
A Detailed Overview of LeQua@CLEF 2022:
Learning to Quantify
Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani and Gianluca Sperduti

Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche
56124 Pisa, Italy

Abstract
LeQua 2022 is a new lab for the evaluation of methods for “learning to quantify” in textual datasets, i.e.,

for training predictors of the relative frequencies of the classes of interest 𝒴 = {𝑦1, ..., 𝑦𝑛} in sets of

unlabelled textual documents. While these predictions could be easily achieved by first classifying all

documents via a text classifier and then counting the numbers of documents assigned to the classes, a

growing body of literature has shown this approach to be suboptimal, and has proposed better methods.

The goal of this lab is to provide a setting for the comparative evaluation of methods for learning to

quantify, both in the binary setting and in the single-label multiclass setting; this is the first time that an

evaluation exercise solely dedicated to quantification is organized. For both the binary setting and the

single-label multiclass setting, data were provided to participants both in ready-made vector form and in

raw document form. In this overview article we describe the structure of the lab, we report the results

obtained by the participants in the four proposed tasks and subtasks, and we comment on the lessons

that can be learned from these results.

Keywords
Quantification, Learning to quantify, Supervised class prevalence estimation, Prior estimation

1. Learning to Quantify

In a number of applications involving classification, the final goal is not determining which

class (or classes) individual unlabelled items (e.g., textual documents, images, or other) belong

to, but estimating the prevalence (or “relative frequency”, or “prior probability”, or “prior”) of

each class 𝑦 ∈ 𝒴 = {𝑦1, ..., 𝑦𝑛} in the unlabelled data. Estimating class prevalence values for

unlabelled data via supervised learning is known as learning to quantify (LQ) (or quantification,

or supervised prevalence estimation) [1, 2].

LQ has several applications in fields (such as the social sciences, political science, market

research, epidemiology, and ecological modelling) which are inherently interested in character-

ising aggregations of individuals, rather than the individuals themselves; disciplines like the

ones above are usually not interested in finding the needle in the haystack, but in characterising

the haystack. For instance, in most applications of tweet sentiment classification we are not

CLEF 2022: Conference and Labs of the Evaluation Forum, September 5–8, 2022, Bologna, Italy
$ andrea.esuli@isti.cnr.it (A. Esuli); alejandro.moreo@isti.cnr.it (A. Moreo); fabrizio.sebastiani@isti.cnr.it

(F. Sebastiani); gianluca.sperduti@isti.cnr.it (G. Sperduti)

� 0000-0002-5725-4322 (A. Esuli); 0000-0002-0377-1025 (A. Moreo); 0000-0003-4221-6427 (F. Sebastiani);

0000-0002-4287-8968 (G. Sperduti)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:andrea.esuli@isti.cnr.it
mailto:alejandro.moreo@isti.cnr.it
mailto:fabrizio.sebastiani@isti.cnr.it
mailto:gianluca.sperduti@isti.cnr.it
https://orcid.org/0000-0002-5725-4322
https://orcid.org/0000-0002-0377-1025
https://orcid.org/0000-0003-4221-6427
https://orcid.org/0000-0002-4287-8968
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

concerned with estimating the true class (e.g., Positive, or Negative, or Neutral) of individual

tweets. Rather, we are concerned with estimating the relative frequency of these classes in the

set of unlabelled tweets under study; or, put in another way, we are interested in estimating as

accurately as possible the true distribution of tweets across the classes.

It is by now well known that performing quantification by classifying each unlabelled instance

and then counting the instances that have been attributed to the class (the “classify and count”

method) usually leads to suboptimal quantification accuracy (see e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10]);

this may be seen as a direct consequence of “Vapnik’s principle” [11], which states

If you possess a restricted amount of information for solving some problem, try

to solve the problem directly and never solve a more general problem as an inter-

mediate step. It is possible that the available information is sufficient for a direct

solution but is insufficient for solving a more general intermediate problem.

In our case, the problem to be solved directly is quantification, while the more general interme-

diate problem is classification.

One reason why “classify and count” is suboptimal is that many application scenarios suffer

from distribution shift, the phenomenon according to which the distribution across the classes

𝑦1, ..., 𝑦𝑛 in the sample (i.e., set) 𝜎 of unlabelled documents may substantially differ from the

distribution across the classes in the labelled training set 𝐿; distribution shift is one example of

dataset shift [12, 13], the phenomenon according to which the joint distributions 𝑝𝐿(x, 𝑦) and

𝑝𝜎(x, 𝑦) differ. The presence of distribution shift means that the well-known IID assumption,

on which most learning algorithms for training classifiers hinge, does not hold. In turn, this

means that “classify and count” will perform suboptimally on sets of unlabelled items that

exhibit distribution shift with respect to the training set, and that the higher the amount of

shift, the worse we can expect “classify and count” to perform.

As a result of the suboptimality of the “classify and count” method, LQ has slowly evolved

as a task in its own right, different (in goals, methods, techniques, and evaluation measures)

from classification [2]. The research community has investigated methods to correct the

biased prevalence estimates of general-purpose classifiers [3, 4, 5], supervised learning methods

specially tailored to quantification [6, 7, 8, 9, 10], evaluation measures for quantification [14, 15],

and protocols for carrying out this evaluation. Specific applications of LQ have also been

investigated, such as sentiment quantification [16, 17, 18, 19], quantification in networked

environments [20], or quantification for data streams [21]. For the near future it is easy to

foresee that the interest in LQ will increase, due (a) to the increased awareness that “classify

and count” is a suboptimal solution when it comes to prevalence estimation, and (b) to the fact

that, with larger and larger quantities of data becoming available and requiring interpretation,

in more and more scenarios we will only be able to afford to analyse these data at the aggregate

level rather than individually.

2. The rationale for LeQua 2022

The LeQua 2022 lab (https://lequa2022.github.io/) at CLEF 2022 has a “shared task” format; it is

a new lab, in two important senses:

https://lequa2022.github.io/

• No labs on LQ have been organized before at CLEF conferences.

• Even outside the CLEF conference series, quantification has surfaced only episodically in

previous shared tasks. The first such shared task was SemEval 2016 Task 4 “Sentiment

Analysis in Twitter” [22], which comprised a binary quantification subtask and an ordi-
nal quantification subtask (these two subtasks were offered again in the 2017 edition).

Quantification also featured in the Dialogue Breakdown Detection Challenge [23], in the

Dialogue Quality subtasks of the NTCIR-14 Short Text Conversation task [24], and in

the NTCIR-15 Dialogue Evaluation task [25]. However, quantification was never the real

focus of these tasks. For instance, the real focus of the tasks described by Nakov et al.

[22] was sentiment analysis on Twitter data, to the point that almost all participants in

the quantification subtasks used the trivial “classify and count” method, and focused,

instead of optimising the quantification component, on optimising the sentiment analysis

component, or on picking the best-performing learner for training the classifiers used by

“classify and count”. Similar considerations hold for the tasks discussed in [23, 24, 25].

This is the first time that a shared task whose explicit focus is quantification is organized. A

lab on this topic was thus sorely needed, because the topic has great applicative potential, and

because a lot of research on this topic has been carried out without the benefit of the systematic

experimental comparisons that only shared tasks allow.

We expect the quantification community to benefit significantly from this lab. One of the

reasons is that this community is spread across different fields, as also witnessed by the fact

that work on LQ has been published in a scattered way across different areas, e.g., information

retrieval [5, 7, 16], data mining [4, 8], machine learning [26, 27], statistics [28], or in the areas to

which these techniques get applied [17, 29, 30]. In their papers, authors often use as baselines

only the algorithms from their own fields; one of the goals of this lab was thus to pull together

people from different walks of life, and to generate cross-fertilisation among the respective

sub-communities.

While quantification is a general-purpose machine learning / data mining task that can be

applied to any type of data, in this lab we focus on its application to data consisting of textual

documents.

3. Setting up LeQua 2022

In quantification, a data item (usually represented as x) is the individual unit of information;

for instance, a textual document, an image, a video, are examples of data items. In LeQua 2022,

as data items we use textual documents (and, more specifically, product reviews). A document x
has a label, i.e., it belongs to a certain class 𝑦 ∈ 𝒴 = {𝑦1, ..., 𝑦𝑛}; in this case we say that 𝑦 is

the label of x. In LeQua 2022, classes are either merchandise classes for products, or sentiment

classes for reviews (see Section 3.4 for more).

Some documents are such that their label is known to the quantification algorithm, and are

thus called labelled items; we typically use them as training examples for the quantifier-training

algorithm. Some other documents are such that their label is unknown to the quantifier-training

algorithm and to the trained quantifier, and are thus called unlabelled items; for testing purposes

we use documents whose label we hide to the quantifier. Unlike a classifier, a quantifier must

not predict labels for individual documents, but must predict prevalence values for samples (i.e.,

sets) of unlabelled documents; a prevalence value for a class 𝑦 and a sample 𝜎 is a number in

[0,1] such that the prevalence values for the classes in 𝒴 = {𝑦1, ..., 𝑦𝑛} sum up to 1. Note that

when, in the following, we use the term “label”, we always refer to the label of an individual

document (and not of a sample of documents; samples do not have labels, but prevalence values

for classes).

3.1. Tasks

Two tasks (T1 and T2) were offered within LeQua 2022, each admitting two subtasks (A and B).

In Task T1 (the vector task) participant teams were provided with vectorial representations of

the (training / development / test) documents. This task was offered so as to appeal to those

participants who are not into text learning, since participants in this task did not need to deal

with text preprocessing issues. Additionally, this task allowed the participants to concentrate on

optimising their quantification methods, rather than spending time on optimising the process

for producing vectorial representations of the documents.

In Task T2 (the raw documents task), participant teams were provided with the raw (training /

development / test) documents. This task was offered so as to appeal to those participants who

wanted to deploy end-to-end systems, or to those who wanted to also optimise the process for

producing vectorial representations of the documents (possibly tailored to the quantification

task).

The two subtasks of both tasks were the binary quantification subtask (T1A and T2A) and the

single-label multiclass quantification subtask (T1B and T2B); in both subtasks each document

belongs to only one of the classes of interest 𝑦1, ..., 𝑦𝑛, with 𝑛 = 2 in T1A and T2A and 𝑛 > 2
in T1B and T2B.

The four subtasks conceptually form a 2×2 grid, as illustrated in the following table.

Binary Multiclass
(by sentiment) (by topic)

Vector T1A T1B

Raw Documents T2A T2B

For each subtask in { T1A, T1B, T2A, T2B }, participant teams were required not to use (training

/ development / test) documents other than those provided for that subtask. In particular,

participants were explicitly advised against using any document from either T2A or T2B in

order to solve either T1A or T1B.

3.2. The evaluation protocol

As the protocol for generating the test samples on which the quantifiers will be tested we

adopt the so-called artificial prevalence protocol (APP), which is by now a standard protocol for

generating the datasets to be used in the evaluation of quantifiers. Using the APP consists of

taking the test set 𝑈 of unlabelled data items, and extracting from it a number of subsets (the

test samples), each characterised by a predetermined vector (𝑝𝜎(𝑦1), ..., 𝑝𝜎(𝑦𝑛)) of prevalence

values, where 𝑦1, ..., 𝑦𝑛 are the classes of interest. In other words, for extracting a test sample 𝜎,

we generate a vector of prevalence values, and randomly select documents from 𝑈 accordingly

(i.e., by class-conditional random selection of documents until the desired class prevalence

values are obtained).
1

The goal of the APP is to generate samples characterised by widely different vectors of

prevalence values; this is meant to test the robustness of a quantifier (i.e., of an estimator of class

prevalence values) in confronting class prevalence values possibly different (or very different)

from the ones of the set it has been trained on. For doing this we draw the vectors of class

prevalence values uniformly at random from the set of all legitimate such vectors, i.e., from the

unit (𝑛− 1)-simplex of all vectors (𝑝𝜎(𝑦1), ..., 𝑝𝜎(𝑦𝑛)) such that 𝑝𝜎(𝑦𝑖) ∈ [0, 1] for all 𝑦𝑖 ∈ 𝒴
and

∑︀
𝑦𝑖∈𝒴 𝑝𝜎(𝑦𝑖) = 1. For this we use the Kraemer algorithm [31], whose goal is that of

sampling in such a way that all legitimate class distributions are picked with equal probability.

For each vector thus picked we randomly generate a test sample. We use this method for both

the binary case and the multiclass case.

Note that this method is sharply different from traditional instantiations of the APP (as used,

say, in [16, 32, 33, 19]), in which one

1. Chooses an integer 𝑃 ; this determines a “grid” 𝑔1 of (𝑃 + 1) class prevalence values

𝑥/𝑃 , for 𝑥 ∈ {0, ..., 𝑃}. For instance, given 𝑃 = 20, this determines the grid 𝑔1 =
{0.00, 0.05, ..., 0.95, 1.00} of 21 class prevalence values;

2. Generates the grid 𝑔2 of the 𝐾(𝑃, 𝑛) probability distributions (𝑝𝜎(𝑦1), ..., 𝑝𝜎(𝑦𝑛)) such

that all the class prevalence values 𝑝𝜎(𝑦𝑖) are in 𝑔1;

3. For each distribution 𝑝 in the 𝐾(𝑃, 𝑛) probability distributions above, extracts 𝑚 random

samples of 𝑞 data items each from 𝑈 , in such a way that each extracted sample exhibits

probability distribution 𝑝.

4. Use the extracted random samples for the evaluation of the quantifiers.

These traditional instantiations of the APP are suitable for small values of 𝑛, but quickly

become unmanageable when 𝑛 grows; for instance, in the binary case (𝑛=2) we need to extract

𝑚 ·𝐾(20, 2) = 𝑚 ·21 samples, but this number grows to 𝑚 ·𝐾(20, 3) = 𝑚 ·231 for the ternary

case, and quickly becomes unmanageable as 𝑛 grows.
2

1

Everything we say here on how we generate the test samples also applies to how we generate the development

samples.

2

More precisely, there are 𝐾(𝑃, 𝑛) =
(︀
𝑃+𝑛−1
𝑛−1

)︀
probability distributions (𝑝𝜎(𝑦1), ..., 𝑝𝜎(𝑦𝑛)) such that all the

class prevalence values 𝑝𝜎(𝑦𝑖) are in 𝑔1. To exemplify, for 𝑛 = 5 classes we already reach 𝐾(20, 5) = 10, 626 valid

combinations, while for 𝑛 = 10 classes the number of combinations rises to 𝐾(20, 10) = 10, 015, 005.

3.3. The evaluation measures

In a recent theoretical study on the adequacy of evaluation measures for the quantification

task [15], relative absolute error (RAE) and absolute error (AE) have been found to be the most

satisfactory, and are thus the only measures used in LeQua 2022. In particular, as a measure we

do not use the once widely used Kullback-Leibler Divergence (KLD), since the same study has

found it to be unsuitable for evaluating quantification systems.
3

RAE and AE are defined as

RAE(𝑝𝜎, 𝑝̂𝜎) =
1

𝑛

∑︁
𝑦∈𝒴

|𝑝̂𝜎(𝑦)− 𝑝𝜎(𝑦)|
𝑝𝜎(𝑦)

(1)

AE(𝑝𝜎, 𝑝̂𝜎) =
1

𝑛

∑︁
𝑦∈𝒴

|𝑝̂𝜎(𝑦)− 𝑝𝜎(𝑦)| (2)

where 𝑝𝜎 is the true distribution on sample 𝜎, 𝑝̂𝜎 is the predicted distribution, 𝒴 is the set of

classes of interest, and 𝑛 = |𝒴|. Note that RAE is undefined when at least one of the classes

𝑦 ∈ 𝒴 is such that its prevalence in the sample 𝜎 of unlabelled items is 0. To solve this problem,

in computing RAE we smooth all 𝑝𝜎(𝑦)’s and 𝑝̂𝜎(𝑦)’s via additive smoothing, i.e., we take

𝑝
𝜎
(𝑦) = (𝜖 + 𝑝𝜎(𝑦))/(𝜖 · 𝑛 +

∑︀
𝑦∈𝒴 𝑝𝜎(𝑦)), where 𝑝

𝜎
(𝑦) denotes the smoothed version of

𝑝𝜎(𝑦) and the denominator is just a normalising factor (same for the 𝑝
𝜎̂
(𝑦)’s); following Forman

[4], we use the quantity 𝜖 = 1/(2|𝜎|) as the smoothing factor. In Equation 1 we then use the

smoothed versions of 𝑝𝜎(𝑦) and 𝑝̂𝜎(𝑦) in place of their original non-smoothed versions; as a

result, RAE is now always defined.

As the official measure according to which systems are ranked, we use RAE; we also compute

AE results, but we do not use them for ranking the systems. The official score obtained by a

given quantifier is the average value of the official evaluation measure (RAE) across all test

samples; for each system we also compute and report the value of AE. For each subtask in {

T1A, T1B, T2A, T2B } we use a two-tailed t-test on related samples at different confidence levels

(𝛼 = 0.05 and 𝛼 = 0.001) to identify all participant runs that are not statistically significantly

different from the best run, in terms of RAE and in terms of AE. We also compare all pairs of

methods by means of critical difference diagrams (CD-diagrams – [34]). We adopt the Nemenyi

test and set the confidence level to 𝛼 = 0.05. The test compares the average ranks in terms of

RAE and takes into account the sample size |𝜎|.

3.4. Data

The data we have used are Amazon product reviews from a large crawl of such reviews. From

the result of this crawl we have removed (a) all reviews shorter than 200 characters and (b) all

reviews that have not been recognised as “useful” by any users; this has yielded the dataset

Ω that we have used for our experimentation. As for the class labels, (i) for the two binary

tasks (T1A and T2A) we have used two sentiment labels, i.e., Positive (which encompasses

3

One reason why KLD is undesirable is that it penalizes differently underestimation and overestimation, and it

does so opaquely, i.e., in a way that is not explicit from its mathematical form and that cannot be controlled via an

explicit parameter; another is that it is very little robust to outliers. See [15, §4.7 and §5.2] for a detailed discussion

of these and other reasons.

4-stars and 5-stars reviews) and Negative (which encompasses 1-star and 2-stars reviews),

while for the two multiclass tasks (T1B and T2B) we have used 28 topic labels, representing the

merchandise class the product belongs to (e.g., Automotive, Baby, Beauty).
4

We have used the same data (training / development / test sets) for the binary vector task

(T1A) and for the binary raw document task (T2A); i.e., the former are the vectorized (and

shuffled) versions of the latter. Same for T1B and T2B. In order to generate the document vectors,

we compute the average of the GloVe vectors [35] for the words contained in each document,

thus producing 300-dimensional document embeddings. Each of the 300 dimensions of the

document embeddings is then (independently) standardized, so that it has zero mean and unit

variance.

The 𝐿𝐵 (binary) training set and the 𝐿𝑀 (multiclass) training set consist of 5,000 documents

and 20,000 documents, respectively, sampled from the dataset Ω via stratified sampling so as to

have “natural” prevalence values for all the class labels. (When doing stratified sampling for

the binary “sentiment-based” task, we ignore the “topic” dimension; and when doing stratified

sampling for the multiclass “topic-based” task, we ignore the “sentiment” dimension).

The development (validation) sets 𝐷𝐵 (binary) and 𝐷𝑀 (multiclass) consist of 1,000 develop-

ment samples of 250 documents each (𝐷𝐵) and 1,000 development samples of 1,000 documents

each (𝐷𝑀) generated from Ω ∖ 𝐿𝐵 and Ω ∖ 𝐿𝑀 via the Kraemer algorithm.

The test sets 𝑈𝐵 and 𝑈𝑀 consist of 5,000 test samples of 250 documents each (𝑈𝐵) and 5,000

test samples of 1,000 documents each (𝑈𝑀), generated from Ω∖ (𝐿𝐵 ∪𝐷𝐵) and Ω∖ (𝐿𝑀 ∪𝐷𝑀)
via the Kraemer algorithm. A submission (“run”) for a given subtask consists of prevalence

estimations for the relevant classes (the two sentiment classes for the binary subtasks and the

28 topic classes for the multiclass subtasks) for each sample in the test set of that subtask.

3.5. Baselines

In order to set a sufficiently high bar for the participants to overcome, we made them aware of

the availability of QuaPy [36], a library of quantification methods that contains, among others,

implementations of a number of methods that have performed well in recent comparative

evaluations.
5

QuaPy is a publicly available, open-source, Python-based framework that we

have recently developed, and that implements not only learning methods, but also evaluation

measures, parameter optimisation routines, and evaluation protocols, for LQ.

We used a number of quantification methods, as implemented in QuaPy, as baselines for the

participants to overcome.
6

These methods were:

• Maximum Likelihood Prevalence Estimation (MLPE): Rather than a true quantifica-

tion method, this a (more than) trivial baseline, consisting in assuming that the prevalence

𝑝𝜎(𝑦𝑖) of a class 𝑦𝑖 in the test sample 𝜎 is the same as the prevalence 𝑝𝐿(𝑦𝑖) that was

observed for that class in the training set 𝐿.

• Classify and Count (CC): This is the trivial baseline, consisting in training a standard

classifier ℎ on the training set 𝐿, using it to classify all the data items x in the sample 𝜎,

4

The set of 28 topic classes is flat, i.e., there is no hierarchy defined upon it.

5

https://github.com/HLT-ISTI/QuaPy

6

Check the branch https://github.com/HLT-ISTI/QuaPy/tree/lequa2022

https://github.com/HLT-ISTI/QuaPy
https://github.com/HLT-ISTI/QuaPy/tree/lequa2022

counting how many such items have been attributed to class 𝑦𝑖, doing this for all classes

in 𝒴 , and dividing the resulting counts by the cardinality |𝜎| of the sample.

• Probabilistic Classify and Count (PCC) [3]: This is a probabilistic variant of CC where

the “hard” classifier ℎ is replaced with a “soft” (probabilistic) classifier 𝑠, and where counts

are replaced with expected counts.

• Adjusted Classify and Count (ACC) [33]: This is an “adjusted” variant of CC in which

the prevalence values predicted by CC are subsequently corrected by considering the

misclassification rates of classifier ℎ, as estimated on a held-out validation set. For our

experiments, this held-out set consists of 40% of the training set.

• Probabilistic Adjusted Classify and Count (PACC) [3]: This is a probabilistic variant

of ACC where the “hard” classifier ℎ is replaced with a “soft” (probabilistic) classifier 𝑠, and

where counts are replaced with expected counts. Equivalently, it is an “adjusted” variant

of PCC in which the prevalence values predicted by PCC are corrected by considering

the (probabilistic versions of the) misclassification rates of soft classifier 𝑠, as estimated

on a held-out validation set. For our experiments, this held-out set consists of 40% of the

training set.

• HDy [9]: This is a probabilistic binary quantification method that views quantification as

the problem of minimising the divergence (measured in terms of the Hellinger Distance,

HD) between two distributions of posterior probabilities returned by the classifier, one

coming from the unlabelled examples and the other coming from a validation set consisting

of 40% of the training documents. HDy seeks for the mixture parameter 𝛼 ∈ [0, 1] that

minimizes the HD between (a) the mixture distribution of posteriors from the positive

class (weighted by 𝛼) and from the negative class (weighted by (1 − 𝛼)), and (b) the

unlabelled distribution.

• The Saerens-Latinne-Decaestecker algorithm (SLD) [32] (see also [37]): This is a

method based on Expectation Maximization, whereby the posterior probabilities returned

by a soft classifier 𝑠 for data items in an unlabelled set 𝑈 , and the class prevalence values

for 𝑈 , are iteratively updated in a mutually recursive fashion. For SLD we calibrate the

classifier since, for reasons discussed in [37], this yields an advantage for this method.
7

• QuaNet [16]: This is a deep learning architecture for quantification that predicts class

prevalence values by taking as input (i) the class prevalence values as estimated by CC,

ACC, PCC, PACC, SLD; (ii) the posterior probabilities Pr(𝑦|x) for the positive class (since

QuaNet is a binary method) for each document x, and (iii) embedded representations of

the documents. For task T1A, we directly use the vectorial representations that we have

provided to the participants as the document embeddings, while for task T2A we use

the RoBERTa embeddings (described below). For training QuaNet, we use the training

set 𝐿 for training the classifier. We then use the validation set for training the network

parameters, using 10% of the validation samples for monitoring the validation loss (we

apply early stop after 10 epochs that have shown no improvement). Since we devote the

validation set to train part of the model, we did not carry out model selection for QuaNet,

which was used with default hyperparameters (a learning rate of 1𝑒−4
, 64 dimensions in

7

Calibration does not yield similar improvements for other methods such as PCC, PACC, and QuaNet, though.

For this reason, we only calibrate the classifier for SLD.

the LSTM hidden layer, and a drop-out probability of 0.5).

All the above methods (with the exception of MLPE) are described in more detail in [19, §3.3

and §3.4], to which we refer the interested reader; all these methods are well-established, the

most recent one (QuaNet) having been published in 2018. For all methods, we have trained the

underlying classifiers via logistic regression, as implemented in the scikit-learn framework

(https://scikit-learn.org/stable/index.html). Note that we have used HDy and QuaNet as baselines

only in T1A and T2A, since they are binary-only methods. All other methods are natively

multiclass, so we have used them in all four subtasks.

We optimize two hyperparameters of the logistic regression learner by exploring 𝐶 (the

inverse of the regularization strength) in the range {10−3
, 10−2

, . . ., 10+3} and class_weight

(indicating the relative importance of each class) in {“balanced”, “not-balanced”}. For each

quantification method, model selection is carried out by choosing the combination of hyperpa-

rameters yielding the lowest average RAE across all validation samples.

For the raw documents subtasks (T2A and T2B), for each baseline quantification method we

have actually generated two quantifiers, using two different methods for turning documents

into vectors. (The only two baseline methods for which we do not do this are MLPE, which does

not use vectors, and QuaNet, that internally generates its own vectors.) The two methods are

• The standard tfidf term weighting method, expressed as

tfidf(𝑓,x) = log#(𝑓,x)× log
|𝐿|

|x′ ∈ 𝐿 : #(𝑓,x′) > 0|
(3)

where #(𝑓,x) is the raw number of occurrences of term 𝑓 in document x; weights are

then normalized via cosine normalization, as

𝑤(𝑓,x) =
tfidf(𝑓,x)√︁∑︀
𝑓 ′∈𝐹 tfidf(𝑓 ′,x)2

(4)

where 𝐹 is the set of all unigrams and bigrams that occur at least 5 times in 𝐿.

• The RoBERTa transformer [38], from the Hugging Face hub.
8

In order to use RoBERTa,

we truncate the documents to the first 256 tokens, and fine-tune RoBERTa for the task of

classification via prompt learning for a maximum of 10 epochs on our training data, thus

taking the model parameters from the epoch which yields the best macro 𝐹1 as monitored

on a held-out validation set consisting of 10% of the training documents randomly sampled

in a stratified way. For training, we set the learning rate to 1𝑒−5
, the weight decay to 0.01,

and the batch size to 16, leaving the other hyperparameters at their default values. For

each document, we generate features by first applying a forward pass over the fine-tuned

network, and then averaging the embeddings produced for the special token [CLS] across

all the 12 layers of RoBERTa. (In experiments that we carried out for another project, this

latter approach yielded slightly better results than using the [CLS] embedding of the last

layer alone.) The embedding size of RoBERTa, and hence the number of dimensions of

our vectors, amounts to 768.

8

https://huggingface.co/docs/transformers/model_doc/roberta

https://scikit-learn.org/stable/index.html
https://huggingface.co/docs/transformers/model_doc/roberta

Table 1
The teams who participated in LeQua 2022 and the tasks for which they submitted runs.

T1A T1B T2A T2B
DortmundAI x x
KULeuven x x
UniLeiden x
UniOviedo(Team1) x x x x
UniOviedo(Team2) x x
UniPadova x

4. The participating systems

Six teams submitted runs to LeQua 2022. As shown in in Table 1, the most popular subtask was,

unsurprisingly, T1A (5 teams), while the subtask with the smallest participation was T2B (1

team). We here list the teams in alphabetical order:

• DortmundAI [39] submitted a run each for T1A and T1B. Their original goal was to

use a modified version of the SLD algorithm described in Section 3.5. The modification

introduced by DortmundAI consists of the use of a regularization technique meant to

smooth the estimates that expectation maximization computes for the class prevalence

values at each iteration. After extensively applying model selection, though, the team

realized that the best configurations of hyperparameters often reduce the strength of

such regularization, so as to make the runs produced by their regularized version of SLD

almost identical to a version produced by using the “traditional” SLD algorithm. They

also found that a thorough optimization of the hyperparameters of the base classifier was

instead the key to producing good results.

• KULeuven [40] submitted a run each for T1A and T1B. Their system consisted of a robust

calibration of the SLD [32] method based on the observations of Molinari et al. [41]. While

the authors explored trainable calibration strategies (i.e., regularization constraints that

modify the training objective of a classifier in favour of better calibrated solutions), the

team finally contributed a solution based on the Platt rescaling [42] of the SVM outputs

(i.e., a post-hoc calibration method that is applied after training the classifier) which they

found to perform better in validation. Their solution differs from the version of SLD

provided as baseline mainly in the choice of the underlying classifier (the authors chose

SVMs while the provided baseline is based on logistic regression) and in the amount

of effort devoted to the optimization of the hyperparameters (which was higher in the

authors’ case).

• UniLeiden [43] submitted a run for T1A only. The authors’ system is a variant of the

Median Sweep (MS) method proposed by Forman [4, 44], called Simplified Continuous
Sweep, which consists of a smooth adaptation of the original method. The main modifica-

tions come down to computing the mean (instead of the median) of the class prevalence

estimates by integrating over continuous functions (instead of summing across discrete

functions) that represent the classification counts and misclassification rates. Since the

underlying distributions of these counts and rates are unknown, kernel density estimation

is used to approximate them. Although the system did not yield improved results with

respect to MS, it paves the way for better understanding the theoretical implications of

MS.

• UniOviedo(Team1) [45] submitted a run each for all four subtasks. Their system consists

of a deep neural network architecture explicitly devised for the quantification task. The

learning method is non-aggregative and does not need to know the labels of the training

items composing a sample. As the training examples to train the quantifiers that produced

the submissions it used the samples with known prevalence from the development sets

𝐷𝐵 and 𝐷𝑀 (each set is used for its respective task). A generator of additional samples

that produces mixtures of pairs of samples of known prevalence is used to increase the

number of training examples. Data from training sets 𝐿𝐵 and 𝐿𝑀 are used only to

generate additional training samples when over-fitting is observed. Every sample is

represented as a set of histograms, each one representing the distribution of values of

an input feature. For tasks T1A and T1B, histograms are directly computed on the input

vectors. For tasks T2A and T2B, the input text are first converted into dense vectors using

a BERT model, for which the histograms are computed. The network uses RAE as the loss

function, modified by the smoothing parameter so as to avoid undefined values when a

true prevalence is zero, thus directly optimizing the official evaluation measure.

• UniOviedo(Team2) [46] submitted a run each for T1A and T1B. For T1A, this team used

a highly optimized version of the HDy system (that was also one of the baseline systems),

obtained by optimizing three different parameters (similarity measure used, number of

bins used, method used for binning the posteriors returned by the classifier). For T1B,

this team used a version of HDy (called EDy) different from the previous one; EDy uses,

for the purpose of measuring the distance between two histograms, the “energy distance”

in place of the Hellinger Distance.

• UniPadova [47] submitted a run for T2A only. Their system consisted of a classify-

and-count method in which the underlying classifier is a probabilistic “BM25” classifier.

The power of this method thus only derives from the term weighting component, since

nothing in the method makes explicit provisions for distribution shift.

5. Results

In this section we discuss the results obtained by our participant teams in the four subtasks we

have proposed. The evaluation campaign started on Dec 1, 2021, with the release of the training

sets (𝐿𝐵 and 𝐿𝑀) and of the development sets (𝐷𝐵 and 𝐷𝑀); alongside them, the participant

teams were provided with a dummy submission, a format checker, and the official evaluation

script. The unlabelled test sets (𝑈𝐵 and 𝑈𝑀) were released on Apr 22, 2022; and runs had to be

submitted by May 11, 2022. Each team could submit up to two runs per subtask, provided each

such run used a truly different method (and not, say, the same method using different parameter

values); however, no team decided to take advantage of this, and each team submitted at most

Rank Run RAE AE

1 KULeuven 0.10858 ± 0.27476 0.02418 ± 0.01902
2 UniOviedo(Team1) 0.10897‡ ± 0.21887 0.02327 ± 0.01811
3 UniOviedo(Team2) 0.11130‡ ± 0.23144 0.02475 ± 0.01908
4 𝑆𝐿𝐷 0.11382‡ ± 0.26605 0.02518 ± 0.01977
5 UniDortmund 0.11403† ± 0.20345 0.02706 ± 0.02096
6 𝐻𝐷𝑦 0.14514 ± 0.45617 0.02814 ± 0.02212
7 𝑃𝐴𝐶𝐶 0.15218 ± 0.46435 0.02985 ± 0.02258
8 𝐴𝐶𝐶 0.17020 ± 0.50795 0.03716 ± 0.02935
9 UniLeiden 0.19624 ± 0.82620 0.03171 ± 0.02424
10 𝑄𝑢𝑎𝑁𝑒𝑡 0.31764 ± 1.35223 0.03418 ± 0.02527
11 𝐶𝐶 1.08400 ± 4.31046 0.09160 ± 0.05539
12 𝑃𝐶𝐶 1.39402 ± 5.62067 0.11664 ± 0.06977
13 𝑀𝐿𝑃𝐸 3.26692 ± 14.85223 0.32253 ± 0.22961

(a)

(b)

Figure 1: Results of Task T1A. Table (a) reports the results of participant teams in terms of RAE (official
measure for ranking) and AE, averaged across the 5,000 test samples. Boldface indicates the best
method for a given evaluation measure. Superscripts † and ‡ denote the methods (if any) whose scores
are not statistically significantly different from the best one according to a paired sample, two-tailed
t-test at different confidence levels: symbol † indicates 0.001 < 𝑝-value < 0.05 while symbol ‡ indicates
0.05 ≤ 𝑝-value. The absence of any such symbol indicates 𝑝-value ≤ 0.001 (i.e., that the difference
in performance between the method and the best one is statistically significant at a high confidence
level). Baseline methods are typeset in italic. Subfigure (b) reports the CD-diagram for Task T1A for the
averaged ranks in terms of RAE.

one run per subtask. An instantiation of Codalab (https://codalab.org/) was set up in order to

allow the teams to submit their runs. The true labels of the unlabelled test sets were released on

May 13, 2022, after the submission period was over and the official results had been announced

to the participants. In the rest of this section we discuss the results that the participants’ systems

and the baseline systems have obtained in the vector subtasks (T1A and T1B – Section 5.1), in

the raw document subtasks (T2A and T2B – Section 5.2), in the binary subtasks (T1A and T2A –

Section 5.3), and in the multiclass subtasks (T1B and T2B – Section 5.4).

We report the results of the participants’ systems and the baseline systems in Figure 1 (for

subtask T1A), Figure 2 (T1B), Figure 3 (T2A), and Figure 4 (T2B). In each such figure we also

display critical-distance diagrams illustrating how the systems rank in terms of RAE and when

the difference between the systems is statistically significant.

https://codalab.org/

Rank Run RAE AE

1 UniDortmund 0.87987 ± 0.75139 0.01173 ± 0.00284
2 UniOviedo(Team1) 0.88415‡ ± 0.45537 0.02799 ± 0.00723
3 UniOviedo(Team2) 1.11395 ± 0.92516 0.01178‡ ± 0.00329
4 KULeuven 1.17798 ± 1.05501 0.01988 ± 0.00395
5 𝑆𝐿𝐷 1.18207 ± 1.09757 0.01976 ± 0.00399
6 𝑃𝐴𝐶𝐶 1.30538 ± 0.98827 0.01578 ± 0.00379
7 𝐴𝐶𝐶 1.42134 ± 1.26958 0.01841 ± 0.00437
8 𝐶𝐶 1.89365 ± 1.18721 0.01406 ± 0.00295
9 𝑃𝐶𝐶 2.26462 ± 1.41613 0.01711 ± 0.00332
10 𝑀𝐿𝑃𝐸 4.57675 ± 4.51384 0.04227 ± 0.00414

(a)

(b)

Figure 2: As in Figure 1, but for T1B in place of T1A.

Interestingly enough, no system (either participants’ system or baseline system) was the

best performer in more than one subtask, with four different systems (the KULeuven system

for T1A, the DortmundAI system for T1B, the QuaNet baseline system for T2A, and the

UniOviedo(Team1) system for T2B) claiming top spot for the four subtasks. Overall, the

performance of UniOviedo(Team1) was especially noteworthy since, aside from topping the

rank in T2B, it obtained results not statistically significantly different (0.05 ≤ 𝑝-value) from

those of the top-performing team also in T1A and T1B.

The results allow us to make a number of observations. We organize the discussion of these

results in four sections (Section 5.1 to Section 5.4), one for each of the four dimensions (vectors

vs. raw documents, binary vs. multiclass) according to which the four subtasks are structured.

However, before doing that, we discuss some conclusions that may be drawn from the results

and that affect all four dimensions.

1. MLPE is the worst predictor. This is true in all four subtasks, and was expected, given the

fact that the test data are generated by means of the APP, which implies that the test data

contain a very high number of samples characterized by substantial distribution shift,

and that on these samples MLPE obviously performs badly.

2. CC and PCC obtain very low quantification accuracy; this is the case in all four subtasks,

where these two methods are always near the bottom of the ranking. This confirms

the fact (already recorded in previous work – see e.g., [36, 19, 48]) that they are not

good performers when the APP is used for generating the dataset, i.e., they are not good

performers when there is substantial distribution shift. Interestingly enough, CC always

outperforms PCC, which was somehow unexpected.

Rank Run RAE AE

1 𝑄𝑢𝑎𝑁𝑒𝑡 0.07805 ± 0.25437 0.01306 ± 0.01009
2 𝑆𝐿𝐷-tfidf 0.08703† ± 0.16721 0.01952 ± 0.01543
3 UniOviedo(Team1) 0.10704 ± 0.27896 0.01916 ± 0.01467
4 𝐻𝐷𝑦-tfidf 0.12198 ± 0.17207 0.02914 ± 0.02266
5 𝑆𝐿𝐷-RoBERTa 0.13616 ± 0.45312 0.02208 ± 0.01562
6 𝑃𝐴𝐶𝐶-tfidf 0.13804 ± 0.48977 0.02626 ± 0.02080
7 𝐴𝐶𝐶-tfidf 0.16113 ± 0.54750 0.03090 ± 0.02443
8 𝐻𝐷𝑦-RoBERTa 0.16285 ± 0.55900 0.02421 ± 0.01612
9 𝑃𝐴𝐶𝐶-RoBERTa 0.32902 ± 1.46314 0.03227 ± 0.02381
10 𝐴𝐶𝐶-RoBERTa 0.33023 ± 1.49746 0.03374 ± 0.02539
11 𝐶𝐶-RoBERTa 0.41222 ± 1.81806 0.04053 ± 0.02976
12 𝑃𝐶𝐶-RoBERTa 0.45182 ± 1.92703 0.04077 ± 0.02817
13 𝐶𝐶-tfidf 1.06748 ± 4.83335 0.10286 ± 0.07348
14 𝑃𝐶𝐶-tfidf 1.36165 ± 6.37488 0.14414 ± 0.10237
15 UniPadova 3.02245 ± 11.99428 0.25067 ± 0.14675
16 𝑀𝐿𝑃𝐸 3.26692 ± 14.85223 0.32253 ± 0.22961

(a)

(b)

Figure 3: As in Figure 1, but for T2A in place of T1A.

3. ACC and PACC are mid-level performers; this holds in all four subtasks, in which both

methods are always in the middle portion of the ranking. Interestingly enough, PACC

always outperforms ACC, somehow contradicting the impression (see Bullet 2) that “hard”

counts are better than expected counts and/or that the calibration routine has not done a

good job.

4. SLD is the strongest baseline; this is true in all four subtasks, in which SLD, while never

being the best performer, is always in the top ranks. This confirms the fact (already

recorded in previous work – see e.g., [36, 19, 48]) that SLD is a very strong performer

when the APP is used for generating the dataset, i.e., when the test data contain many

samples characterized by substantial distribution shift.

5. Overall, the ranking MLPE < PCC < CC < ACC < PACC < SLD (where “<” means

“performs worse than”) clearly emerges from all four tasks.

As it might be expected, not always a good performance according to RAE (our official measure)

also corresponds to a good performance on AE (our other measure). Only in 2 subtasks out of 4

Rank Run RAE AE

1 UniOviedo(Team1) 1.23085 ± 0.72831 0.03208 ± 0.00921
2 𝑆𝐿𝐷-RoBERTa 1.30978 ± 1.61205 0.01552 ± 0.00439
3 𝑆𝐿𝐷-tfidf 1.31950 ± 1.23382 0.01829 ± 0.00376
4 𝑃𝐴𝐶𝐶-RoBERTa 1.45429 ± 1.00967 0.01220 ± 0.00260
5 𝐴𝐶𝐶-RoBERTa 1.48661 ± 1.07152 0.01310 ± 0.00290
6 𝑃𝐴𝐶𝐶-tfidf 1.53853 ± 1.43093 0.01789 ± 0.00508
7 𝐶𝐶-RoBERTa 1.69071 ± 1.15729 0.01367 ± 0.00296
8 𝑃𝐶𝐶-RoBERTa 1.77143 ± 1.15163 0.01328 ± 0.00272
9 𝐴𝐶𝐶-tfidf 2.01440 ± 2.16362 0.01993 ± 0.00548
10 𝐶𝐶-tfidf 2.24393 ± 1.52031 0.01949 ± 0.00399
11 𝑃𝐶𝐶-tfidf 3.06004 ± 2.21288 0.02913 ± 0.00469
12 𝑀𝐿𝑃𝐸 4.57675 ± 4.51384 0.04227 ± 0.00414

(a)

(b)

Figure 4: As in Figure 1, but for T2B in place of T1A.

(T1B, with the DortmundAI system, and T2A, with the QuaNet baseline system) the system

that scores best according to RAE also scores best according to AE; in the other 2 subtasks

this is not the case, and in one case (T2B) the system that performs best according to RAE (the

UniOviedo(Team1) system) has a very low performance according to AE. This suggests that

for some systems, including the UniOviedo(Team1) system, parameter optimization (which,

quite naturally, is performed by trying to optimize the official measure) may have played an

especially important role.

5.1. T1A and T1B: The vector subtasks

In the vector subtasks the top-performing systems, KULeuven for T1A and UniDortmund for

T1B, both consist of carefully optimized instances of SLD. The KULeuven system outperformed

all the baseline systems in both tasks, while the UniDortmund system ranked 5th in T1A, one

position below the SLD baseline.

The runs from UniOviedo(Team1) and UniOviedo(Team2) obtained 2nd and 3rd ranks, respec-

tively, in both T1A and T1B. The UniOviedo(Team1) system performed very well in both cases,

obtaining RAE scores that, according to the test of statistical significance, are not significantly

different from the best result obtained in each of these subtasks. Things are different if we

instead look at the AE scores, for which UniOviedo(Team1) obtained the best result in T1A but

the second-worst result in T1B.

5.2. T2A and T2B: The raw documents subtasks

In both raw document tasks (T2A and T2B) the best-performing methods is always one based

on deep learning (the QuaNet baseline for T2A and the UniOviedo(Team1) system for T2B).

A direct comparison between the UniOviedo(Team1) system and QuaNet in the multiclass

case (T2B) is not possible because QuaNet is a binary-only method (see Section 3.5) and was

thus not used in T2B. A common characteristic between these two methods is that both use

(part of the) samples from the validation data not for tuning hyperparameters but for training

the model.

Concerning the baseline systems, the results do not give a definitive answer on which between

tfidf and RoBERTa is the best method for mapping raw documents into vectors. In fact, out of 9

cases (5 for T2A, 4 for T2B) in which we have generated both variants of the same baseline, the

tfidf variant outperforms the RoBERTa variant in 4 cases and is outperformed by it in 5 cases.

This was unexpected, since RoBERTa is a way more sophisticated and modern method than the

time-worn tfidf. Interestingly (and mysteriously) enough, the tfidf variant is almost always the

better performer in the binary case (T2A – 4 cases out of 5), while the RoBERTa variant always

outperforms the tfidf variant in the multiclass case (T2B – 4 cases out of 4).

5.3. T1A and T2A: The binary subtasks

Concerning T1A and T2A (the binary subtasks), we should first observe that we here use

two further baseline systems, namely, HDy and QuaNet; we only use them in the binary

subtasks since they are not natively multiclass. HDy performs fairly well in both T1A and T2A,

outperforming MLPE, PCC, CC, ACC, and PACC (but not SLD) in both cases. Instead, QuaNet

performs less consistently, since it places in the mid-lower ranks of the table in T1A but is no

less than the best performer in T2A.

The inconsistent results obtained by QuaNet on binary tasks contrast with those obtained by

the UniOviedo(Team1) system, the other method based on deep learning, which ranks among

the top positions in both T1A and T2A. This is somehow surprising, given that in T1A (unlike

in T2A), the source vectors used by UniOviedo(Team1) and QuaNet methods were exactly the

same.

5.4. T1B and T2B: The multiclass subtasks

Regarding the multiclass subtasks, the UniOviedo(Team1) system stands out, since it consistently

obtained results that either outperform all other methods (T2B) or were not different, in a statisti-

cally significant sense, from the best-performing method (T1B). UniOviedo(Team1) was the only

team participating in the raw-document multiclass subtask T2B. Although UniOviedo(Team1)

beat all other baselines in terms of RAE, it performed comparably worse in terms of AE to most

of the baselines (actually, worse than all baselines but MLPE).

6. Final remarks

Overall, something that we learn from this shared task is that SLD is very hard to beat (thereby

confirming recent results reported in [19, 36, 48]), and that it tends to fare very well across

different settings, including binary and multiclass quantification problems, and including dif-

ferent ways of processing text. This observation is reinforced by the fact that two of the

best-performing systems (KULeuven and UniDortmund, which placed 1st in T1A and T1B,

respectively) actually consist of carefully-tuned instances of SLD. Another “classic” method

that has also proven to behave well is HDy, a method that forms the basis on which one of

the best-performing methods (UniOviedo(Team2)) is built upon. However, the system that has

delivered the most consistently competitive results across all tasks (UniOviedo(Team1)) is a

“non-classical” one, since it is based on deep-learning technology.

To conclude, we think that LeQua 2022 has proven very useful for the quantification commu-

nity, since it has confirmed, in a controlled settings, some intuitions about “classic” quantification

systems (e.g., SLD) that had already surfaced in the recent literature, but has also shown that

there are margins of improvement over them, especially if using “deep” learning approaches

(such as QuaNet and the system used by UniOviedo(Team1)).

We plan to propose a LeQua edition for CLEF 2023, so as to allow the LeQua 2022 participants

to profit from their 2022 experience in order to consolidate their systems so as to improve on

their 2022 performance, and so as to allow prospective participants who could not make it for

2022 to jump in. The experimental setting that we have used for LeQua 2022 will be the starting

point, but we might want to incorporate in it possible suggestions that might arise during the

LeQua session at the CLEF 2022 conference.

This session will host (a) a keynote talk by George Forman (Amazon Research), (b) a detailed

presentation by the organisers, overviewing the lab and the results of the participants, (c) oral

presentations by the participating teams, and (d) a final discussion on the takeaway message

that LeQua 2022 gives us.

Acknowledgments

This work has been supported by the SoBigData++ project, funded by the European Commission

(Grant 871042) under the H2020 Programme INFRAIA-2019-1, and by the AI4Media project,

funded by the European Commission (Grant 951911) under the H2020 Programme ICT-48-2020.

The authors’ opinions do not necessarily reflect those of the European Commission. We thank

Alberto Barron Cedeño, Juan José del Coz, Preslav Nakov, and Paolo Rosso, for advice on how

to best set up this lab.

References

[1] J. J. del Coz, P. González, A. Moreo, F. Sebastiani, Learning to quantify: Methods and

applications (LQ 2021), in: Proceedings of the 30th ACM International Conference on

Knowledge Management (CIKM 2021), Gold Coast, AU, 2021, pp. 4874–4875. doi:10.1145/
3459637.3482040.

[2] P. González, A. Castaño, N. V. Chawla, J. J. del Coz, A review on quantification learning,

ACM Computing Surveys 50 (2017) 74:1–74:40. doi:10.1145/3117807.

[3] A. Bella, C. Ferri, J. Hernández-Orallo, M. J. Ramírez-Quintana, Quantification via prob-

http://dx.doi.org/10.1145/3459637.3482040
http://dx.doi.org/10.1145/3459637.3482040
http://dx.doi.org/10.1145/3117807

ability estimators, in: Proceedings of the 11th IEEE International Conference on Data

Mining (ICDM 2010), Sydney, AU, 2010, pp. 737–742. doi:10.1109/icdm.2010.75.

[4] G. Forman, Quantifying counts and costs via classification, Data Mining and Knowledge

Discovery 17 (2008) 164–206. doi:10.1007/s10618-008-0097-y.

[5] R. Levin, H. Roitman, Enhanced probabilistic classify and count methods for multi-

label text quantification, in: Proceedings of the 7th ACM International Conference on

the Theory of Information Retrieval (ICTIR 2017), Amsterdam, NL, 2017, pp. 229–232.

doi:10.1145/3121050.3121083.

[6] J. Barranquero, J. Díez, J. J. del Coz, Quantification-oriented learning based on reliable

classifiers, Pattern Recognition 48 (2015) 591–604. doi:10.1016/j.patcog.2014.07.
032.

[7] G. Da San Martino, W. Gao, F. Sebastiani, Ordinal text quantification, in: Proceedings of

the 39th ACM Conference on Research and Development in Information Retrieval (SIGIR

2016), Pisa, IT, 2016, pp. 937–940. doi:10.1145/2911451.2914749.

[8] A. Esuli, F. Sebastiani, Optimizing text quantifiers for multivariate loss functions,

ACM Transactions on Knowledge Discovery and Data 9 (2015) Article 27. doi:10.1145/
2700406.

[9] V. González-Castro, R. Alaiz-Rodríguez, E. Alegre, Class distribution estimation based on

the Hellinger distance, Information Sciences 218 (2013) 146–164. doi:10.1016/j.ins.
2012.05.028.

[10] L. Milli, A. Monreale, G. Rossetti, F. Giannotti, D. Pedreschi, F. Sebastiani, Quantification

trees, in: Proceedings of the 13th IEEE International Conference on Data Mining (ICDM

2013), Dallas, US, 2013, pp. 528–536. doi:10.1109/icdm.2013.122.

[11] V. Vapnik, Statistical learning theory, Wiley, New York, US, 1998.

[12] J. G. Moreno-Torres, T. Raeder, R. Alaíz-Rodríguez, N. V. Chawla, F. Herrera, A unifying

view on dataset shift in classification, Pattern Recognition 45 (2012) 521–530. doi:10.
1016/j.patcog.2011.06.019.

[13] J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, N. D. Lawrence (Eds.), Dataset

shift in machine learning, The MIT Press, Cambridge, US, 2009. doi:10.7551/mitpress/
9780262170055.001.0001.

[14] A. Esuli, F. Sebastiani, Sentiment quantification, IEEE Intelligent Systems 25 (2010) 72–75.

[15] F. Sebastiani, Evaluation measures for quantification: An axiomatic approach, Information

Retrieval Journal 23 (2020) 255–288. doi:10.1007/s10791-019-09363-y.

[16] A. Esuli, A. Moreo, F. Sebastiani, A recurrent neural network for sentiment quantification,

in: Proceedings of the 27th ACM International Conference on Information and Knowl-

edge Management (CIKM 2018), Torino, IT, 2018, pp. 1775–1778. doi:10.1145/3269206.
3269287.

[17] W. Gao, F. Sebastiani, From classification to quantification in tweet sentiment analysis,

Social Network Analysis and Mining 6 (2016) 1–22. doi:10.1007/s13278-016-0327-z.

[18] A. Esuli, A. Moreo, F. Sebastiani, Cross-lingual sentiment quantification, IEEE Intelligent

Systems 35 (2020) 106–114. doi:10.1109/MIS.2020.2979203.

[19] A. Moreo, F. Sebastiani, Tweet sentiment quantification: An experimental re-evaluation,

PLoS ONE (2022). Forthcoming.

[20] L. Milli, A. Monreale, G. Rossetti, D. Pedreschi, F. Giannotti, F. Sebastiani, Quantification

http://dx.doi.org/10.1109/icdm.2010.75
http://dx.doi.org/10.1007/s10618-008-0097-y
http://dx.doi.org/10.1145/3121050.3121083
http://dx.doi.org/10.1016/j.patcog.2014.07.032
http://dx.doi.org/10.1016/j.patcog.2014.07.032
http://dx.doi.org/10.1145/2911451.2914749
http://dx.doi.org/10.1145/2700406
http://dx.doi.org/10.1145/2700406
http://dx.doi.org/10.1016/j.ins.2012.05.028
http://dx.doi.org/10.1016/j.ins.2012.05.028
http://dx.doi.org/10.1109/icdm.2013.122
http://dx.doi.org/10.1016/j.patcog.2011.06.019
http://dx.doi.org/10.1016/j.patcog.2011.06.019
http://dx.doi.org/10.7551/mitpress/9780262170055.001.0001
http://dx.doi.org/10.7551/mitpress/9780262170055.001.0001
http://dx.doi.org/10.1007/s10791-019-09363-y
http://dx.doi.org/10.1145/3269206.3269287
http://dx.doi.org/10.1145/3269206.3269287
http://dx.doi.org/10.1007/s13278-016-0327-z
http://dx.doi.org/10.1109/MIS.2020.2979203

in social networks, in: Proceedings of the 2nd IEEE International Conference on Data

Science and Advanced Analytics (DSAA 2015), Paris, FR, 2015. doi:10.1109/dsaa.2015.
7344845.

[21] A. G. Maletzke, D. Moreira dos Reis, G. E. Batista, Combining instance selection and

self-training to improve data stream quantification, Journal of the Brazilian Computer

Society 24 (2018) 43–48. doi:10.1186/s13173-018-0076-0.

[22] P. Nakov, A. Ritter, S. Rosenthal, F. Sebastiani, V. Stoyanov, SemEval-2016 Task 4: Sentiment

analysis in Twitter, in: Proceedings of the 10th International Workshop on Semantic

Evaluation (SemEval 2016), San Diego, US, 2016, pp. 1–18. doi:10.18653/v1/s16-1001.

[23] R. Higashinaka, K. Funakoshi, M. Inaba, Y. Tsunomori, T. Takahashi, N. Kaji, Overview

of the 3rd Dialogue Breakdown Detection challenge, in: Proceedings of the 6th Dialog

System Technology Challenge, Long Beach, US, 2017.

[24] Z. Zeng, S. Kato, T. Sakai, Overview of the NTCIR-14 Short Text Conversation task:

Dialogue Quality and Nugget Detection subtasks, in: Proceedings of the 14th Workshop

on NII Testbeds and Community for Information access Research (NTCIR 2019), Tokyo, JP,

2019, pp. 289–315.

[25] Z. Zeng, S. Kato, T. Sakai, I. Kang, Overview of the NTCIR-15 Dialogue Evaluation task

(DialEval-1), in: Proceedings of the 15th Workshop on NII Testbeds and Community for

Information access Research (NTCIR 2020), Tokyo, JP, 2020, pp. 13–34.

[26] R. Alaíz-Rodríguez, A. Guerrero-Curieses, J. Cid-Sueiro, Class and subclass probability

re-estimation to adapt a classifier in the presence of concept drift, Neurocomputing 74

(2011) 2614–2623. doi:10.1016/j.neucom.2011.03.019.

[27] M. C. du Plessis, G. Niu, M. Sugiyama, Class-prior estimation for learning from

positive and unlabeled data, Machine Learning 106 (2017) 463–492. doi:10.1007/
s10994-016-5604-6.

[28] G. King, Y. Lu, Verbal autopsy methods with multiple causes of death, Statistical Science

23 (2008) 78–91. doi:10.1214/07-sts247.

[29] D. Card, N. A. Smith, The importance of calibration for estimating proportions from

annotations, in: Proceedings of the 2018 Conference of the North American Chapter of

the Association for Computational Linguistics (HLT-NAACL 2018), New Orleans, US, 2018,

pp. 1636–1646. doi:10.18653/v1/n18-1148.

[30] D. J. Hopkins, G. King, A method of automated nonparametric content analysis for

social science, American Journal of Political Science 54 (2010) 229–247. doi:10.1111/j.
1540-5907.2009.00428.x.

[31] N. A. Smith, R. W. Tromble, Sampling uniformly from the unit simplex, Technical Report,

Johns Hopkins University, 2004. https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.

tr04.pdf.

[32] M. Saerens, P. Latinne, C. Decaestecker, Adjusting the outputs of a classifier to new a

priori probabilities: A simple procedure, Neural Computation 14 (2002) 21–41. doi:10.
1162/089976602753284446.

[33] G. Forman, Counting positives accurately despite inaccurate classification, in: Proceedings

of the 16th European Conference on Machine Learning (ECML 2005), Porto, PT, 2005, pp.

564–575. doi:10.1007/11564096_55.

[34] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine

http://dx.doi.org/10.1109/dsaa.2015.7344845
http://dx.doi.org/10.1109/dsaa.2015.7344845
http://dx.doi.org/10.1186/s13173-018-0076-0
http://dx.doi.org/10.18653/v1/s16-1001
http://dx.doi.org/10.1016/j.neucom.2011.03.019
http://dx.doi.org/10.1007/s10994-016-5604-6
http://dx.doi.org/10.1007/s10994-016-5604-6
http://dx.doi.org/10.1214/07-sts247
http://dx.doi.org/10.18653/v1/n18-1148
http://dx.doi.org/10.1111/j.1540-5907.2009.00428.x
http://dx.doi.org/10.1111/j.1540-5907.2009.00428.x
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
http://dx.doi.org/10.1162/089976602753284446
http://dx.doi.org/10.1162/089976602753284446
http://dx.doi.org/10.1007/11564096_55

Learning Research 7 (2006) 1–30.

[35] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in:

Proceedings of the 12th Conference on Empirical Methods in Natural Language Processing

(EMNLP 2014), Doha, QA, 2014, pp. 1532–1543.

[36] A. Moreo, A. Esuli, F. Sebastiani, QuaPy: A Python-based framework for quantification,

in: Proceedings of the 30th ACM International Conference on Knowledge Management

(CIKM 2021), Gold Coast, AU, 2021, pp. 4534–4543. doi:10.1145/3459637.3482015.

[37] A. Esuli, A. Molinari, F. Sebastiani, A critical reassessment of the Saerens-Latinne-

Decaestecker algorithm for posterior probability adjustment, ACM Transactions on

Information Systems 39 (2021) Article 19. doi:10.1145/3433164.

[38] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoy-

anov, RoBERTa: A robustly optimized BERT pretraining approach, 2019. ArXiv:1907.11692.

[39] M. Senz, M. Bunse, DortmundAI at LeQua 2022: Regularized SLD, in: Working Notes of

the 2022 Conference and Labs of the Evaluation Forum (CLEF 2022), Bologna, IT, 2022.

[40] T. Popordanoska, M. B. Blaschko, KULeuven at LeQua 2022: Model calibration in quan-

tification learning, in: Working Notes of the 2022 Conference and Labs of the Evaluation

Forum (CLEF 2022), Bologna, IT, 2022.

[41] A. Molinari, A. Esuli, F. Sebastiani, Active learning and the Saerens-Latinne-Decaestecker

algorithm: An evaluation, in: Proceedings of the 2nd Joint Conference of the Information

Retrieval Communities in Europe (CIRCLE 2022), Samatan, FR, 2022.

[42] J. C. Platt, Probabilistic outputs for support vector machines and comparison to regularized

likelihood methods, in: A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), Advances

in Large Margin Classifiers, The MIT Press, Cambridge, MA, 2000, pp. 61–74.

[43] K. Kloos, Q. A. Meertens, J. D. Karch, UniLeiden at LeQua 2022: The first step in un-

derstanding the behaviour of the median sweep quantifier using continuous sweep, in:

Working Notes of the 2022 Conference and Labs of the Evaluation Forum (CLEF 2022),

Bologna, IT, 2022.

[44] G. Forman, Quantifying trends accurately despite classifier error and class imbalance, in:

Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD 2006), Philadelphia, US, 2006, pp. 157–166. doi:10.1145/1150402.
1150423.

[45] P. González, UniOviedo(Team1) at LeQua 2022: Sample-based quantification using deep

learning, in: Working Notes of the 2022 Conference and Labs of the Evaluation Forum

(CLEF 2022), Bologna, IT, 2022.

[46] J. J. del Coz, UniOviedo(Team2) at LeQua 2022: Comparison of traditional quantifiers and

a new method based on energy distance, in: Working Notes of the 2022 Conference and

Labs of the Evaluation Forum (CLEF 2022), Bologna, IT, 2022.

[47] G. M. Di Nunzio, UniPadova at LeQua 2022: A preliminary study of a Tidyverse approach

to quantification, in: Working Notes of the 2022 Conference and Labs of the Evaluation

Forum (CLEF 2022), Bologna, IT, 2022.

[48] A. Moreo, F. Sebastiani, Re-assessing the “classify and count” quantification method,

in: Proceedings of the 43rd European Conference on Information Retrieval (ECIR 2021),

volume II, Lucca, IT, 2021, pp. 75–91.

http://dx.doi.org/10.1145/3459637.3482015
http://dx.doi.org/10.1145/3433164
http://dx.doi.org/10.1145/1150402.1150423
http://dx.doi.org/10.1145/1150402.1150423

	1 Learning to Quantify
	2 The rationale for LeQua 2022
	3 Setting up LeQua 2022
	3.1 Tasks
	3.2 The evaluation protocol
	3.3 The evaluation measures
	3.4 Data
	3.5 Baselines

	4 The participating systems
	5 Results
	5.1 T1A and T1B: The vector subtasks
	5.2 T2A and T2B: The raw documents subtasks
	5.3 T1A and T2A: The binary subtasks
	5.4 T1B and T2B: The multiclass subtasks

	6 Final remarks

