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Abstract
This paper presents the main contributions of the VCMI Team to the ImageCLEFmedical 2022 Caption
task. We addressed both the concept detection and caption prediction tasks. Regarding concept detection,
our team employed three different strategies: multi-label classification, in which a convolutional neural
network aims to simultaneously predict all the concepts from an image considering only the 100 most
frequent concepts; concept retrieval, in which a model learns to map concepts and images into a common
latent space where images are closer to the concepts they contain; and semantic-based multi-label
classification, which consists of training several models, each one specialised in predicting concepts from
a given semantic type, and an aggregation operation to obtain the final prediction. Our best submission
attained an F1-score of 0.433, placing 5th among 11 teams, and the best Secondary F1-score (0.863).
Regarding the caption prediction task, our team designed two different approaches: a Vision Encoder-
Decoder Transformer, that receives the input images as a sequence of 16× 16 patches and is trained for
next token prediction; and a modified Object-Semantics Aligned Pre-training for Vision-and-Language
Tasks (OSCAR) model, i.e. an encoder-only Transformer, trained for masked language modelling, and
modified to receive as input a sequence of image patches and the image concepts, besides the caption.
Our best submission, the Vision Encoder-Decoder, attained a Bilingual Evaluation Understudy (BLEU)
score of 0.306 and ranked 4th among 10 teams.
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1. Introduction

ImageCLEF 2022 [1] is an evaluation campaign organised as part of the CLEF Initiative1 (Confer-
ence and Labs of the Evaluation Forum, formerly known as Cross-Language Evaluation Forum).
The 2022 edition included four tasks related to different application domains (i.e., Internet,
Medical, Nature, and Social Media). These challenges encompass the common objective of
promoting the evaluation of technologies for annotation, indexing and retrieval of visual data,
while contributing to the access to extensive collections of images in various usage scenarios
and application domains.

Our team, composed by four members of the Visual Computing and Machine Intelligence
(VCMI) Research Group of the Institute for Systems and Computer Engineering, Technology
and Science (INESC TEC) from Porto, Portugal, participated in the ImageCLEFmedical 2022
Caption task [2] wherein the main motivation is to develop algorithms that can interpret and
summarise insights gained from medical images. This challenge consisted of two independent,
but complementary, tasks: concept detection, which aims to identify the presence of relevant
concepts in a large corpus of medical images; and caption prediction, which aims to generate
coherent textual descriptions of a medical image.

We addressed both the concept detection and caption prediction tasks. For the concept
detection task, we developed three different approaches: multi-label classification, in which a
convolutional neural network (CNN) aims to simultaneously predict all the concepts from an
image; concept retrieval, in which a model learns to map concepts and images into a common
latent space where images are closer to the concepts they contain; and semantic-based multi-
label classification, which consists of training several models, each one specialised in predicting
concepts from a given semantic type, and an aggregation operation to obtain the final prediction.
Our best submission attained an F1-score of 0.433, ranking 5th among 11 teams (the best team
achieved an F1-score of 0.451), and the best Secondary F1-score (0.863).

For the caption prediction task, we designed two different approaches: a Vision Encoder-
Decoder Transformer, that receives the input images as sequences of 16x16 patches and is
trained for next token prediction; and a modified Object-Semantics Aligned Pre-training for
Vision-and-Language Tasks (OSCAR) model [3], i.e. an encoder-only Transformer, trained for
masked language modelling, and modified to receive as input a sequence of image patches and
the image concepts, besides the caption. Our best submission, the Vision Encoder-Decoder,
attained a Bilingual Evaluation Understudy (BLEU) score of 0.306 and ranked 4th among 10
teams (the best team achieved a BLEU score of 0.483).

The remainder of this paper is organised as follows: section 2 provides an overview of the
data provided by the organisation to address the selected tasks and describes our exploratory
data analysis; section 3 details the different proposals developed to solve the aforementioned
tasks; section 4 presents the results and their discussion; and section 5 concludes this paper and
recommends future work directions. The code related to this paper is publicly available in a
GitHub repository2.

1http://www.clef-initiative.eu (accessed on: 26-05-2022)
2https://github.com/icrto/ImageClefMedical
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2. Data

2.1. Overview

The data set provided in this competition is a subset of the extended Radiology Objects in
COntext (ROCO) data set [4]. As in previous editions, the data set originates from biomedical
articles of the PMC OpenAccess subset [2]. The version provided to the participants is already
divided into train (83,275 radiology images), validation (7,645 radiology images) and test (7,601
radiology images) sets.

2.2. Exploratory Data Analysis

We considered it important to do an exploratory data analysis step before delving into the
development of technical strategies to tackle both the Concept Detection and Caption Prediction
tasks.

2.2.1. Concept Detection Task

For the concept detection task, we analysed the data from two different perspectives: image-
based, where we computed the average, minimum and maximum number of concepts per
image, and the 𝑚 most (Top-𝑚) and the 𝑙 least (Bottom-𝑙) frequent concepts (see Table 1); and
concept-based, where we computed the total number of concepts, the average, minimum and
maximum number of images where each concept is present, the concepts that appear in 𝑛
images or less, and the number of concepts that do not appear in any image (see Table 2).

Table 1
Exploratory data analysis for the concept detection task, from the image-based perspective. Note: “Avg.”,
“Min.” and “Max.” stand for “Average”, “Minimum” and “Maximum” number of concepts per image,
respectively. Top-3 corresponds to the 3 most frequent concepts, while Bottom-3 corresponds to the 3
least frequent concepts.

Subset Total Avg. Min. Max. Top-3 Bottom-3

Training 83,275 4.7 1 50 C0040405, C1306645, C0024485 C0004760, C0398658, C0030847
Validation 7,645 4.7 1 27 C0040405, C1306645, C0041618 C0447028, C0272388, C1561643

Table 2
Exploratory data analysis for the concept detection task, from the concept-based perspective. Note:
“Avg.”, “Min.” and “Max.” stand for “Average”, “Minimum” and “Maximum” number of images per concept,
respectively. The last two columns refer to the number of concepts that appear in 10 or less images and
to the number of concepts that do not appear in any image, respectively.

Subset Total Avg. Min. Max. In 10 or less images In 0 images

Training 8,374 47.2 2 25,989 4,923 0
Validation 4,357 4.3 0 2,896 7,842 4,017



Table 1 shows that every image has at least one concept and that there is an average of
around 5 concepts per image. Furthermore, in the Top-3 column, we observe that two of the
most predominant concepts in the training data are also the most common in the validation
data. Figures 6 and 7 in the Appendix also show that 21 of the 31 concepts exposed as the
most predominant in the training data are also the most common in the validation data. An
important outcome from this analysis is that the most common concepts are present in both
training and validation sets. Intuitively, and assuming that the distribution of concepts is similar
on the test set, this observation allows us to use the Top-𝑚 (most frequent) concepts for the
concept prediction task without losing too much information. Additionally, 83,110 (99.80%)
of the training images and 7,617 (99.63%) of the validation images contain at least one of the
Top-100 most frequent concepts, which further supports the hypothesis that removing the
least-frequent concepts leads to a small loss of information, which might have little impact on
the results of a model designed to predict these concepts.

Table 2 shows that 58.76% of the concepts available in the data appears only in 10 (0.012%) of
the training images or less. These results suggest that the concept prediction task, interpreted
as a multi-label classification task where multiple labels can be assigned to the same image, is
highly imbalanced in the training data. Furthermore, we observe that, out of the 8,374 existing
concepts, 7,842 (93.65%) are reflected in less than 10 (0.13%) of the validation images, of which
4,017 (47.97% out of all concepts) are not reflected in the validation data at all. These observations
suggest not only that the validation data is imbalanced, but also that the validation set has a
very limited capacity to verify the quality and the generalisation power of any model regarding
the detection of those concepts. Please refer to Figures 8 and 9 for additional details.

2.2.2. Caption Prediction Task

For the caption prediction task, we analysed the length of the captions, i.e. the number of tokens
obtained after tokenization3, thus extracting the average, minimum, and maximum caption
lengths (see Table 3). The minimum length is 3 in both training and validation sets, while
the maximum length corresponds to 577 in the training set and 339 in the validation set. We
can observe that the vast majority of the images have description lengths close to the average
number of tokens. In fact, 89.4% of the training images have less than 50 tokens and 99,1% have
less than 100 tokens. The same tendency can be verified in the validation set, where 85.8% of the
images have less than 50 tokens and 98.4% have less than 100 tokens. This analysis is further
complemented by Figures 10 and 11.

Table 3
Exploratory data analysis for the caption prediction task. We present the average, minimum and
maximum number of tokens for the captions on the training and validation subsets.

Subset Average Minimum Maximum

Training 29.73 3 577
Validation 32.37 3 339

3We used the distil-gpt2 tokenizer of the Hugging Face Transformers library (https://huggingface.co/docs/
transformers/index - accessed on: 27-05-2022).

https://huggingface.co/docs/transformers/index
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3. Methodology

This section describes all the strategies we used to tackle both the Concept Detection and Caption
Prediction tasks, as well as the data processing steps applied.

3.1. Data Processing

All images were first resized to have 224 pixels of height, while keeping their aspect ratios, and
were converted to greyscale. During training of the several approaches, random square crops of
224×224 were used. In the multi-label-based concept detection proposals the images were also
rotated by at most 45∘ with 50% probability.

Following the conclusions derived in the exploratory data analysis phase, all captions were
tokenized using the distil-gpt2 tokenizer from the Hugging Face Transformers library and
truncated or padded to 100 tokens in the Vision Encoder-Decoder approach and to 50 tokens in
the modified OSCAR architecture.

3.2. Concept Detection Task

The concept detection task consists of a multi-label classification problem, i.e., there are more
than two classes and each data point may be labelled with more than one non-mutually exclusive
class. To solve this task, we employed three different strategies: multi-label classification, concept
retrieval, and semantic-based multi-label classification.

3.2.1. Multi-label Classification

A straightforward method to solve the task of concept detection is to use a multi-label classifica-
tion model, since a single image can have multiple non-mutually exclusive concepts associated
with it. The concepts are defined according to the Unified Medical Language System (UMLS) [5]
2020AB release, in which each concept has a unique identifier (CUI). Table 4 presents the Top-3
most frequent concepts in the training set and their frequency in both training and validation
sets.

Table 4
Top-3 most frequent concepts (CUIs) in the training set alongside their correspondent UMLS term, and
their respective frequency in the training and validation sets.

CUI UMLS Term Train Validation

C0040405 X-Ray CT 25989 2896
C1306645 Plain X-Ray 24389 2023
C0024485 MRI 14622 1071

Based on the exploratory data analysis, we adopted two strategies for predicting the concepts:
(i) train the model to predict all the 8,374 concepts, and (ii) train the model to predict only the
𝑚 most frequent concepts, where 𝑚 = 100. For this, a multi-label classification-based model
was developed to predict the associated concepts for each image. Specifically, we adapted the



DenseNet-121 [6] by modifying the classification layer to have 𝑁 outputs, where 𝑁 is the
number of concepts, and 𝑁 = 8, 374 or 𝑁 = 100. Figure 1 illustrates the architecture diagram
of the employed multi-label classification model.

...

...

OUTPUTS

8,374

FLATTEN

C1306645

C0037949

C0027530

C0034052

C1269845

C0008034

C0543467

C0227391

C0010672

C0001527

C0024485

C0007009

C1306645

C1306645

Figure 1: Diagram of the multi-label classification model. The input image is fed to the model, a
DenseNet-121 [6], and the final output layer where the sigmoid activation function is employed predicts
𝑁 values corresponding to the 𝑁 concepts. A concept is assigned to the image if its predicted score is
greater than a predefined decision threshold. Example image: CC BY [7].

Regarding the training process, the model was trained using the binary cross-entropy loss
and the adaptive moment estimation (Adam) [8] optimiser with its default hyperparameters
during 100 epochs with a learning rate of 10−3. Concretely, we adopted three strategies for
training the model: (i) we fine-tuned the classification layer of the model and kept the remaining
layers frozen (“Frozen Backbone”), (ii) we trained the whole model with all layers unfrozen
(“Whole Network”), and (iii) we froze the backbone layers for 5 epochs and then unfroze them
for the remaining epochs (“2 Phases”). The model with the best validation loss was used for the
testing phase.

3.2.2. Concept Retrieval

As a second approach, we attempted to solve the concept detection task through concept
retrieval: images and concepts are mapped into a common latent space where the images are
expected to be closer to the concepts they contain. Using this model, we retrieve the closest
concepts to the images. Figure 2 presents an overview of the model.

The model is composed of an image encoder and a concept encoder, each responsible for
translating images and concepts into their latent representations. The input concepts are
represented as one-hot encodings. The image encoder is a CNN composed of four blocks
of convolutional layers with max pooling and batch normalisation. The concept encoder is
a multilayer perceptron composed of two fully-connected layers with LeakyReLU and Tanh
activations, respectively.

During training, the model uses a contrastive loss [9] to minimise the distance between
images and their corresponding concepts while maximising the distance between images and
concepts they do not contain. The contrastive loss function used to train the model is expressed



Image Encoder

Concept Encoder[0 1 0 0 ... 0]

Latent Space

Distance

Figure 2: Diagram of the concept retrieval model trained using contrastive learning. The images and
concepts are encoded into a common latent space. In the represented latent space, blue circles correspond
to latent representations of images, while yellow diamonds correspond to latent representations of
concepts. Example image: CC BY [7].

in Equation 1, where 𝐷 is the distance between the input concept and image, and 𝑦 is a binary
value that represents the existence of the concept in the image. On separate experiments, we
use two different distance measures: Euclidean distance and Cosine Similarity.

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = 𝑦 ×𝐷2 + (1− 𝑦)[max(0, 1−𝐷)]2 (1)

During training, on each batch, the network receives as input a set of 𝑘 existing concepts
and 𝑘 images. For each batch, the network only needs to process each concept and image
once. As a result, for each training batch, the network predicts a square distance matrix where
each line corresponds to an image, each column to a single one-hot encoded concept, and each
cell represents the distance between the respective image and concept. This approach is more
computationally efficient than providing independent image-concept pairs to the network, as,
in that approach, the same concept and image would have to be processed multiple times in the
same iteration.

During inference, we retrieve the concepts that are closer to the image and whose distance
to the image is smaller than a threshold. This threshold corresponds to the average distance
between an image and the closest concept on the validation data.

Using this methodology, we performed three separate experiments: (i) train the concept
retrieval model using Euclidean distance and representing all 8, 374 concepts in the network’s
latent space; (ii) train the model using Euclidean distance and mapping only the 100 most
frequent concepts to the latent space; and (iii) train the model using Cosine Similarity and
considering only the 100 most frequent concepts. We trained the models using the Adam
optimiser [8], with a learning rate of 10−6. During the training process, we used a subset of the
training data (15%) for validation, to obtain the epoch at which each model obtained the best
results. As such, the models for the three experimental settings were trained for 1550, 703, and
279 epochs, respectively.

We also perform experiments where we merge the results of the concept retrieval and
multi-label classification models, in an attempt to improve the respective results. In the first



experiment, the images are labelled according to the multi-label classification model. In cases
where the images are not assigned any label by the multi-label classification model, we retrieve
its closer concepts according to the concept retrieval model (we call this the “Ensemble (NaN)”
model). In the second experiment, we merge the predictions of the two models using an OR
operation, assigning to the image all the concepts that were predicted by either the multi-label
classification model or the concept retrieval model (we refer to this as the “Ensemble (OR)”
model).

3.2.3. Semantic-based Multi-label Classification

To address this task from a “divide-and-conquer” perspective, we started with the conversion of
each concept into its correspondent semantic type. We used the UMLS [5] Terminology Services
REST API4 to map each concept into a high-level semantic type. Afterwards, we computed
the frequency of each high-level semantic type on the Top-100 concepts, thus getting to the
following types: Body Part, Organ, or Organ Component; Spatial Concept; Finding; Pathologic
Function; Qualitative Concept; Diagnostic Procedure; Body Location or Region; Functional Concept
and Miscellaneous Concepts (i.e., the remaining semantic types which have lower frequencies).
For each of these types, we trained a ResNet18 [10] on the images and their multi-labels (if
present). To predict the final set of concepts per image, we run each of the previous models
for the entire data set and perform an aggregation operation (i.e., the union). Regarding the
training process, these models were trained during 10 epochs, using the Adam optimiser with
a learning rate of 10−4. These models also used the “2 Phases” strategy, where we froze the
backbone layers for 5 epochs and then unfroze them for the remaining epochs. The best model
is saved based on the lowest validation loss. Figure 3 illustrates this framework.

Body Part, Organ, or Organ
Component

Spatial Concept

Finding

Pathologic Function

Qualitative Concept

Diagnostic Procedure

Body Location or Region

Functional Concept

Miscellaneous Concepts

[C2825493, C1836870...]

[C0922672, C0030288...]

[C0443152, C1302224...]

[C0028778, C3897493...]

[C0443289, C0332445...]

[C0034606, C0040399...]

[C1179690, C0456269...]

[C1519504, C0333117...]

[C0003119, C0742960...]

[C0922672, C3897493, C1519504, C0333117, ...]

Figure 3: Diagram of the semantic-based multi-label classification model. Each model is trained on a
set of concepts of the same semantic type. During inference, the input image is given to all the models
and an aggregation operation (i.e., union) is performed. An example of the aggregation of the concepts
detected by different modules of the network is shown by the different coloured concepts. Example
image: CC BY [7].

4https://www.nlm.nih.gov/research/umls/index.html (accessed on 26-05-2022)
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3.3. Caption Prediction Task

The caption prediction task consists of a natural language generation problem, more specifically,
an image captioning problem where a textual description of the images must be generated. To
tackle this problem we developed two strategies, both based on the Transformer architecture [11]:
a Vision Encoder-Decoder Transformer and a modified OSCAR Transformer [3].

3.3.1. Vision Encoder-Decoder

The Vision Encoder-Decoder architecture combines the original Transformer [11] with the
Vision Transformer (ViT) [12], i.e. while it keeps the original Transformer’s encoder-decoder
structure, the encoder receives as input an image divided into patches of 16×16 pixels. The
decoder receives the ground-truth caption as input (i.e., training is done using teacher forcing)
and the encoder hidden states as inputs to the cross attention layers. The model is trained
autoregressively for next token prediction using causal (or unidirectional) self-attention, which
means that a given token can only attend to previous tokens. Figure 4 depicts this architecture.

The model was implemented using the Vision Encoder Decoder class from the Hugging
Face Transformers library and we chose a tiny Data-efficient image Transformer (DeiT) [13]
pretrained on ImageNet for the encoder. For the decoder we leverage pretrained weights from
the Distilled-GPT2, a distilled version of the GPT-2 architecture [14]. We trained this model
initially for 20 epochs, and then for an additional 20 epochs starting from the checkpoint with
the lowest validation loss. We used the AdamW [15] optimiser with an initial learning rate of
5× 10−5, linearly decayed. Due to limitations of the computational resources available we were
not able to fine tune the model using self-critical sequence training [16].

Encoder

[BOS] computed tomography ct show 

cerebellar

Decoder

Figure 4: Diagram of the Vision Encoder-Decoder captioning model. The encoder receives the input
image divided into patches of 16×16 pixels, while the decoder receives the ground-truth caption and
the encoder hidden states, and predicts the next word in the sentence. Example image: CC BY [7].



3.3.2. Modified OSCAR

We hypothesised that leveraging the information present in the concepts might aid in generating
the captions. Therefore, we developed a modified OSCAR [3] architecture, as depicted in Figure
5. Since the original architecture uses object tags and region features obtained from an object
detector (e.g. Faster R-CNN) and we do not have access to bounding box annotations for our
data, we modified OSCAR to receive as input the image divided into 16×16 patches similarly to
what is done in the ViT model. Furthermore, instead of object detection tags the model receives
the ground-truth concepts for each image.

Contrary to the Vision Encoder-Decoder model, OSCAR is trained for masked language
modelling, so the objective is to predict the masked input tokens. We adopted the same masking
strategy as in the original OSCAR [3]. However, instead of using bidirectional attention like in the
original Bidirectional Encoder Representations from Transformers (BERT) encoder model [17],
OSCAR (as well as our modified version) adopts causal self-attention, since our target goal is
text generation. Therefore, when predicting the masked token, it can attend to every concept
and image patch, but it can only attend to previous tokens from the caption.

During inference on the test set, we obtained the concepts from our best concept detection
model, i.e. the “Ensemble (NaN)” model. We start by passing a MASK token as the textual input
and the model then generates the rest of the sequence autoregressively.

We leveraged weights from an OSCAR model pretrained on the MSCOCO Captions data
set [18]. The model was fine tuned on the competition data set for 20 epochs, with the
AdamW [15] optimiser and a learning rate of 10−4, linearly decayed. Maximum caption length
was defined as 50, while the maximum length for the sequence of concepts was 10. As before,
we planned on fine tuning the model using self-critical sequence training [16], but that was not
possible due to limitations in computational resources.

Encoder

[CLS] computed [MASK] ct show cerebellar tonsil herniation [SEP]  Cerebellum Computed Tomography [SEP]

Masked Token Loss

Figure 5: Diagram of the modified OSCAR captioning model, trained for masked language modelling
using causal self-attention layers. Instead of receiving object regions and tags from an object detector,
this modified version takes the image concepts and 16×16 patches as input alongside the caption.
Example image: CC BY [7].



4. Results and Discussion

This section presents and discusses the results of the conducted experiments in the Concept
Detection and Caption Prediction tasks.

4.1. Concept Detection Task

The evaluation of the concept detection task is conducted in terms of the example-based F1-
score between the predicted and ground truth concepts. Additionally, a variant of the F1-score
(Secondary F1-score) was computed using only a subset of manually validated concepts related
to anatomy and image modality. Table 5 presents the results obtained in the experiments relative
to this task. In this table, the first two columns refer to the model used and to the concepts that
were considered during the respective model’s training. The table also includes the results in
terms of F1-score in the validation and test sets and Secondary F1-score in the test set.

Table 5
Results of the concept detection task in terms of F1-score and Secondary F1-score computed on a subset
of manually validated concepts. “Top-100” and “All” refer to the (sub)set of concepts used to train the
models.

Model Concepts
F1-score F1-score Secondary F1-score

(Validation) (Test) (Test)

Multi-label (Frozen Backbone) All 0.3710 - -
Multi-label (Frozen Backbone) Top-100 0.3740 -
Multi-label (Whole Network) Top-100 0.3947 0.430 0.861
Multi-label (2 Phases) Top-100 0.3937 0.431 0.856

Euclidean Retrieval All 0.3367 - -
Euclidean Retrieval Top-100 0.3973 0.368 0.778
Cosine Similarity Retrieval Top-100 0.3184 - -

Ensemble (NaN) Top-100 0.3959 0.433 0.863
Ensemble (OR) Top-100 0.3956 - -

Semantic Top-100 - 0.418 0.838

Task Winners - - 0.451 0.791

In the multi-label classification model, a concept is associated with the image if its predicted
score is greater than the defined decision threshold value (0.5). As evidenced by the results
presented in Table 5 concerning the multi-label classification model, the best performance is
obtained when the model is trained to predict only the Top-100 concepts, achieving an F1-score
of 0.3740 when using the Multi-label (“Frozen Backbone”) approach, and 0.3947 when using the
Multi-label (“Whole Network”) model. On the other hand, when the model is trained to predict
the 8, 734 concepts, performance slightly decreases (0.3740 to 0.3710). We can also conclude
that training the whole network improves the results in terms of F1-score compared with the
results obtained when freezing the weights of the feature extraction layers of the DenseNet-121
(0.3740 to 0.3947).



Alternatively, when adopting the “2 Phases” strategy, we verify a marginal decrease of the
F1-score on the validation set (0.3937) compared to the best result (0.3947) obtained with the
“Whole Network” strategy. However, the F1-score on the test set is marginally higher (0.431)
than the result obtained with the “Whole Network” strategy (0.430).

Regarding the retrieval task using contrastive learning, we verify that the model that uses
Euclidean distance in the contrastive loss yields better results than the model that uses Cosine
Similarity. We also observe that training the model to recognise only the Top-100 concepts
leads to higher F1-score than when all the existing concepts are used, which is consistent with
the results obtained with the multi-label approach. Despite the Euclidean Retrieval model
trained with the Top-100 concepts achieving higher F1-scores than the multi-label classification
model on the validation set, we verify that its results are considerably worse in the test set.
Nevertheless, when we merge the results of the multi-label classification and the Euclidean
retrieval models in the ensemble model referred to as Ensemble (NaN), the results in the test set
improve slightly. As such, we were able to improve the results of the multi-label classification
model by using retrieval to detect concepts for images where the multi-label classification
network failed to detect any concepts. Interestingly, the Ensemble with the OR operation is not
able to surpass the previous Ensemble.

Regarding the semantic-based multi-label classification, we highlight the proximity of the
scores obtained by this approach to the previous ones. However, it is important to mention
that the results do not confirm our initial intuition that using prior knowledge (i.e., in this
case, optimising different models for a specific semantic type of concepts) would improve the
predictive performance.

Although our best submission ranked 5th (see Table 5) in terms of F1-score among all
submissions from 11 teams, the difference between the winner’s F1-score and ours is relatively
small (0.018). On the other hand, we note the results obtained on the Secondary F1-score,
which is computed with a specific subset of manually validated concepts (anatomy and image
modality). In this metric, our team achieved the best score (0.863) of the whole competition
and by a considerable margin compared to the result of the task winners (0.791).

4.2. Caption Prediction Task

The caption prediction task is evaluated in terms of natural language generation metrics. The
BLEU score was chosen as the primary competition metric, but ROUGE, METEOR, CIDEr, SPICE
and BERTScore are also computed. Table 6 presents the results obtained in the competition test
set.

Our best performing model was, surprisingly, the vanilla Vision Encoder-Decoder trained for
40 epochs, achieving a BLEU score of 0.306, and placing in 4th place out of 10 participating
teams, while the modified OSCAR only achieved 0.230. This might be due to the fact that
the modified OSCAR was trained on ground-truth concepts, but during inference the model
used the predicted concepts from our best concept detection model. Perhaps it would have
been beneficial to introduce some uncertainty during training by alternating between feeding
ground-truth concepts and feeding predicted concepts from that same concept detection model,
in an effort to teach the Transformer the bias introduced by the concept detection model.

Furthermore, had the time permitted it, the Vision Encoder-Decoder could have been trained



for more epochs, since the training loss was still decreasing, which is corroborated by the fact
that training an additional 20 epochs improved the BLEU score from 0.300 to 0.306.

Finally, it is interesting to note that although in terms of BLEU score there is a considerable
difference between our best performing model (0.306) and the task winners (0.483), our model
largely outperforms the winner in terms of CIDEr (by 0.175), a natural language generation
metric that tries to better correlate with human judgement.

Table 6
Results of the caption prediction task on the test set in terms of BLEU, ROUGE, METEOR, CIDEr, SPICE,
and BERTScore.

Model BLEU ROUGE METEOR CIDEr SPICE BERTScore

Vision Encoder-Decoder (20 epochs) 0.300 0.172 0.073 0.210 0.039 0.604
Vision Encoder-Decoder (40 epochs) 0.306 0.174 0.075 0.205 0.036 0.604
Modified OSCAR 0.230 0.111 0.047 0.088 0.023 0.551

Task Winners 0.483 0.142 0.0928 0.030 0.007 0.561

5. Conclusions and Future Work

This paper described the work developed by the VCMI team in the ImageCLEFmedical 2022
Caption task. Regarding the concept detection task, three different strategies were adopted:
(i) a multi-label classification model, (ii) a retrieval-based approach, and (iii) a semantic-based
multi-label classification model. The experimental results indicated that merging the multi-label
classification model with the retrieval approach (ensemble model) was the best strategy for
the concept detection task, achieving the highest F1-score (0.433) on the test set among all
our submissions, and ranking 5th among all the 11 participating teams. In terms of Secondary
F1-score, we achieved the best value (0.863) among all the participating teams. Concerning
the caption prediction task, we explored two strategies based on Transformer architectures, a
Vision Encoder-Decoder Transformer and a modified OSCAR. Our best submission, the Vision
Encoder-Decoder, obtained a BLEU score of 0.306, thus achieving the 4th place among all the
10 participating teams.

Future work should be devoted to improving the developed methods for both the concept
detection and caption prediction tasks. Regarding the first task, we believe we could improve
our results by building the ensemble model with the ”2 Phases” multi-label classification model.
In terms of improving the generation of captions, we would start by training the Vision Encoder-
Decoder for more epochs, as the training loss was still decreasing. Furthermore, we also believe
that improving the concept detection phase would boost the performance of the modified
OSCAR approach and that including non ground-truth concepts during training would teach
the Transformer the bias introduced by the concept detection model and, consequently, be more
adapted to the inference scenario. Finally, we would also like to perform an ablation study and
compare both Transformer approaches more directly, by training the modified OSCAR without
the concepts.
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A. Exploratory data analysis

A.1. Concept detection
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Figure 6: Top-31 most frequent concepts in the training set.
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Figure 7: Top-31 most frequent concepts in the validation set.
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Figure 8: Distribution of the concepts in the training set.
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Figure 9: Distribution of the concepts in the validation set.

A.2. Caption prediction

Figure 10: Distribution of the lengths of the captions in the training set.



Figure 11: Distribution of the lengths of the captions in the validation set.
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