
Extreme Automatic Plant Identification Under
Constrained Resources
Jose Carranza-Rojas1,2, Ruben Gonzalez-Villanueva1, Kelvin Jimenez-Morales1,
Kevin Quesada-Montero1, Esteban A. Esquivel-Barboza1 and Nicole Carvajal-Barboza1

1Costa Rica Institute of Technology, Cartago, Costa Rica
2Microsoft, San Jose, Costa Rica

Abstract
The estimated amount of plant species in our planet Earth is calculated to be around 400, 000. In
order to create an automatic plant identification system that aims to identify any plant species on
Earth, machine learning techniques must scale to a high volume of images and species. This leads to
Extreme Classification, an area of machine learning that aims to develop models that can classify among
hundreds of thousands, or even millions of classes. This work depicts BioMachina’s team participation
in the PlantCLEF 2022 challenge. Our approach was based on deep learning techniques for constrained
environments, where resources are scarce for the creation of large models to deal with the considerable
amount of species of the challenge. Additionally to using several training techniques to alleviate resource
consumption, we developed a 2-level hierarchical softmax. By simulating a small and inferred plant
taxonomy, we allowed the model to learn a 2 level hierarchy of classes on its own, reducing model sizes
significantly. Our implementation of hierarchical softmax resulted in position 4 of the overall PlantCLEF
2022 ranking, while keeping model sizes reasonably small and computationally efficient, with a 5.67x
reduction of parameters compared to vanilla softmax.

Keywords
Extreme Classification, Hierarchical Softmax, Automatic Plant Identification, Taxonomy

1. Introduction

Automatic plant identification based on images has evolved from a small amount of species
[1], to gradually thousands of species [2]. This year’s PlantCLEF competition has increased
the number of species to 80, 000 [3], which is, to our knowledge, the biggest automatic plant
identification dataset known to date. Such dataset enters the realm of Extreme Multi-label
Classification (XMLC), that aims to classify instances among hundreds of thousands, to millions
of categories [4]. As we approach the total number of plant species on Earth, calculated to be
around 400, 000, the trend is to use bigger and more complex models to fit such large datasets
[5]. Such progress is somehow similar to the Natural Language Processing (NLP) domain, where

CLEF 2022: Conference and Labs of the Evaluation Forum, September 5–8, 2022, Bologna, Italy
$ jcarranza@itcr.ac.cr (J. Carranza-Rojas); rgonzalezv@estudiantec.cr (R. Gonzalez-Villanueva);
kjimenez@estudiantec.cr (K. Jimenez-Morales); kevin707qm@estudiantec.cr (K. Quesada-Montero);
eesquivel@estudiantec.cr (E. A. Esquivel-Barboza); nicole.carvajal.b@estudiantec.cr (N. Carvajal-Barboza)
� 0000-0002-9177-9173 (J. Carranza-Rojas); 0000-0001-8044-3474 (R. Gonzalez-Villanueva); 0000-0002-0263-0677
(K. Jimenez-Morales); 0000-0003-1110-2769 (K. Quesada-Montero); 0000-0002-2100-9712 (E. A. Esquivel-Barboza);
0000-0002-2957-5698 (N. Carvajal-Barboza)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jcarranza@itcr.ac.cr
mailto:rgonzalezv@estudiantec.cr
mailto:kjimenez@estudiantec.cr
mailto:kevin707qm@estudiantec.cr
mailto:eesquivel@estudiantec.cr
mailto:nicole.carvajal.b@estudiantec.cr
https://orcid.org/0000-0002-9177-9173
https://orcid.org/0000-0001-8044-3474
https://orcid.org/0000-0002-0263-0677
https://orcid.org/0000-0003-1110-2769
https://orcid.org/0000-0002-2100-9712
https://orcid.org/0000-0002-2957-5698
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

bigger and bigger transformer-based models have been the norm for a while now, such as BERT
[6]. However, training such large models has environmental and financial costs associated with
them [7]. In the plant identification domain, we believe there is a need to think beyond brute
force and bigger models. There is also a need to decrease model sizes, complexity, and memory
footprint, to save on computing and environmental costs. Additionally, making efficient models
will have a positive impact on the deployment of automatic plant identification systems, such
as Pl@ntNet [8]. Some techniques to reduce model sizes, such as knowledge distillation [9]
and quantization [10], have been explored in related machine learning domains. However, very
little work has focused on reducing plant identification model sizes and memory footprints.

The plant domain offers a unique setting where a class hierarchy exists, known as the plant
taxonomy. It has not been thoroughly studied yet in machine learning, although some work
has been done in such domain [11, 12]. The intuition is that, guided by the taxonomy, one may
be able to improve model performance, and maybe decrease model sizes. As an example, in the
NLP domain, Language Model (LM) training exhibits similar problems, as the amount of human
language tokens is large. Some work has been done towards training with reduced logits layers,
by implementing a hierarchical softmax, reducing time complexity from linear to 𝒪(𝑙𝑜𝑔(𝑛))
for token prediction.

The present work depicts the participation of the BioMachina team in the PlantCLEF 2022
challenge. Our focus was to try to get the best possible results with limited resources, as we
did not count on a large GPU cluster to deal with this year’s amount of species. Therefore, our
primary focus was on keeping models small to fit smaller computing resources. We applied a
particular implementation of a 2-level hierarchical softmax, reducing by 5.67x the number of
model parameters.

Our contributions are the following:

• The exploration of a different way to model the species probability distribution, such that
fewer model parameters are needed, via a 2-level hierarchical softmax.

• The experimental comparison of using normal softmax versus using hierarchical softmax,
in an extreme plant classification challenge, in terms of Moving Average Mean Reciprocal
Rank (MA-MRR), parameter size, and memory footprint.

• Help democratize plant identification model development and raise awareness of the
potential consequences of using brute force to deal with bigger plant datasets, and provide
viable options to keep model sizes at bay under constrained computing environments.

The rest of the document is as follows: Section 2 contains the related work. Section 3 depicts
the datasets, architectures used, and how we decreased models sizes. Section 4 contains a
description of the experiments with their respective results, and discussion. Section 5 contains
the conclusions we draw from our results, and lists potential future work in this line of research.

2. Related Work

PlantCLEF 2013 included for the first time other organs beyond leaves, such as fruits and flowers
[1]. By 2017, the PlantCLEF challenge’s dataset had 10, 000 species, leading to this year’s

challenge with 80, 000 species [3]. Year by year, the challenge draws near to the total number
of plants species on Earth.

Previous work on hierarchical loss functions has been studied in NLP, given the large number
of tokens that particular human languages have [13]. In particular, hierarchical softmax has
been widely used for training language models [14]. It is defined over a binary tree, where each
node has only 2 children, and all language tokens are in the leaves of the tree. Clearly, this may
not be well aligned with our taxonomy needs, as classes at a given level of the plant taxonomy,
such as family or genera, may not have only 2 children. In order to approximate part of the
plant taxonomy, a variation of the hierarchical softmax would be needed.

Several research has been done on how to use the plant taxonomy to inject additional
knowledge into the learning process. In [11] the authors created 3 different architectures where
a classifier is needed for family, genus and species. Each architecture connects the 3 classifiers in
different fashions. Other work such as the Taxonomy Softmax [15] attempts to create a new loss
function using a new type of softmax where probabilities are derived based on the taxonomy,
however the results were not as good as expected. It also uses the taxonomy as ground truth,
assuming the taxonomy is perfectly defined. In [12] the authors use 3 different models, each for
family, genus and species, to improve the domain adaptation from herbarium to field images.
They, however, did not aim to reduce model sizes, as they include 3 classifiers for each taxa,
increasing the model size.

To our knowledge, no other work has been attempted to automatically learn a plant taxonomy
to reduce model sizes. In this work, we borrow ideas from training big language models on NLP
tasks, where hierarchical softmax is used to improve training times. We implement a 2-level
hierarchical softmax, allowing the model to learn a 2-level taxonomy on its own, while keeping
the number of parameters small compared to traditional softmax with cross entropy loss.

3. Methodology

Our methodology is based on the idea of keeping model sizes at bay, while trying to get the
best results possible. The main technique used to reduce model size was a 2-level hierarchical
softmax, but we also used Automatic Mixed Precision (AMP) to process bigger batches, as well
as Gradient Accumulation. The following subsections depict the architectures, equipment, and
software used, and this year’s dataset, as well as the 2-level hierarchical softmax implementation.

3.1. Dataset

PlantCLEF 2022 challenge provides a large dataset based on 80, 000 species. The trusted subset
contains a total of 2.9 million images. Such trusted subset has been confirmed by human experts.
A second subset is provided, called the web subset, which has 57, 314 species and 1, 065, 129
images. Such web images have not been fully confirmed by human experts [3]. This dataset, to
our knowledge, is the biggest dataset for plant identification to date. Consequently, it converts
this year’s task in an extreme classification task.

3.2. Architectures

Although Attention-based architectures, in particular, Visual Transformers [16] have been
getting lots of attention, we used smaller known Convolutional Neural Network (CNN) archi-
tectures for our runs. This due to constrained resources. The models of choice were ResNet
and EfficientNet. Both are relatively small compared to other models, and their performance is
known to be good in generalistic challenges such as ImageNet.

ResNet Residual learning blocks were introduced by He et al. [17] in order to train deeper
neural networks. The residual function tackles the degradation problems that arose with adding
more layers. These type of networks learn residual functions that reference the layer’s inputs
as shortcuts, as shown in Figure 1. Formally, the building block is defined as shown in the
Equation 1, where 𝑥 and 𝑦 are the input and output vectors of the layers, respectively, and the
function ℱ represents the residual mapping to be learned.

𝑦 = ℱ(𝑥, {𝑊𝑖}) + 𝑥 (1)

Figure 1: Residual learning building block [17].

We used two variants of the Residual Networks, namely ResNet50 and ResNet101, referring
to residual nets with a depth of 50 and 101 layers, respectively.

EfficientNet Scaling processes of a CNN are done to produce better performance, such
as scaling by their depth (i.e. ResNet [17]). Tan and Le [18] proposed the compound scaling
method, which scales up a CNN by using a constant ratio to scale each dimension of network
width/depth/resolution.

A CNN can be defined as shown in the Equation 2, where ℱ𝐿𝑖
𝑖 denotes layer 𝐹𝑖 is repeated

𝐿𝑖 times in stage 𝑖, ⟨𝐻𝑖,𝑊𝑖, 𝐶𝑖⟩ denotes the shape of input tensor 𝑋 of layer 𝑖 [18].

𝒩 =
⨀︁

𝑖=1...𝑠

ℱ𝐿𝑖
𝑖 (𝑋⟨𝐻𝑖,𝑊𝑖,𝐶𝑖⟩) (2)

Different from regular CNN designs, this scaling mechanism expands the network length
(𝐿𝑖), width (𝐶𝑖), and resolution (𝐻𝑖,𝑊𝑖) without changing the ℱ𝑖 in the baseline. The approach
can be formulated as an optimization problem, where the model accuracy is being maximized
for any given resource constraints, which can be seen in the Equation 3, where the 𝑤, 𝑑, 𝑟
are coefficients for scaling the network width, depth and resolution and ℱ̂ 𝑖, ℒ̂𝑖, ℋ̂𝑖, �̂� 𝑖, �̂�𝑖 are

predefined parameters. The result of this meta-learning optimization is the EfficienNets, which
outperform most of the CNN models using a considerably less number of parameters [18].

max
𝑑,𝑤,𝑟

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝒩 (𝑑,𝑤, 𝑟))

𝑠.𝑡 𝒩 (𝑑,𝑤, 𝑟) =
⨀︁

𝑖=1...𝑠

ℱ̂𝑑·�̂�𝑖

𝑖 (𝑋⟨𝑟·�̂�𝑖,𝑟·�̂� 𝑖,𝑤·�̂�𝑖⟩)
(3)

3.3. Hardware and Software

We worked in a fairly constrained environment proportionally to the size and complexity of the
task. We used the cloud computing platform Vast.ai, with instances ranging from 1 to 2 NVIDIA
RTX 3090 GPUs, with 16 to 32 GBs of RAM on average. This represents a good workstation,
accessible to most people, but not a research cluster. Software-wise, we developed all models
using Pytorch and Pytorch Lightning, and the code is publicly available here.

3.4. Reducing output sizes

As the number of species for the task is 80, 000, normal softmax would require a logits output
of the same size, leading to a linear increase of model parameters in the logits layers, regardless
of the model used. Traditionally, image classifiers rely on cross-entropy loss for training, shown
in Equation 5, where 𝑦𝑐 is the ground truth one-hot vector. Equation 4 depicts the softmax
calculation, where 𝑀 is the total of classes at hand. The input vector 𝑧 represents the logits
from a backbone model. Clearly, softmax has a linear time complexity 𝒪(𝑀).

𝜎(𝑧𝑖) =
𝑒𝑧𝑖∑︀𝑀
𝑗=1 𝑒

𝑧𝑗
𝑓𝑜𝑟 𝑖 = 1, 2, . . . ,𝑀 (4)

ℒ = −𝑦𝑐 log(𝜎(𝑧𝑐)) (5)

The problem with extreme classification scenarios is that the value of 𝑀 is large. In this
case, 𝑀 ∈ R80,000 species, which causes the model to grow importantly, as the last layer of the
neural network will be of size |𝐿(𝑛−1)| × 80, 000, where |𝐿(𝑛−1)| is the size of the layer before
logits. For perspective, EfficientNet B4 increases its size with 2, 048 × 80, 000, summing up
around 160 million parameters only for logits computation.

3.4.1. Hierarchical Softmax

Aiming to reduce the amount of parameters related to the output of the model, we defined a
2-level hierarchical softmax. The implementation is in Pytorch and based on the implementation
found here. Our 2-level hierarchical softmax differs to the original hierarchical softmax definition
from [13] since it does not rely on a binary tree. The main reason is because the plant taxonomy
cannot be implemented as a binary tree, as nodes may have more than 2 children. Instead, our
implementation relies on 2 smaller layers, each one with its own softmax distribution, where
the top layer leads to the bottom layer, and both probabilities are maximized. Each node of the

https://vast.ai
https://github.com/maeotaku/biomachina_hierarchical_softmax
https://github.com/leimao/Two-Layer-Hierarchical-Softmax-PyTorch

top layer has more than 2 children, allowing to place sibling species under the same learned
top layer node, effectively simulating a potential 2 layer taxonomy. The comparison of an
EfficientNet B4 with and without 2-level hierarchical softmax is shown in Figure 2. Notice how
the hierarchical softmax can be easily plugged into other models by reducing the increasingly
bigger logits layer of the backbone.

Figure 2: Architectural changes to add hierarchical softmax into EfficientNet B4. The left diagram
shows a traditional fine-tunning scenario, with a pre-logits layer’s output of 2, 048 and a vanilla softmax
of size 𝑀 = 80, 000, forcing a same sized logits layer. To the right, a hierarchical softmax with logits
𝐿(𝑛) layer is reduced to an arbitrary, smaller number than 𝑀 . Then it connects to the 2 levels of the
hierarchical softmax. The logits layer is reduced without a bottleneck effect.

The top layer 𝜎(𝑡), depicted by Equation 6, simulates a higher taxonomic level of the taxonomy,
although it does not have exactly the real amount of families or genera in the dataset. The
input 𝑧 is the actual output of the logits 𝐿(𝑛) of a backbone model, which would normally be
injected in a plain softmax. We reduce such logits size to 𝑧 ∈ R128, which is controlled as a
hyperparameter. Such size does not have a bottleneck effect since we distribute the 𝑀 species
through 2 levels. The weights 𝑊 (𝑡) ∈ R128×1,000 learn how to route 𝑧 to the right node of the
top layer, with 𝑏(𝑡) been its corresponding bias.

𝜎(𝑡) = 𝜎(𝑧𝑊 (𝑡) + 𝑏(𝑡)) (6)

The bottom layer 𝜎(𝑏), shown in Equation 7, is another plain softmax of size 80. The input
𝑧 is indexed by the biggest probability of 𝜎(𝑡). The weights 𝑊 (𝑏) ∈ R1,000×128×80 learn the

mapping from one of the nodes in the top layer, to its children in the bottom layer. Again, the
middle 128 size of the weights is another hyperparameter.

𝜎(𝑏) = 𝜎(𝑧𝑚𝑎𝑥(𝜎(𝑡))𝑊
(𝑏) + 𝑏(𝑏)) (7)

We chose an arbitrary number of nodes for the top layer of 𝜎(𝑡) ∈ R1,000, where each top
node is mapped to one of the 𝜎(𝑏) ∈ R80 children in the bottom layer, accounting for all 80,000
species. Another potential distribution of nodes, for reference, would be 400 in the top layer,
and 200 in the bottom layer.

The loss ℒ(ℎ) for the 2-level hierarchical softmax is shown in Equation 8. Both top and
bottom layers route the right species 𝑦𝑐 by using as ground truth 𝑦𝑡 = 𝑦𝑐/80 and 𝑦𝑏 = 𝑦𝑐 % 80
respectively. This effectively forces the hierarchical softmax to learn mappings of the right
class index on both top and bottom layers. Additionally, log is used for numerical stability.
Our 2-level hierarchical softmax reduces dramatically the number of parameters needed to
predict the correct class, as each species does not have dedicated parameters, but they are shared
between species.

ℒ(ℎ) = −[𝑦𝑡 log(𝜎
(𝑡)) + 𝑦𝑏 log(𝜎

(𝑏))] (8)

3.5. Additional techniques for constrained resources

Additional to the hierarchical softmax explained in Section 3.4.1, we also used several techniques
to limit the amount of memory, time, and GPU usage needed to train such complex models,
while helping with generalization for unseen samples.

Automatic Mixed Precision (AMP) AMP uses both single- and half-precision represen-
tations, instead of only single-precision format [19]. This strategy nearly halves memory
requirements by accessing half the bytes, and speeds up math-intensive operations like linear
and convolution layers. It enables training larger mini-batches while keeping the accuracy
achieved with single precision.

Batch Accumulation It is known that a small batch size usually results in performance
degradation, especially in tasks where the number of classes is large [20]. An effective way
to increase the batch size without compromising memory is the use of accumulated gradients.
This method allows to run 𝐾 batches of size 𝑁 before doing the backward process, resulting in
a large effective batch size of size 𝐾𝑥𝑁 . We used Pytorch Lightning [21] with a accumulate
grad batches of 32.

Gradient Clipping Gradient clipping is used to solve the exploding gradients problem, by
clipping the value of gradients to a certain threshold. We used Pytorch Lightning [21] with a
gradient clip value of 9.

Table 1
Results of BioMachina’s runs on the PlantCLEF 2022 challenge with their respective model sizes. Best
results were achieved by a small ResNet50 model with traditional softmax, pretrained with the web
subset. Notice, however, how the HEfficientNetB4 got similar results with a small fraction of other
model’s parameters.

Size (Millions)

Model Name Pretraining
Softmax
Type

Backbone
Final
Layer

Total Memory
MA-
MRR

EfficientNetB4 ImageNet Normal 19 143.3 160 321.9MB 0.412
HEfficientNetB4 ImageNet Hierarchical 17.8 10.4 28.2 56.4MB 0.419
ResNet50 ImageNet Normal 25.6 163.84 180 749.7MB 0.438
ResNet50 Web Normal 25.6 163.8 180 749.7MB 0.460
ResNet101 Web Normal 98 163.8 206 825.6MB 0.450

4. Experiments and Results

Our experiments aimed to measure model performance under limited resources for a large
number of species. We measured model and final layer parameter sizes, memory footprint, and
MA-MRR using the official submission tool from the challenge.

4.1. Efficacy of adding more layers

We experimented with different depths of ResNet to see how the model would scale up given
the large amount of classes. In general, by just adding more layers from ResNet50 to ResNet101,
the task at hand did not improve dramatically, as shown in Table 1. This suggests that brute
force may not be the best approach as the amount of species grows. We pre-trained both
ResNet versions with the Web subset, improving the MA-MRR compared to runs without such
pre-training, getting the best results we got for the challenge with 0.46 for ResNet50 and 0.45 for
ResNet101. ResNet101, regardless of been a bigger model, did not provide better results. From
this experiment, we also noticed the positive impact of using the Web subset for pre-training,
with an increase in MA-MRR of 0.22 for ResNet50.

4.2. Softmax versus hierarchical softmax

We compared the performance of the EfficientNet with and without hierarchical softmax. We
used EfficientNet as it is smaller than ResNet, but also because it shows better results in the
ImageNet competition proportionally to its size. We used the B4 version of EfficientNet, as it was
reasonable for our computing resources. Table 1 shows the comparison of EfficientNet B4 with
and without hierarchical softmax with respect to number of parameters, memory footprint and
MA-MRR. Notice how the use of hierarchical softmax dramatically reduces the number of model
parameters up to 5.67x in the case of EfficientNet B4, from 160M to 28.2M parameters, while
not sacrificing MA-MRR. This suggests that hierarchical softmax could be used with different
sized models to reduce the complexity of the last layers while keeping similar performance.

5. Conclusions and Future Work

The usage of techniques such as hierarchical softmax reduces dramatically the size of the final
model in terms of parameters and memory footprint, with a 5.67x reduction in the case of the
PlantCLEF 2022 challenge, without affecting performance. As the number of species in the
challenge grows each year, similar techniques may be worth exploring to keep model sizes at
bay. In consequence, training such smaller models requires less time and computation power,
making training more accessible to researchers and engineers. It may also positively impact
the deployment of more extensive plant identification systems, even aiming to place models on
mobile devices while still identifying thousands of species.

There are, however, additional lines of research worth exploring beyond this work. We
developed a 2-level hierarchical softmax, but we would like to explore more depth in the
hierarchy. We explored learning a small 2-level taxonomy, however it would be interesting to
study how to leverage the existing plant taxonomy for additional supervision signal.

Additionally, applying other techniques such as knowledge distillation and quantization
may further compress the memory footprint of such models. From the PlantCLEF challenge
perspective, most likely transformers and other bigger backbone models may have provided
better MA-MRR results. The techniques discussed here could also be applied to them, reducing
their sizes while keeping high performance.

References

[1] H. Goëau, A. Joly, P. Bonnet, V. Bakic, D. Barthélémy, N. Boujemaa, J.-F. Molino, The image-
clef plant identification task 2013, in: Proceedings of the 2nd ACM International Workshop
on Multimedia Analysis for Ecological Data, MAED ’13, Association for Computing Ma-
chinery, New York, NY, USA, 2013, p. 23–28. URL: https://doi.org/10.1145/2509896.2509902.
doi:10.1145/2509896.2509902.

[2] H. Goëau, P. Bonnet, A. Joly, Plant identification based on noisy web data: the amazing
performance of deep learning (LifeCLEF 2017), in: CLEF: Conference and Labs of the
Evaluation Forum, volume CEUR Workshop Proceedings, Dublin, Ireland, 2017. URL:
https://hal.archives-ouvertes.fr/hal-01629183.

[3] H. Goëau, P. Bonnet, A. Joly, Overview of PlantCLEF 2022: Image-based plant identification
at global scale, in: Working Notes of CLEF 2022 - Conference and Labs of the Evaluation
Forum, 2022.

[4] R. Babbar, B. Schölkopf, Dismec: Distributed sparse machines for extreme multi-label
classification, in: Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining, WSDM ’17, Association for Computing Machinery, New York, NY, USA,
2017, p. 721–729. URL: https://doi.org/10.1145/3018661.3018741. doi:10.1145/3018661.
3018741.

[5] A. Joly, H. Goëau, S. Kahl, L. Picek, T. Lorieul, E. Cole, B. Deneu, M. Servajean, A. Durso,
H. Glotin, R. Planqué, W.-P. Vellinga, A. Navine, H. Klinck, T. Denton, I. Eggel, P. Bonnet,
M. Šulc, M. Hruz, Overview of lifeclef 2022: an evaluation of machine-learning based

https://doi.org/10.1145/2509896.2509902
http://dx.doi.org/10.1145/2509896.2509902
https://hal.archives-ouvertes.fr/hal-01629183
https://doi.org/10.1145/3018661.3018741
http://dx.doi.org/10.1145/3018661.3018741
http://dx.doi.org/10.1145/3018661.3018741

species identification and species distribution prediction, in: International Conference of
the Cross-Language Evaluation Forum for European Languages, Springer, 2022.

[6] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, ArXiv abs/1810.04805 (2019).

[7] E. M. Bender, T. Gebru, A. McMillan-Major, S. Shmitchell, On the dangers of stochastic
parrots: Can language models be too big? , in: Proceedings of the 2021 ACM Conference
on Fairness, Accountability, and Transparency, FAccT ’21, Association for Computing
Machinery, New York, NY, USA, 2021, p. 610–623. URL: https://doi.org/10.1145/3442188.
3445922. doi:10.1145/3442188.3445922.

[8] A. Joly, A. Affouard, M. Chouet, B. Deneu, J. Estopinan, H. Goëau, H. Gresse, J.-C. Lombardo,
T. Lorieul, F. Munoz, M. Servajean, P. Bonnet, Pl@ntNet, ten years of automatic plant
identification and monitoring, in: IUCN - Congrès mondial de la nature, IUCN, Marseille,
France, 2021. URL: https://hal.inrae.fr/hal-03343235.

[9] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, 2015. URL:
http://arxiv.org/abs/1503.02531, cite arxiv:1503.02531Comment: NIPS 2014 Deep Learning
Workshop.

[10] A. Polino, R. Pascanu, D. Alistarh, Model compression via distillation and quantization, in:
International Conference on Learning Representations, 2018. URL: https://openreview.net/
forum?id=S1XolQbRW.

[11] J. Carranza-Rojas, A. Joly, H. Goëau, E. Mata-Montero, P. Bonnet, Automated Identification
of Herbarium Specimens at Different Taxonomic Levels, in: A. Joly, S. Vrochidis, K. Karatzas,
A. Karppinen, P. Bonnet (Eds.), Multimedia Tools and Applications for Environmental &
Biodiversity Informatics, Multimedia Systems and Applications, Springer International
Publishing, 2018, pp. 151–167. URL: https://doi.org/10.1007/978-3-319-76445-0_9. doi:10.
1007/978-3-319-76445-0_9.

[12] J. Villacis, H. Goëau, P. Bonnet, A. Joly, E. Mata-Montero, Domain adaptation in the context
of herbarium collections a submission to plantclef 2020, 2020. URL: https://www.imageclef.
org/PlantCLEF2020.

[13] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of
words and phrases and their compositionality, in: Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’13, Curran
Associates Inc., Red Hook, NY, USA, 2013, p. 3111–3119.

[14] A. Mnih, G. E. Hinton, A scalable hierarchical distributed language model, in: D. Koller,
D. Schuurmans, Y. Bengio, L. Bottou (Eds.), Advances in Neural Information Processing
Systems, volume 21, Curran Associates, Inc., 2008. URL: https://proceedings.neurips.cc/
paper/2008/file/1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf.

[15] J. Carranza-Rojas, Towards Multi-Level Classification in Deep Plant Identification, Ph.D.
thesis, Instituto Tecnológico de Costa Rica, 2018. URL: https://hdl.handle.net/2238/10341.

[16] A. Kolesnikov, A. Dosovitskiy, D. Weissenborn, G. Heigold, J. Uszkoreit, L. Beyer, M. Min-
derer, M. Dehghani, N. Houlsby, S. Gelly, T. Unterthiner, X. Zhai, An image is worth 16x16
words: Transformers for image recognition at scale, 2021.

[17] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 2015. URL:
https://arxiv.org/abs/1512.03385. doi:10.48550/ARXIV.1512.03385.

[18] M. Tan, Q. V. Le, Efficientnet: Rethinking model scaling for convolutional neural networks

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://dx.doi.org/10.1145/3442188.3445922
https://hal.inrae.fr/hal-03343235
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=S1XolQbRW
https://openreview.net/forum?id=S1XolQbRW
https://doi.org/10.1007/978-3-319-76445-0_9
http://dx.doi.org/10.1007/978-3-319-76445-0_9
http://dx.doi.org/10.1007/978-3-319-76445-0_9
https://www.imageclef.org/PlantCLEF2020
https://www.imageclef.org/PlantCLEF2020
https://proceedings.neurips.cc/paper/2008/file/1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf
https://hdl.handle.net/2238/10341
https://arxiv.org/abs/1512.03385
http://dx.doi.org/10.48550/ARXIV.1512.03385

(2019). URL: https://arxiv.org/abs/1905.11946. doi:10.48550/ARXIV.1905.11946.
[19] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston,

O. Kuchaiev, G. Venkatesh, H. Wu, Mixed precision training, 2017. URL: https://arxiv.org/
abs/1710.03740. doi:10.48550/ARXIV.1710.03740.

[20] D. Synn, X. Piao, J. Park, J.-K. Kim, Micro batch streaming: Allowing the training of dnn
models using a large batch size on small memory systems, 2021. URL: https://arxiv.org/
abs/2110.12484. doi:10.48550/ARXIV.2110.12484.

[21] W. Falcon, The PyTorch Lightning team, PyTorch Lightning, 2019. URL: https://github.
com/PyTorchLightning/pytorch-lightning. doi:10.5281/zenodo.3828935.

6. Online Resources

The code of this research is available via

• GitHub

https://arxiv.org/abs/1905.11946
http://dx.doi.org/10.48550/ARXIV.1905.11946
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
http://dx.doi.org/10.48550/ARXIV.1710.03740
https://arxiv.org/abs/2110.12484
https://arxiv.org/abs/2110.12484
http://dx.doi.org/10.48550/ARXIV.2110.12484
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
http://dx.doi.org/10.5281/zenodo.3828935
https://github.com/maeotaku/biomachina_hierarchical_softmax

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dataset
	3.2 Architectures
	3.3 Hardware and Software
	3.4 Reducing output sizes
	3.4.1 Hierarchical Softmax

	3.5 Additional techniques for constrained resources

	4 Experiments and Results
	4.1 Efficacy of adding more layers
	4.2 Softmax versus hierarchical softmax

	5 Conclusions and Future Work
	6 Online Resources

