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Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide. Automated detection of lung caverns
associated with TB in Computed Tomography (CT) could help clinicians optimise treatment. However,
caverns detection on 3D CT data is challenging due to the curse of dimensionality, thus requiring larger
training data and more computational resource. Our team (AEHRC CSIRO) participated in ImageCLEFmed
TB caverns detection 2022 to address this challenge, by developing a 2D YOLO-based model (TBdet-2D),
and an efficient 3D Retina-U-Net-based model (TBdet-3D). Both networks were trained on 559 CT data
with data augmentation and tested on 140 data provided by the challenge. The results show that TBdet-
3D (mAP_IoU 0.504) outperformed TBdet-2D model (mAP_IoU 0.308) on testing data, indicating that
employing a 3D approach instead of a 2D approach is more appropriate for the task. Our team placed
first among the participating teams in this challenge. An overview of ImageCLEFmed Tuberculosis 2022
is available at: https://www.imageclef.org/2022/medical/tuberculosis.
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1. Introduction

Tuberculosis (TB) is one of the leading causes of death globally, leading to approximately 1.7
million deaths in 2016, according to a World Health Organisation report [1]. It is a bacteria
disease caused by a germ named Mycobacterium tuberculosis, which can cause lung tissue
inflammation and subsequently lead to lung caverns [2]. Precise detection of lung caverns in
Computed Tomography (CT) imaging is an important clinical task, because it contributes to
the diagnoses of the TB sub-type. This helps with optimising treatment, which is different
for each TB sub-type. Even after successful treatment, the detection of lung cavern regions
is of importance because the cavern may contain colonies of Mycobacterium tuberculosis
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that could result in unpredictable disease relapse. Detection of these lung cavern regions,
is generally performed by expert radiologists through manual measurements often on 2D
planes [3]; however, this manual process can be time-consuming, experience-dependant, and
with limited reproducibility due to inter-observer variability. Thus, there is an urgent clinical
demand to develop an automated detection algorithm for lung caverns associated with TB on
CT imaging.

There have been advancements in automated object detection for natural images, mostly for
2D images. These methods can be generally categorised into two-stage and one-stage detection
mechanisms. Two-stage mechanisms (e.g., R-CNN [4]) generate a sparse set of object locations
in the first stage, and classify each candidate location as either foreground or background in
the second stage. Algorithms along this line include fast R-CNN [5] and faster R-CNN [6].
One-stage mechanisms aim to simplify the process while retaining the accuracy through dense
sampling of object scales, locations and aspect ratios. Such examples, including YOLO [7, 8],
SSD [9] and RetinaNet [10], are relatively faster with matching performance to their two-stage
counterparts.

Cross-sectional imaging, such as Computed Tomography (CT), is an important tool in radiol-
ogy that makes use of not only length and width, but also depth. This captures comprehensive
spatial information (such as shape, geometry and location) for the detection task; however, the
limitation is that processing such 3D data can be computationally expensive and data hungry
due to the curse of dimensionality [11]. An alternative way to process 3D data is to operate on
individual 2D slices with a 2D detection network. However, this ignores the contextual infor-
mation between slices. This issue could be mitigated by considering 2D slices along different
planes (e.g., sagittal and coronal planes). Furthermore, recent advancements in 3D one-stage
detection networks, such as Retina U-net [12], also bring potential to achieve higher speed and
accuracy at the same time.

In this work, we developed a 2D model (TBdet-2D) and a 3D model (TBdet-3D) for TB caverns
detection on CT images in the imageCLEF 2022 challenge [13]. For the 2D model, YOLOv5
networks [14] were trained on axial and coronal slices of the 3D CT image. The 2D bounding
boxes were then merged into 3D bounding boxes. For the 3D model, we trained a 3D Retina
U-Net network [12], which leverages both the model simplicity of RetinaNet and the supervision
segmentation signal from U-Net. In addition, we reduced the false positive rate by plane-based
bounding box merging. Comparison of the 2D and 3D models was carried out on the TB-CT
dataset provided by the Image-CLEF 2022 Caverns Detection challenge [15]. In this challenge,
our 3D model achieved the 1st place with a mean averaged precision (mAP) of 0.504 (intersection
over union (IoU) ∈ [0.40, 0.75]) on the testing data. Our 2D model achieved the second best
mAP of 0.308.

We summarised our contributions as follows:

• We developed TBdet-2D, a 2D TB caverns region detector using YOLOv5 and an efficient
2D bounding box merging technique based on connected component labelling [16].

• We developed TBdet-3D, a 3D TB cavern region detector based on Retina U-Net, equipped
with a false positive reduction module that uses plane-based bounding box (PBB) merging.

• We provide a comparison between the 2D and 3D approaches on the ImageCLEFmed TB
Caverns Detection 2022 challenge.



2. Task Description

(a) TB with one cavern (b) TB with multiple caverns

Figure 1: Examples of CT tuberculosis lung caverns (from the ImageCLEFmed TB Caverns Detection
challenge 2022).

2.1. Data

The dataset for ImageCLEFmed TB Caverns Detection 2022 contains 559 3D CT images for
training and 140 3D CT images for testing. Each CT image has 512×512 pixels per slice and an
average of approximately 100 slices, as well as its associated metadata, including the dimensions
of the image, voxel spacing, etc. The raw voxel intensities for each image are stored in Housfield
units. The lung masks were automatically segmented by a three-stage technique [17], and
provided for each CT image by the challenge organisers. The targets in the challenge were
bounding boxes of cavern regions within the CT images. The target 3D bounding boxes were
extracted using manual segmentation masks delineated by radiologists. Data examples are
shown in Figure 1.

2.2. Metrics

The detection task was evaluated using the mean average precision (mAP) over a series of IoU
thresholds. The IoU between a predicted bounding box (predBB) and the ground truth bounding
box (gtBB) is defined as:

𝐼𝑜𝑈 =
𝑝𝑟𝑒𝑑𝐵𝐵 ∩ 𝑔𝑡𝐵𝐵

𝑝𝑟𝑒𝑑𝐵𝐵 ∪ 𝑔𝑡𝐵𝐵
(1)

For each IoU threshold t, the average precision (AP) is computed using the formula:

𝐴𝑃 (𝑡) =
𝑇𝑃 (𝑡)

𝑇𝑃 (𝑡) + 𝐹𝑃 (𝑡) + 𝐹𝑁(𝑡)
(2)



where a true positive (TP) is counted if the computed IoU is greater than the threshold t
(𝐼𝑜𝑈 > 𝑡); a false positive (FP) is counted if a predBB has no associated gtBB with 𝐼𝑜𝑈 > 𝑡; a
false negative (FN) is counted if a gtBB has no associated predBB with 𝐼𝑜𝑈 > 𝑡. The final mean
average precision was defined as the mean of 𝐴𝑃 (𝑡) sweeping over a range of IoU thresholds 𝑡
where 𝑡 ∈ (0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75) in this task. The evaluator was implemented
in python and provided at https://github.com/SergeKo/clef2022-caverns-detection-metric.

3. Methodology

In this work, we consider two separate methodologies and associated network topologies. The
first, TBdet-2D presented in §3.1, is based on the YOLO 2D object detection network, which
frames the 3D detection task as a series of 2D detection tasks to be subsequently aggregated.
The second approach, TBdet-3D presented in §3.2, instead is built upon an efficient 3D one-stage
network, Retina U-Net.

3.1. TBdet-2D

3.1.1. YOLOv5 network

The TBdet-2D approach adopted the recent version of the YOLO [7] object detection network
YOLOv5. The general concept of YOLO networks is as follows: The network applies a single
convolution network on the image and divides the image into grid cells. Each grid cell predicts
the object class probabilities and a number of bounding boxes. Each bounding box is represented
by parameters including the confidence score of object presence, centre coordinates, height
and width. Finally, the network utilises non-maximum suppression to remove overlapping
bounding boxes with low confidence scores. Compared with the original YOLO structure,
YOLOv5 incorporated the cross stage partial network [18] into the backbone to addresses
the duplicate gradient issue, and the path aggregation network [19] as the neck for feature
fusion to improve information flow and localisation accuracy. The loss function of YOLOv5 is
a combination of bounding box regression loss, binary cross entropy for object presence and
cross entropy for classification loss. YOLOv5 has a model ensembling feature which allows the
aggregation of predictions from multiple base models to improve generalisation on unseen data.
YOLOv5 has a few variants of different levels of complexity and size. For this challenge, we
chose the YOLOv5s6 network, which is a small YOLOv variant with 12.6M parameters.

3.1.2. Input image pre-processing

For the TBdet-2D method, the axial and coronal slices were used for caverns detection. The
pre-processing stage is illustrated in Figure 2. The 2D slices were cropped with the bounding
box of the lung masks provided by the organisers. Since the YOLO network accepts 3-channel
RGB images as input, we created a pseudo-RGB input which consists of the target slice in
the middle and the two adjacent slices in the other two channels. The input image is linearly
normalised to 8bit between 0 and 255 via min-max normalisation.

https://github.com/SergeKo/clef2022-caverns-detection-metric


Figure 2: Pre-processing stage generating the pseudo-RGB axial and coronal slices for the TBdet-2D
approach.

3.1.3. Network training

The training process of the YOLO networks is outlined in Figure 3. To train the YOLOv5
network, a 5-fold cross validation was carried out on the training data, where the cases were
randomly partitioned into 5 folds with 1 fold for validation and the rest folds for training in
each iteration. The YOLO networks were trained on the axial and coronal slices separately.
Given the large number of axial and coronal slices in the CT images, we only selected a subset
of the slices for training. The sampling strategy is as follows: for slices intersecting with the
cavern ground truth bounding box, only the middle 1

4 to 3
4 slices were used; for slices which do

not intersect with the cavern bounding box, 10 samples evenly spaced across all slices were
selected. During each training iteration, the model achieving the best performance metric
(a weighted sum of precision, recall, mAP (𝐼𝑜𝑈 = 0.5) and mAP (𝐼𝑜𝑈 ∈ [0.5, 0.95])) on the
validation set was saved. Within the 5-fold cross validation, five YOLO-axial and YOLO-coronal
models were generated for caverns detection on axial and coronal slices respectively. Each
YOLO network was trained for 200 epochs with a batch size of 12 and an image size of 1280 ×
1280. Augmentations including translation, scaling, flip and mosaic augmentation [20] were
applied during training. Stochastic gradient descent (SGD) was used as the optimiser with
an initial learning rate (LR) of 0.01, a momentum of 0.937 and a weight decay of 0.0005. The
one-cycle LR scheduler [21] was also applied with a maximum and minimum LR of 0.001 and
0.001× 0.001 respectively.



Figure 3: The training process of YOLO networks on the pseudo-RGB slices for the TBdet-2D approach.

3.1.4. Cavern detection on testing data

After the YOLO networks were established on the training data, the networks were applied on
the testing data to generate 2D detections as shown in Figure 4a and then the 2D detections
were merged into 3D detections through connected component labelling as shown in Figure 4b.

YOLO detection on testing data When using the YOLO models to perform caverns detection,
the ensemble model (as described in section 3.1.1) of the 5 YOLO-axial models from the 5-fold
cross validation were firstly applied onto the axial slices within the lung masks from the testing
images. Then the ensemble model of the 5 YOLO-coronal models was applied onto the coronal
slices that intersect with the axial detections as shown in Figure 4a. The confidence threshold
for both steps was set as 0.1. The detections generated on the cropped slices (with the lung
region) were finally matched back to the original full-size slices.

Merging 2D detections into 3D detections After the detections were generated on the
axial and coronal slices, the 2D detections were merged into 3D ones via connected component
labelling. The general merging process is as follows: 1) Given a set of 2D detections 𝐷 =
{𝑑𝑛|𝑛 = 1, ..., 𝑁} on slices 𝑆 = {𝑠𝑛|𝑛 = 1, ..., 𝑁} with prediction probabilities of 𝑃 =
{𝑝𝑛|𝑛 = 1, ..., 𝑁} and a 3D binary mask 𝑀 to capture the merged detections, the voxels within
the bounding box represented by 𝑑𝑛 on slice 𝑠𝑛 were set as 1 on 𝑀 if 𝑝𝑛 ≥ 𝑇ℎ1 (𝑇ℎ1 is
the slice probability threshold). 2) A connected component analysis was carried out on 𝑀
resulting in a set of connected components 𝐶 = {𝑐𝑘|𝑘 = 1, ...,𝐾} and the bounding boxes
𝐵𝑏𝑜𝑥 = {𝑏𝑏𝑜𝑥𝑘|𝑘 = 1, ...,𝐾} of these components. 3) If a connected region 𝑐𝑘 consists of a
subset of slices 𝐷′ ⊆ 𝐷 which is associated with the corresponding probabilities 𝑃 ′ ⊆ 𝑃 , the
probability for the bounding box of this connected region 𝑏𝑏𝑜𝑥𝑘 is set as the maximum value
within 𝑃 ′ (𝑃_𝑏𝑏𝑜𝑥𝑘 = 𝑚𝑎𝑥(𝑃 ′)). 4) If 𝑃_𝑏𝑏𝑜𝑥𝑘 ≥ 𝑇ℎ2 (𝑇ℎ2 is the bounding box probability
threshold), the bounding box 𝑏𝑏𝑜𝑥𝑘 is included in the final detection.

Two types of merging strategies were used as shown in Figure 4b: one is to merge only the axial
detections and the other one is to merge both axial and coronal detections. For axial-only merg-
ing, the general process described above was followed. For axial-coronal merging, the axial and



(a) YOLO detection on testing data.

(b) 2D detection merging

Figure 4: Cavern detection on testing data. The YOLO ensemble models were applied on the pseudo-
RGB slices to generated detections on axial and coronal slices as in subfigure (a). Then the 3D detection
results were generated by either merging the detections solely on axial slices or on both axial and coronal
slices.

coronal detections were firstly merged into separate 3D masks𝑀𝑎𝑥𝑖𝑎𝑙 and𝑀𝑐𝑜𝑟𝑜𝑛𝑎𝑙 following the
step 1) and the two masks were further fused into a single mask 𝑀 = 𝑚𝑎𝑥(𝑀𝑎𝑥𝑖𝑎𝑙,𝑀𝑐𝑜𝑟𝑜𝑛𝑎𝑙).
Then, the rest of the steps were carried out to generate the final set of bounding boxes. The slice
probability threshold 𝑇ℎ1 and bounding box probability threshold 𝑇ℎ2 were set empirically
based on the out-of-fold (OOF) validation performance within the 5-fold cross validation.

3.2. TBdet-3D

3.2.1. TBdet-3D architecture

As shown in Figure 5, the network architecture of TBdet-3D network is based on Retina U-
Net [12]. Specifically, it contains two major modules, including a Unet-shaped Feature Pyramid
Network (U-FPN) feature extractor and a detection head. Pre-processing is conducted before



Figure 5: TBdet-3D network. The network consists of two major modules, including U-FPN feature
extractor and a detection head. U-FPN is composed of a bottom-up encoder (coloured in blue) and a
top-down decoder (coloured in red and green). Detection signals from P2-P5 in the decoder are fed to the
detection head, while segmentation signals from P1-P2 in the decoder are fed back to the encoder. The
detection head has a classification sub-network (class subnet) for label classification and a regression
sub-network (box subnet) for bounding box regression.

inputting 3D CT data into the network and post-processing is implemented before the output
bounding boxes.

U-FPN feature extractor U-FPN is a variant of FPN with a Unet-shape network, which is
used to extract multi-scale 3D image features, while enabling semantic segmentation supervision.
As shown in Figure 5, it consists of two parts, including 1) bottom-up feature encoder (coloured
in blue) and 2) top-down feature decoder (in which detection blocks are coloured in red and
segmentation blocks are coloured in green).

• Bottom-up feature encoder is a feed-forward 3D convolutional network with a hierarchy
of multi-scale computation units with a scaling step of 2. In total, the encoder has six
pyramid levels where each level consists of plain 3D convolution, ReLU, and instance
normalisation blocks.

• Top-down feature decoder generates a set of higher resolution features by upsampling
spatially coarser but semantically stronger feature maps using another set of 6-level
pyramids with a scaling step of 2. These higher resolution features are further enhanced
with features from bottom-up encoders (with the same size but more accurate localised
activation) using lateral connections.

• As suggested by [12], two additional segmentation blocks P0 and P1 (coloured in green)
are added to conventional FPN (coloured in blue and red) for the symmetry of the encoder



and the decoder. This enables fully semantic segmentation supervision.

Detection head for bounding box classification and regression The detection head is
designed for one-stage dense detection. It consists of a classification sub-network for convo-
lutional object classification, and a regression sub-network for convolutional bounding box
regression. Both sub-networks use feature outputs from pyramid level 2-5 (P2-P6) from the
top-down decoder as input.

• Classification sub-network is designed to predict the object label at each spatial position
for each anchor. The classifier is a small fully convolutional network (FCN) with three
convolutions with group norm, attached to P2-P6 of the decoder, with parameters shared
across these pyramid levels. Along with the classifier is a regression sub-network designed
to regress the offset from each anchor box to a nearby ground-truth object if it exists.

• Regression sub-network shares a similar network design as a small FCN except that it
outputs 4 linear outputs per spatial location per anchor for prediction of relative offset
between the anchor and ground-truth bounding box.

• Anchor matching is achieved with adaptive training sample selection [22] to deal with
varying object sizes across datasets. It is not required to have the centre of anchor boxes
in the ground truth box to prevent from removing positive anchors for small objects.

3.2.2. TBdet-3D loss

The TBdet-3D loss includes both detection loss and segmentation loss for better detection
performance.

𝐿𝑇𝐵𝑑𝑒𝑡−3𝐷 = 𝐿𝑑𝑒𝑡 + 𝐿𝑠𝑒𝑔 (3)

Detection loss In the detection loss, hard negative mining is used to select 1/3 positive and 2/3
negative anchors in order to balance positive and negative anchors. Then, Binary Cross-Entropy
loss is used for label classification, while Generalised IoU loss [23] is used for bounding box
regression.

𝐿𝑑𝑒𝑡 = 𝐿𝐵𝐶𝐸 + 𝐿𝐺𝐼𝑜𝑈 (4)

Segmentation loss In the segmentation loss, Dice loss and pixel-wise cross-entropy loss
are used to differentiate foreground and background pixels. A soft Dice loss, in addition to
cross-entropy loss, is applied because it could stabilise training for segmentation task with class
imbalance [24].

𝐿𝑠𝑒𝑔 = 𝐿𝐶𝐸 − 2

|𝐾|
∑︁
𝑘∈𝐾

∑︀
𝑖∈𝐼 𝑢

𝑘
𝑖 𝑣

𝑘
𝑖∑︀

𝑖∈𝐼 𝑢
𝑘
𝑖 +

∑︀
𝑖∈𝐼 𝑣

𝑘
𝑖

(5)

where 𝑢 is the softmax output of the network (P0 logits), and 𝑣 is the one-hot encoding of the
ground-truth segmentation map. Both u and v share the same shape 𝐼 *𝐾 where 𝐼 denotes the
number of pixels in the training batch, and 𝐾 is the number of classes.



3.2.3. TBdet-3D false positive reduction

False positive reduction is a big challenge in object detection tasks. To reduce false positives, we
proposed a plane-based bounding box merging (PBB merging) to combine small bounding boxes
belonging to a larger one. The motivation of this technique is that we found a considerable
number of false positive bounding boxes actually corresponded to a ground truth with larger size,
even after the conventional post-processing pipeline has been implemented ( Non-maximum
suppression (NMS), weighted box clustering [12], small-size object removal, and adjustment of
prediction confidence). To address this issue, we first tried merging all overlapped bounding
boxes, but it led to decreased overall performance due to significantly increased false negatives.
Then, we addressed this issue by only merging bounding boxes sharing a 2D plane with a large
proportion of overlapped areas.

The algorithm of PBB merging includes three steps. First, we define the connectivity of two
predicted bounding boxes b1 and b2 if 1) they share an overlapping area (IoU > 0) and 2) there
is a large proportion of overlap between the two boxes on any of the 2D planes (xy, yz or xz
plane) with threshold 0.8. Secondly, we establish a undirected graph setting each bounding box
as a node and the computed connectivity as an edge. Thirdly, we merge all connected nodes
into a larger box using graph-based breadth first search. The merged box is the bounding box
of all previous small boxes.

4. Results and Discussion

In this section, we summarised the 5-fold validation results of TBdet-2D and TBdet-3D in §4.1
and §4.2, respectively. In §4.3, we compared the performance between TBdet-2D and TBdet-3D,
and the performance of other teams on the testing dataset.

4.1. TBdet-2D results

By choosing different 2D detection merging strategies, slice and bounding box thresholds 𝑇ℎ1
and 𝑇ℎ2, five different detection results were generated from the TBdet-2D approach. For
the training and validation process, the OOF prediction performance on the validation sets is
presented in Table 1. The YOLO-axial model with Th1=0.1 and Th2=0.8 achieved the best overall
OOF prediction on the validation sets. During testing, the 5 YOLO models from the 5-fold cross
validation were fused to generate predictions on the testing data. The testing results of all 5
submissions using the 2D approach are listed in Table 3. It can be observed that the ensemble
YOLO-axial model with Th1=0.1 and Th2=0.8 also achieved the best mAP (0.308) among the
TBdet-2D results on the testing data, which is higher than the mAP (0.295) of the runner-up
team.

4.2. TBdet-3D experiments and results

4.2.1. Experimental implementation

All experiments were performed on a Linux server with Tesla P100-SXM2 GPU with 16gb
RAM. Experiments were conducted using the Python language, and TBdet-3D was based on



Table 1
Out-of-fold prediction on the validation sets within 5-fold validation using TBdet-2D.

Methods Fold 0 Fold 1 Fold 2 Fold 3 Fold4

TBdet-2D (YOLO-axial, Th1=0.1, Th2=0.8) 0.345 0.398 0.350 0.355 0.385
TBdet-2D (YOLO-axial, Th1=0.5, Th2=0.7) 0.311 0.342 0.274 0.279 0.302
TBdet-2D (YOLO-axial, Th1=0.6, Th2=0.7) 0.300 0.316 0.265 0.266 0.290
TBdet-2D (YOLO-axial&coronal, Th1=0.6, Th2=0.7) 0.282 0.328 0.244 0.261 0.349
TBdet-2D (YOLO-axial&coronal, Th1=0.5, Th2=0.7) 0.270 0.326 0.244 0.268 0.353

Pytorch-lightning and implemented with a self-configuring framework named nnDetection [25].
In the preprocessing stage, we used techniques including lung masking, resampling, normali-

sation and data augmentation. 1) In lung masking, we extracted the lung region of CT images
using provided lung masks using a three-stage segmentation algorithm [17], while setting the
remaining voxels to 0. 2) To address the heterogenous voxel spacing in CT data (especially in
the z-axis), we used image resampling via third-order spline interpolation following [26]. 3)
normalisation was performed based on mean and standard deviation on the training data. 4)
To fit data into memory, images were cropped into patches with size [z, x, y] = [112, 160, 160],
which was determined by gradually reducing the patch size until the memory constraints were
fulfilled. The batch size was fixed to 4. Following [26], we applied a series of data augmentation
techniques, including rotations, scaling, Gaussian noise, Gaussian bur, brightness, contrast,
gamma correlation and mirroring on the fly during training.

In the training stage, the network is trained for 60 epochs with 2500 mini-batches, and half
of the batch is constrained to have at least one object. For the optimisation, SGD with Nesterov
momentum 0.9 is used. In the first 50 epochs, the warm-up learning rate was linear rampped up
from 1e-6 to 1e-2 over 4000 iterations to reduce early overfitting, followed by polynomial decay
until 50 epochs. In the last 10 epochs, we used cyclic learning rate fluctuating from 1e-3 to 1e-6
during every epoch, in which model weights were snapshot for stochastic weight averaging.
5-fold validation was performed on training data.

4.2.2. TBdet-3D main results

We investigated the TBdet-3D model with different post-processing techniques on the validation
datasets. The evaluation was mAP_IoU provided by the challenge. TBdet-3D (conf_0.5) is the
baseline Retina U-Net with a default prediction confidence threshold as 0.5. TBdet-3D (conf_0.7)
is the Retina U-Net with prediction confidence threshold of 0.7. TBdet-3D (PBB merging) applied
PBB merging technique to the TBdet-3D (conf_0.7).

Table 2 summarises the 5-fold validation results of these three models. TBdet-3D (PBB
merging) achieved the best results in all folds, followed by TBdet-3D (conf_0.7), and TBdet-3D
(conf_0.5). In the results from consolidating models from 5 folds, the highest mAP_IoU acheived
by TBdet-3D (PBB merging) was 0.623. The results indicate both post-processing techniques
(adjustment of prediction confidence, and PBB merging) were effective.



Table 2
Results of TBdet-3D in 5-fold validation. "5 folds" column shows the results of consolidated model over
all 5 folds. Bold text indicates best results in each column.

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 5 folds

TBdet-3D (conf_0.5) 0.580 0.520 0.490 0.589 0.512 0.561
TBdet-3D (conf_0.7) 0.650 0.570 0.539 0.632 0.570 0.609
TBdet-3D (PBB merging) 0.665 0.585 0.554 0.637 0.595 0.623

4.2.3. Effect of PBB merging

We further investigated the effect of PBB merging as shown in Figure 6. Figure 6a and 6b show
the prediction results without and with the PBB merging technique while Figure 6c shows the
ground truth for this case. The IoU between the prediction and ground truth improves from 0.25
to 0.70, and it can be seen that two false positive cases closely attached to the bigger bounding
boxes by plane were successfully merged into the bigger boxes.

Figure 6: A case study comparing of TBdet-3D prediction with/without PBB merging and the ground
truth.

4.3. Submission results on testing data

Table 3 shows the testing results of our model compared with other teams from the leaderboard
as well as a comparison of our own submission.

Comparison of TBdet-3D and TBdet-2D in our submissions Table 3 shows that our
TBdet-3D outperformed TBdet-2D model on the testing dataset. The mAP_IoU results of TBdet-
3D range from 0.504 to 0.479, and the one consolidating models from all 5 folds achieved the
highest performance. Comparatively, the results of TBdet-2D range from 0.308 to 0.219 with
the TBdet-2D (Ensemble YOLO-axial, Th1-0.1, Th2-0.2) achieving the best performance. The
improved performance of the 3D model could be due to its capacity to better exploit 3D spatial
information.



Comparison with other teams in leaderboard Table 3 shows that our TBdet-3D model
achieved the highest evaluation score (mAP_IoU 0.504) among all participating teams (Senti-
cLab.UAIC: 0.295 and KDE LAB: 0.185).

Table 3
Results for submissions of ours (left) and other teams in the leaderboard (right).

Model (our submissions) mAP_IoU Model (leaderboard) mAP_IoU

TBdet-3D (Consolidating 5 folds) 0.504 CSIRO 0.504
TBdet-3D (Consoliadting 4 folds) 0.503 SenticLab.UAIC 0.295

TBdet-3D (Best 1 fold) 0.479 KDE LAB 0.185
TBdet-2D (Ensemble YOLO-axial, Th1=0.1, Th2=0.8) 0.308

TBdet-2D (Ensemble YOLO-axial, Th1=0.5, Th2=0.7) 0.281
TBdet-2D (Ensemble YOLO-axial, Th1=0.6, Th2=0.7) 0.272

TBdet-2D (Ensemble YOLO-axial&coronal, Th1=0.6, Th2=0.7) 0.226
TBdet-2D (Ensemble YOLO-axial&coronal, Th1=0.5, Th2=0.7) 0.219

5. Conclusion

In this work, we described our participation in the ImageCELFmed TB caverns detection
challenge 2022. We developed and compared a 2D YOLO-based model (TBdet-2D) and a 3D
Retina U-Net-based model (TBdet-3D). The results show TBdet-3D outperforms the TBdet-2D on
the testing data, potentially due to the better capability of the 3D detection model in capturing
3D spatial information. We further demonstrated that postprocessing techniques such as PBB
merging significantly improved the mAP_IoU score on both the validation and testing data.
In future work, we aim to improve the performance by further leveraging the complementary
advantages of both 2D and 3D models.
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