot. Notably, the top 4 codes (417163006 or "Traumatic
or non-traumatic injury", 55342001 or "Neoplastic disease", 38341003 or "Hypertensive disorder", and
30746006 "Lymphadenopathy") are frequently co-mentioned with many other codes.

familiar with the International Clasification of Diseases (ICD)10.
To facilitate use of DisTEMIST identifiers, we have generated cross-mappings from the

SNOMED CT code assignments of the DisTEMIST corpus to MeSH, ICD-10, HPO11, and OMIM12.
The cross-mappings were performed through the UMLS Metathesaurus and can be found at
Zenodo13.

10https://www.who.int/standards/classifications/classification-of-diseases
11https://hpo.jax.org/app/
12https://www.omim.org/
13https://doi.org/10.5281/zenodo.6408476



Table 1
DisTEMIST Gold Standard corpus statistics

Documents Annotations Unique codes Sentences Tokens

Training 750 8,066 4,819 12,499 305,166
Test 250 2,599 2,484 4,179 101,152
Total 1,000 10,665 7,303 16,678 406,318

3.2. DisTEMIST Annotation Guidelines

The DisTEMIST corpus was manually annotated by clinical experts following the DisTEMIST
guidelines. These guidelines contain rules for annotating diseases in Spanish clinical cases and
for mapping these annotations to SNOMED CT.

Guidelines were created de novo by clinical experts and defined after several cycles of qual-
ity control and annotation consistency analysis. The DisTEMIST Annotation Guidelines are
available at Zenodo14.

The version 1 of the guidelines contains 28 pages. The annotation rules are distributed into
general, positive, negative and special rules. General rules provide the basic do’s and don’ts of
the annotation process; positive and negative rules describe what must or mustn’t be annotated
as a disease, respectively; special rules are added for situations that are hard to generalize or
exceptions to the other rules. Additionally, a set of rules specific to oncology mentions was
added as the language used in clinical cases related to this specialty proved to be more specific
and harder to annotate. The oncology rules are partially based in the CANTEMIST Guidelines
[23].

All in all, there is a total of 52 rules: 16 general, 10 positive, 12 negative, 8 special and 6
for oncology. Other than the rules, the guidelines also include a short discussion of the task’s
importance, a short corpus characterization, basic information about the task and annotation
process, as well as indications and resources for the annotators.

The DisTEMIST guidelines have been successfully adapted to other data types, such as
medical narratives and social media15.

3.3. DisTEMIST Multilingual Silver Standard

To foster the development of multilingual tools and generate systems not only for Spanish but
also for content in other languages, we have generated the DisTEMIST corpus in 6 languages
(English, Portuguese, Catalan, Italian, French, and Romanian) by transferring the Gold Standard
annotations to machine-translated versions of the corpus files. The resulting Silver Standards
include not only these annotations but also the corresponding SNOMED CT mapping for each
mention.

The Gold Standard transfer process was performed as follows:

1. The text files were translated from Spanish to the target languages with a neural machine
translation system. Translations were done through combination of several machine

14https://doi.org/10.5281/zenodo.6458078
15https://temu.bsc.es/socialdisner/annotation-guidelines/



translation tools, with the exception of the Catalan translation which was obtained with
the SoftCatala API16. These systems were chosen due to their perceived quality to ensure
high quality translations. In addition, manual checks of the translation outputs were
performed.

2. A list of all annotations, individually and without context, was translated with the same
neural machine translation system.

3. The translated annotations were transferred to the translated text files using an anno-
tation transfer technology. The transferred annotations carry as well the SNOMED CT
normalisation. Therefore, the output multilingual corpus has disease mentions annotated
and linked to SNOMED CT terms.

In more detail, the annotation transferring consisted of these steps:

1. For each language, a TSV file is created with the individual Gold Standard annotations,
their translation and the translation’s lemma. The lemmas were obtained using spaCy17.

2. To add the GS normalization, an additional TSV file is created with the annotations in
Spanish and their associated SNOMED-CT code.

3. Each document in the corpus is iterated through. The GS annotations are read and stored
and the translated text file is retrieved.

4. For each document, a dictionary is created that contains all of its annotations and their
corresponding translations, lemma and code.

5. A look-up system is used to find the translated text fragments in the translated text file
and create new annotations. By using only the annotations present in each GS file, we aim
to reduce the number of false positives and negatives. Three different options were used
for each annotation: the translation, the lemmatized form and the original annotation in
Spanish. The last two were only used if the previous one did not return any results.

The annotation created by the annotation transfer process constitute a Silver Standard as the
resulting annotation is only approximate (Table 2). Still, these corpora might help fill a data gap
in the chosen languages. Systems trained on the data should generate acceptable results and
researchers who are native speakers of the language may correct the errors in the annotation
without much difficulty by comparing it with the GS.

In order to manually assess the quality of the created annotations, we carried out a short,
manual error analysis of the transferred files. It helped us understand the following error
sources:

• Synonyms. Translating the full-text documents and the annotations separately results in
inconsistencies between both, as the machine translation system might return different
synonyms for concepts isolated or in context. For example, the system might translate
‘niño’ (child) in French as ‘enfant’ in one instance and as ‘garçon’ in the other.

• Gendered words. Another of these inconsistencies is related to current biases in Machine
Translation systems. Without context, gender-neutral words in Spanish were often
translated to their masculine counterpart in the target language. In contrast, the full-text
translation took context into account and for the most part correctly gendered words.

16https://www.softcatala.org/traductor/
17https://spacy.io/



Table 2
DisTEMIST Multilingual Silver Standard corpus statistics

Documents Annotations Unique Snomed IDs Sentences Tokens

Catalan Training 750 8739 3365 12476 305004
Test 250 1226 397 4169 100992

English Training 750 6650 2388 12582 293771
Test 250 1125 361 4212 97574

French Training 750 6447 2290 12645 327480
Test 250 1106 330 4219 108271

Italian Training 750 6468 2424 12540 305250
Test 250 1057 347 4197 100851

Portuguese Training 750 6613 2199 12551 301231
Test 250 1021 329 4197 99818

Romanian Training 750 4338 1803 12531 305884
Test 250 707 287 4189 101223

• Word inflection. Transferal to Romanian was probably the hardest due to the language’s
grammar. Being a more morphologically-complex language than Spanish in some aspects,
many of the translated entities lacked grammatical information like noun cases. As a
result, they do not match their translation in the full-text document, which used the
grammatical information from the sentence context and correctly added case to many
nouns.

There are various possible solutions to these issues, such as creating a complete list of the
possible morphological variants of a translation, using a more intricate lookup system or creating
a custom Machine Translation system that takes annotated entities into account. These options
are outside the scope of our current work, but we plan to explore them in the future in order
to expand this technology to more languages. As an initial solution, for some languages we
manually enriched the entities list with some of the most common missing entities based on
our error analysis.

An overview of the DisTEMIST Multilingual Silver Standard statistics is shown in Table 2.
The DisTEMIST Multilingual Silver Standard is available at Zenodo18. Besides, users can

visualize the multilingual resources on a Brat server19.

3.4. DisTEMIST Gazetteer

The July 31, 2021 release of the SNOMED CT International Edition comprised more than 350,000
clinically relevant concepts. Selection of the SNOMED CT subset with concepts relevant to
DisTEMIST was thus necessary to facilitate normalization. The DisTEMIST gazetteer contains
main terms and synonyms from the relevant branches of SNOMED CT for the grounding of
disease mentions. Mentions belonging to SNOMED CT hierarchies such as disorder, finding, or

18https://doi.org/10.5281/zenodo.6408476
19https://temu.bsc.es/mDistemist/#/translations/, https://temu.bsc.es/mDistemist/diff.xhtml#/translations/en/train/S0004-

06142005000900013-1?diff=/gold-standard/train/



Figure 8: Overview of the DisTEMIST Multilingual Silver Standard corpus generation and use cases.

morphological abnormality were included. The test set mentions whose assigned SNOMED CT
term is not included in the versions 1.0 and 2.0 of the DisTEMIST gazetteer were not considered
for the shared task evaluation.

All concepts of the SNOMED CT disorder hierarchy were incorporated in the process of
creating the dictionary. Additionally, sub-branches of other hierarchies have been incorporated
after a manual validation carried out by the clinical experts who normalized the corpus. The
dictionary has 147,280 entries, of which 111,177 are SNOMED CT main terms. There are 111,180
unique SNOMED CT codes from 18 SNOMED hierarchies, the most common one being disorder
with 142,889 dictionary entries. The DisTEMIST Gazetteer is available in tab-separated format
at Zenodo20.

4. Results

DisTEMIST contained two independent sub-tasks: DisTEMIST-entities and DisTEMIST-linking.
Participants could choose whether to submit results for one or both sub-tasks. Participants
could submit up to 5 runs for each sub-task.

4.1. Participation Overview

DisTEMIST has received a large attention from the community. Indeed, 9 teams submitted their
predictions and a total of 159 teams had registered for this task. All 9 teams participated in

20https://doi.org/10.5281/zenodo.6458114



Table 3
DisTEMIST participation summary.

DisTEMIST-entitites DisTEMIST-linking Total

Participant teams 9 7 9
Submitted runs 19 13 32

Table 4
DisTEMIST team overview. A/I stands for academic or industry institution. In the Tasks column, E
stands for DisTEMIST-entities, L for DisTEMIST-linking.

Team Name Affiliation Tasks Ref. Tool URL

PICUSLab PICUS E/I [31] –
HPI-DHC University of Potsdam, Germany E/I [32] [33]
SINAI Universidad de Jaén, Spain E/I [34] [35]
Better Innovations Lab Norwegian
Centre for E-health Research Better/NSE E/I [36] –
NLP-CIC-WFU Instituto Politécnico Nacional, Mexico E [37] [38]
PU++ IIMAS UNAM, Mexico E/I [39] -
Terminología Hospital Italiano Buenos Aires, Argentina E/I [40] -
iREL IIIT Hyderabad, India E – –
Unicage Unicage, Portugal E [41] –

DisTEMIST-entities, while 7 of them also submitted results for DisTEMIST-linking. Five runs
were allowed per sub-task, so the total number of systems participating in the shared task is
considerably higher: 19 for DisTEMIST-entities and 13 for DisTEMIST-linking. Additionally,
as Table 4 shows, participants belonged to institutions (industry or academia) from different
countries including Spain, India, Germany or Argentina.

4.2. System Results

Table 6 shows the complete results by all teams. The top-scoring results for each sub-task were:

• DisTEMIST-entities. PICUSLab team obtained the highest F1-score, 0.7770, as well as the
highest precision (0.7915) and recall (0.7629). Teams Better/NSE, HPI-DHC and SINAI
obtained as well F1-scores over 0.73.

• DisTEMIST-linking. The highest F1-score (0.5657), precision (0.6207) and recall (0.5196)
were obtained by HPI-DHC.

4.3. Error Analysis

False Negatives. Missed annotations are longer. It is clear that annotations with low
frequency in the training set are more difficult to predict in the test set. Indeed, there is a
negative linear correlation of -0.21 between mention training set frequency and the number of
False Negatives. However, analysing the participants’ submissions, we found that a mention
length is the strongest indicator of mention "difficulty". The linear correlation between mention



Table 5
DiseaseTagIt-Base performance comparison.

Precision Recall F1-score

(1) DiseaseTagIt-Base w. DisTEMIST training 0.7225± 0.0226 0.6307± 0.0101 0.6733± 0.0113
(2) DiseaseTagIt-Base w. automatic predictions 0.7654± 0.0193 0.6964± 0.0182 0.7289± 0.0071
(3) DiseaseTagIt-Base w. augmented dataset 0.7342± 0.0089 0.7179± 0.0126 0.7259± 0.0101

length and number of False Negatives is 0.41. Examples of test set mentions not predicted by any
of the systems are "tortuosidad de tronco celíaco y arteria hepática" (tortuosity of the celiac trunk
and hepatic artery) or "retraso en la erupción de los incisivos inferiores y del canino" (delayed
eruption of lower incisors and canine tooth). On the other hands, test set mentions predicted by
all DisTEMIST systems are, for instance, some occurrences of "adenopatías" (lymphadenopathy),
"cistitis"(cystitis) or "derrame pleural" (pleural effusion).

4.4. Methodologies

Participants have modelled the DisTEMIST-entities sub-task as a NER problem. Currently, large
pre-trained transformer-like models are typically employed to solve this task. Following this
trend, team PICUSLab has obtained the highest micro-average Precision, Recall and F1-score in
the DisTEMIST-entities sub-task with a NER system based on a pre-trained biomedical Spanish
transformer model. Similarly, HPI-DHC and SINAI team obtained the second and third highest
Recall and F1-scores with the Spanish Clinical Roberta model.

Regarding DisTEMIST-linking, the preferred strategy has been to (1) detect the disease
mentions with a NER system, (2) vectorize the disease mentions, as well as the target ontol-
ogy terms/synonyms/descriptions, (3) find the best match by computing the vector similarity
between the disease mention and the ontology terms, synonyms and descriptions. In this
strategy, the quality of the NER system is extremely important to obtain a competitive linking
system. HPI-DHC obtained the highest micro-average Precision, Recall and F1-score in the
DisTEMIST-linking sub-task using an ensemble of a TF-IDF, character-n-gram based approaches
and multilingual embeddings using SapBERT. On the other hand, team Better Innovations Lab /
Norwegian Centre for E-health Research used FastText embeddings instead of the combination
chosen by HPI-DHC, and their chosen distance metric was Approximate Nearest Neighbour
similarity.

As shown by Figure 9, DisTEMIST participants have employed mostly spaCy and Python
Deep Learning libraries (PyTorch and HuggingFace) to develop their systems. This is consistent
with the architectures described in the previous paragraphs and with the system descriptions
referenced in Table 4.

4.5. DisTEMIST Spanish Silver Standard

The DisTEMIST test set was released together with an additional collection of 2750 clinical case
documents in Spanish from various medical disciplines, aka the background set. The background
set is useful to examine whether systems were able to scale to larger data collections and to avoid



Figure 9: Overview of the software used by DisTEMIST participants.

manual annotation correction. Participants have generated automatic mention predictions for
the test and the background set, although they were only evaluated on the test set predictions.

The predictions from all participants for this background set will be harmonized and constitute
the DisTEMIST Spanish Silver Standard corpus, similar to the CALBC initiative [42], to the
Cantemist [23], CodiEsp [17], MESINESP2021 [3], ProfNER [25], and PharmaCoNER [21] shared
tasks.

The Spanish Silver Standard will be a high-quality collection of annotated clinical documents
in Spanish and it will serve to foster the development of disease recognition and linking resources.
To prove this claim, we have compared the DiseaseTagIt-Base baseline system (1) trained with the
DisTEMIST training data (manually annotated data), (2) trained with the HPI-DHC background
predictions (automatically annotated data) and (3) trained with the DisTEMIST training data
+ the HPI-DHC background predictions (augmented dataset) (Table 5). In the three cases, the
network was trained with an Early Stop methodology based on the validation f1-score and
patience equal to 3 epochs. The experiment was repeated three times.

When comparing the results obtained by the three systems, we can observe that the per-
formance improves substantially when the automatically annotated data is added. The model
trained with the augmented datasets shows an improvement of almost 0.5 F1-score with respect
to the model that was trained using only manually annotated data.

The Spanish Silver Standard will be released on the Zenodo Medical NLP community.

5. Discussion

The DisTEMIST shared task has been a pioneer community effort on NER and normalization
of diseases mentions to SNOMED CT in clinical documents written in Spanish. To foster the
development of disease NER and linking resources, we have released the DisTEMIST corpus.



Figure 10: Comparison of micro-average f1-score obtained by participant teams of clinical NER shared
tasks in Spanish.

It is the first Gold Standard text corpus of Spanish clinical documents with disease mentions,
manually mapped to the SNOMED-CT terminology.

The DisTEMIST corpus was created following strict annotation guidelines that are made
public to allow the corpus extension and adaptation to other languages or domains. Our group
has applied the DisTEMIST annotation guidelines (and systems trained with the DisTEMIST
corpus) to Electronic Health Records (in particular, to hospital discharge and radiology reports)
and social media with promising results.

To enhance the interoperability between different data sources, we have generated two
additional resources as part of DisTEMIST. On the one hand, taking into account multilingual
scenarios and the general lack of annotated data in other languages, we have released the
DisTEMIST Multilingual Corpus. It contains the DisTEMIST corpus documents, translated to 6
languages (English, French, Italian, Portuguese, Catalan, and Romanian) and with automatically
generated disease mention annotations mapped to SNOMED CT. On the other hand, we have
also released the DisTEMIST cross-mappings, which links the Gold Standard mappings to
SNOMED CT to four different terminologies (MeSH, ICD-10, HPO and OMIM).

All these resources have attracted the attention of the community. Participant teams have
developed 38 competitive systems, mainly based on pre-trained transformer language mod-
els, evaluated against the DisTEMIST corpus manual annotations. Additionally, they have
generated automatic predictions for 2,750 documents that will be harmonized to create the
DisTEMIST Spanish Silver Standard. We expect that this resource can help enhance current
disease recognition and entity linking, as it was shown to improve the performance of a deep
learning engine.



In the last years, disease mention detection systems have been implemented and used to
process a diversity of content types (e.g. scientific publications, clinical records, clinical trials,
patient fora or social media) resulting in a component integrated into a variety of practically
relevant application types, such as health data analytics software and study of disease trajectories,
disease outbreak monitoring and surveillance, as well as epidemiology tools, extraction of disease
phenotype or co-morbidities, drug discovery, repurposing and off label indications, occupational
health studies, pharmacogenomics or clinical coding of diagnosis.

With the DisTEMIST shared task and resources, we envision expanding these use cases to
other languages, multilingual or code-switching scenarios, and to different data sources. Besides,
current systems will also benefit from the generated resources since we have proven that their
addition improves system performances.

Indeed, DisTEMIST is part of a continued effort carried out by the Plan de Tecnologías
del Lenguaje and the Barcelona Supercomputing Center to generate publicly accessible high-
quality corpora in clinical documents in the co-official languages of Spain. This project includes
MEDDOCAN [22], on the extraction of entities relevant for clinical document anonymisation,
PharmaCoNER [21], the pharmacological substances, compounds and proteins and NER track,
Cantemist [23], that focused on the recognition of tumor morphology mentions, CodiEsp [17],
related to the detection of ICD-10 entities, MEDDOPROF [24], on the recognition of occupations,
and LivingNER [43], about the recognition of species and pathogens. The seven shared tasks
aimed to recognize different medical entities of relevance in clinical documents in Spanish. They
have provided the community with resources (annotated corpora, evaluation libraries, etc.) to
solve the challenges. Table 7 compares the main characteristics of the seven shared tasks, and
the Figure 10 shows side-by-side the micro-average f1-score distribution across all seven shared
tasks.

In the future, we plan to expand the DisTEMIST Multilingual Silver Standard to other under-
represented languages such as Galician and to generate a Gold Standard subset of each language
to create high-quality benchmarks in the seven languages. Furthermore, we are currently
preparing the same Gold Standard corpus for other medical entities (symptoms and medical
procedures).
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Table 6
Results of DisTEMIST systems. MiP, MiR and MiF stands for micro-averaged Precision, Recall and
F1-score. DisTEMIST-e stands for DisTEMIST-entities and DisTEMIST-l stands for DisTEMIST-linking.
The best result is bolded, and the second-best is underlined.

DisTEMIST-e DisTEMIST-l
Team Name Run Name MiP MiR MiF MiP MiR MiF

PICUSLab
NER_results 0.7915 0.7629 0.777 - - -
EL_results - - - 0.2814 0.2748 0.278
EL_results
(post-workshop) - - - 0.274 0.2712 0.2726

HPI-DHC

1-r.c.e.-linear-lr 0.7302 0.7363 0.7332 - - -
2-r.c.e.-constant-lr 0.7302 0.7259 0.728 - - -
3-r.c.e.-linear-lr
-post-process 0.7434 0.7483 0.7458 - - -
4-r.c.e.-constant-
lr-post-process 0.7417 0.7371 0.7394 - - -
1-tf_idf_ngrams
_distemist -. - - 0.3576 0.3646 0.3611
2-sap_umls_large
_distemist - - - 0.3641 0.3738 0.3689
3-ensemble - - - 0.4678 0.389 0.4248
4-ensemble-reranking - - - 0.5427 0.4513 0.4928
5-ensemble-reranking
-postprocess - - - 0.6207 0.5196 0.5657

SINAI

run1-clinical_model 0.7519 0.7221 0.7367 - - -
run2-biomedical_model 0.752 0.7259 0.7387 - - -
run1-clinical_model - - - 0.4163 0.4081 0.4122
run2-biomedical_model - - - 0.4134 0.4069 0.4101

Better Innovations
Lab & Norwegian

Centre for E-health
Research

run1-ner 0.7724 0.6925 0.7303 - - -
run2-ner-limited 0.7926 0.6574 0.7187 - - -
run1-snomed - - - 0.5478 0.4577 0.4987
run2-snomed-limited - - - 0.5497 0.4549 0.4978

NLP-CIC-WFU System_mBERT 0.6095 0.4938 0.5456 - - -

PU++

run1_mbertD5 0.454 0.4619 0.4579 - - -
run2_mbertM5 0.601 0.4488 0.5139 - - -
run1-scieloBERT - - - 0.2267 0.1494 0.1801
run2-scieloBERT - - - 0.2754 0.1494 0.1937

Terminología
distemist-subtrack1 0.5622 0.3772 0.4515 - - -
distemist-subtrack2 - - - 0.4795 0.2292 0.3102

iREL iREL 0.4984 0.3576 0.4164 - - -

Unicage
(post-workshop)

STEM_XXL
_LEX_3spc 0.2055 0.3464 0.258 - - -
XL_LEX_3spc 0.2486 0.3303 0.2836 - - -
XL_LEX_spc 0.205 0.338 0.2552 - - -
XXL_LEX_3spc 0.2478 0.3306 0.2833 - - -
XXL_LEX_spc 0.2045 0.338 0.2548 - - -

BSC baselines
DiseaseTagIt-VT 0.1568 0.4057 0.2262 0.1003 0.1621 0.124
DiseaseTagIt-Base 0.7146 0.6736 0.6935 0.3041 0.2336 0.2642



Table 7
Comparison of Named Entity Recognition shared tasks in Spanish clinical documents.

Shared task Entities
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A Best methodology

MEDDOCAN [22] miscellaneous 18 63 17134 5661 0.98 Recurrent Neural Network (BiLSTM-CRF)
architecture with post-processing rules [44]

PharmaCoNER [21] FARMACO 29 96 5748 4159 0.93 Transformer pre-trained language model
(mBERT-CRF) architecture fine-tuned for NER [45]

CodiEsp [17] DIAGNOSTICO & 22 168 13658 4777 0.81 Transformer pre-trained language model (mBERT)
PROCEDIMIENTO fine-tuned for NER [46] and a dictionary lookup [47]

Cantemist [23] MORFOLOGIA 25 131 12397 3633 0.84 Transformer pre-trained language model (mBERT)
_NEOPLASIA fine-tuned jointly for NER and normalization [48]

MEDDOPROF [24] miscellaneous 15 94 3658 1085 0.9 Transformer pre-trained language model
(XLM-CRF) architecture fine-tuned for NER [49]

LivingNER [43] SPECIES 19 62 23205 7402 0.942 Ensemble of transformer pre-trained language
& HUMAN models (XLM-RoBERTa) fine-tuned for NER

DisTEMIST ENFERMEDAD 9 38 8066 2599 0.82 Transformer pre-trained biomedical Spanish
language model fine-tuned for NER [31]
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