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Abstract
The article explains the model submission by the team CIC for "Profiling Irony and Stereotype Spreaders
on Twitter (IROSTEREO)" at PAN 2022. Irony profiling can help in identifying stereotype spreaders and
can enhance the understanding of author behaviours. We proposed a methodology focusing on feature
engineering to classify irony for long texts based on multiple linguistic and emotion-based features. We
also extensively discussed the shortcomings of the data and the proposed task to provide the future
research direction. The paper reveals the impact of robust feature engineering with a machine learning
approach on the long social media texts in the author profiles. Our method achieved an accuracy of
87.22% on the test set.
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1. Introduction

Irony as defined by Wilson and Sperber [1], is an act of communication that expresses an
opposite meaning of the literal explanation. It is also defined [2] as a phrase referring to the
worldly affairs, that should not be. Irony presents challenges in understanding at various
pragmalinguistic levels. Especially, in texts, where our challenge is to automatically detect
irony, a phrase that can often befuddle human beings without context, let alone machines. In
psychological discourse, human beings can identify irony [3] in the following situations:

• when someone says something ironic according to the situation without the intention of
being ironic.

• when irony is easily identifiable without excessive thinking on the ironic statement.
• when no intonational cues are required to understand irony.
• when statements echo societal expectations or norms
• when understanding irony does not violate norms of cooperative communication.

CLEF 2022 – Conference and Labs of the Evaluation Forum, September 5–8, 2021, Bologna, Italy
$ sbutt2021@cic.ipn.mx (S. Butt); fbalouchzahi2021@cic.ipn.mx (F. Balouchzahi); sidorov@cic.ipn.mx (G. Sidorov);
gelbukh@cic.ipn.mx (A. Gelbukh)
� https://nlp.cic.ipn.mx/sabur/ (S. Butt); https://sites.google.com/view/fazlfrs/home (F. Balouchzahi);
https://www.cic.ipn.mx/~sidorov/ (G. Sidorov); http://www.gelbukh.com/ (A. Gelbukh)
� 0000-0003-1937-3475 (F. Balouchzahi)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:sbutt2021@cic.ipn.mx
mailto:fbalouchzahi2021@cic.ipn.mx
mailto:sidorov@cic.ipn.mx
mailto:gelbukh@cic.ipn.mx
https://nlp.cic.ipn.mx/sabur/
https://sites.google.com/view/fazlfrs/home
https://www.cic.ipn.mx/~sidorov/
http://www.gelbukh.com/
https://orcid.org/0000-0003-1937-3475
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Meanwhile, stereotypes [4] are generalized beliefs about controversial topics in the society
i.e sexism, misogyny, rumours. Ironic statements posits stereotypes communicating an inherent
bias [5]. Hence, while identifying irony in profiles, it is also very useful to flag profiles that
contain both irony and stereotypes towards a certain targets i.e. women and LGBTQ. Research
in irony detection in textual data has advanced research in Natural Language Processing (NLP)
tasks such as author profiling [6, 7], fake news detection [8, 9] and emotion detection [10, 11],
where, the text remains ambiguous for models to detect the correct answer.

In this paper, we describe our model submitted to PAN 2022 shared task: "Profiling Irony and
Stereotype Spreaders on Twitter (IROSTEREO) 2022" [12, 13, 14]. The task required us to study
user profiles to identify language cues for irony and stereotypes. In natural language processing,
this task is referred to as author profiling. While the task description required participants to
flag stereotypes using irony, no labelled data was provided to enable such methods (discussed in
Section 5). The main goal of this paper (in the context of a classification task) is to experiment
and prove that even a single ML classifier can obtain a reasonable and high performance if
it gets support from a powerful feature engineering. Therefore, our proposed methodology,
consisting a pre-processing step along with the described feature engineering (see Section 4)
on a Logistic Regression (LR) classifier achieved a accuracy of 87.22% on the test set. We also
explained in detail the shortcomings of the task and the dataset.

2. Related Work

In figurative language processing [15], irony is an umbrella term that might contain sarcasm.
Sarcasm [16] is differentiated by an element of scorn that irony is void of. Irony and sarcasm
detection have been popular tasks in Natural language processing with multiple approaches
published in English [17], Spanish [18], Chinese [19], Portuguese [20] and Arabic [21]. However,
in the literature review, our focus would be on scientific approaches for irony detection in
English.

Though the research in irony detection for text spans to decades of scientific contribution, the
recent methods are dominated by deep learning [22, 23, 24] and transformer methods [25, 26, 17].
The SemEval 2018 task 3 [17] presented an irony detection dataset using tweets challenging
the researcher to devise methodology for binary classification and multi-class classification
of irony (verbal irony, situational irony, verbal irony with polarity contrast). The leading
approach [22] in the competition used Densely connected Bidirectional LSTM (D-BiLSTM)
with concatenated features of Part of Speech Tags and word embeddings. The model used
a late fusion of the generated vectors of the tweets with the sentiment features. Among the
prominent works using transfomers, [25] used transformer encoders for contextualizing pre-
trained Twitter word embeddings with multi-head self-attention based system and achieved
promising results. Another study [26] used the outputs encoding layers (last four) of the original
BERTweet model to generate the sentence embeddings and were fed to 1D Convolutions, self-
attention layers and residual connections. The study also reported two additional models. The
authors used DeepMoji Features-based sentence embeddings fed into Bi-directional GRU and
later derived skip-gram connection between output and input embeddings generated by the
Bi-directional GRU. The derived embeddings were then passed into the self attention layer



similar to the BERTweet model. The last model used an ensemble of the first two models and
BERTweet model using hard/soft classification. The ensemble model achieved the best results
on unconstrained settings defined at SemEval-2018 Task 3A. Another model presented in [23]
used two Attentional LSTM (Att-LSTM) models to create an ensemble with character level
embeddings in one architecture and word embeddings in the other. The authors experimented
with majority voting and unweighted average for the ensemble to attain the best results.

The unsupervised approach [24] towards irony detection is also an interesting direction
to tackle the problem. The researchers used generative models (probabilistic topic model)
combined with word embeddings derived from neural language lexicon. The model was tailored
for domain-independent irony detection and achieved 85.81% accuracy on an unbalanced dataset.
Many of the studies [27, 28, 29] used emotions and text polarities to identify irony, one of the
study [30] used the polarity contrast between words, emojis and fragmented hashtags to identify
contrasts in the tweets. The paper used temporal relations and discovered that among most
ironic texts, negative polarity was followed by positive or neutral polarity. The polarity contrast,
surface-level features and the word embeddings were concatenated to feed the ensemble of
Support Vector Machine (SVM) and Logistic Regression (LR) to deliver the best results.

In the text-based studies many of the identifiers of the irony such as speech gestures [31]
and kinesthetics [32] cannot be recorded, hence, limiting us to linguistic cues and features.
Some of the relevant features used for irony include repetitions or punctuation marks [33],
affective features [34], common sense knowledge [35], contextual features [36] and polarity
contrast [27] etc. It has also been revealed that the best generalization in the irony detection
task is achieved using linguistic features [26].

The profiling task, in general, is different from the binary classification of texts, as it analyses
the greater size of the text from the profile which is computationally not efficient for transformers.
Keeping the literature in mind, we attempted to create a model using the linguistic cues and
emotion text features, focusing on robust feature engineering, to create a simple yet effective
solution for efficient irony profiling.

3. Dataset

The dataset used in this paper was collected from English tweets by the IROSTEREO 2022
shared task organizers. The dataset is modeled in such a way that each user can be profiled as
Irony spreader (I) and Not Irony spreader (NI). It contains 200 tweets per user (420 users) and
the labels are distributed equally. The organizers also provided the participant with 180 blinded
XML files (each contain 200 tweets) as test set for profiling Irony spreaders.

4. Methodology

The proposed methodology relies on feature engineering to solve the problem. A simple Logistic
Regression (LR) is empowered with a feature engineering module comprising feature reduction
and selection and a hyperparameter tuning step with Grid Search. This enabled the parameters
to be set specifically for the features obtained from the feature engineering module. We explain
the steps in detail in the following subsections.



4.1. Feature Engineering

The feature engineering phase started with preprocessing, where we converted the emojis
to text using Emot 1 and removed stopwords, links, non-alphabet and non-digit characters
from the text. The text was lowercased and passed for feature extraction. Inspired by [7],
the character and word n-grams were combined with syntactic n-grams. We also generated
emotions, sentiments and hate speech features using the pysentimiento 2 toolkit. The different
types of features used in this study are presented in Table 1.

The huge number of features does not guarantee better performance in ML, on the contrary,
it increases the feature dimensions and complexity of classification problem [37]. Hence, we
initiated dimensionality reduction and reduced the number of features to 100,000 most frequent
features. Later, inspired by [38], we used Shapely values to select the features that have higher
contributions to the classification task. Lundberg and Lee [39] presented a framework called
SHAP 3 that explains the contribution of features in a classification task by assigning a value
of importance. The Figure 2 is borrowed from [38] that explains the procedure of obtaining
relevant features from traditional and syntactic n-grams. Extreme Gradient Boosting (XGB)
classifier was used as the primary classifier because SHAP is integrated into the tree-boosting
frameworks. Therefore, the XGB classifier was evaluated on 0.25% of the train set to estimate
the most efficient features by computing their feature importance. Better performance of XGB
classifier resulted in an efficient feature selection and eventually better classification results.

Table 1
Feature types in the proposed methodology

Feature types Traditional n-grams Syntactic n-grams Sentiments Hate Speech Emotions

Features
Characters in range (2, 5)
Words in range (1, 3)

Bi-grams
Tri-grams

Positive
Negative
Neutral

Aggressive
Hateful
Targeted

Surprise
Sadness
Joy
Fear

Disgust
Anger
Other

The final selected features were combined with emotions, sentiments and hate speech features
and used for classification. The workflow of feature engineering and statistics of features in the
proposed methodology is presented in Figure 2.

4.2. Model Construction

Since the main objective of the current methodology was based on powerful feature engineering
and the simplicity of the model, we only experimented with an LR classifier with hyperparameter
tuning to enhance efficiency. The hyperparameter tuning process was done using the Grid
Search algorithm. Table 2 shows the default, candidate and tuned parameters for the LR classifier
in this paper.

1https://github.com/NeelShah18/emot
2https://github.com/pysentimiento/pysentimiento
3https://shap.readthedocs.io/en/latest/index.html



Figure 1: Feature selection process

Figure 2: Feature engineering process

5. Criticism and Limitations

While working on the shared task, we felt a few shortcomings with the dataset and the general
approach to the competition. The dataset provided several tweets per profile and required us to
concatenate all the tweets per profile to identify the irony spreader. None of the tweets was
marked individually as irony or non-irony, hence, amalgamating the tweets per profile was the



Table 2
Parameters for LR classifier

Type Parameters

Default

solver= lbfgs
C= 1.0
tol= 0.0001
n_jobs= None

Candidate

solver: [newton-cg, lbfgs, liblinear]
C: [100, 10, 1.0, 0.1, 0.01]
tol: [0.0001, 0.0003, 0.0005]
n_jobs: [2, 4, 6]

Tuned

solver= newton-cg
C= 100
tol= 0.0001
n_jobs= 2

only option to train the irony profiles. The problem with this approach is that there is no cut-off
to decide how many tweets should be ironic tweets to mark the profile as an irony spreader. The
profile could have eighty per cent of the tweets as neutral and twenty per cent of the collected
tweets as ironic and still have the irony-based linguistic cues in the long concatenated tweet
text. Concatenating the tweets per profile makes the author profiling task a text classification
problem, instead of just author profiling. We also noted that the task description 4 mentions
that "Special emphasis will be given to those authors that employ irony to spread stereotypes,
for instance, towards women or the LGTB community", however, the data does not enable any
stereotype identification in the profiles. Given the tweets were labelled as ironic / non-ironic,
the profiles could have been labelled as stereotypes spreaders given that they mostly tweeted
ironically about a certain topic i.e. women. This simply was not possible with the current
information and resources provided by the competition. The PAN shared task was structured
such that, neither the test set nor the validation set was available for the model construction.
This is highly problematic as the constructed models cannot be seen and understood for their
errors. Model explainability cannot be performed on the proposed methodology and that defeats
the purpose of the shared tasks.

6. Conclusion and Future Work

The article presented a simple but robust solution for classifying irony spreaders. Our approach
targeted extensive feature engineering that comprised of feature reduction and advanced feature
selection. We used the XGB classifier for feature importance on a subset of the training set
and later used SHAP to create shapely values for the selected linguistic features. The linguistic
features are proven to be important for generalization of the task. The selected features were
concatenated with features such as hate speech (aggressive, hateful, targeted), emotions (surprise,
joy, sadness, fear, disgust, anger, other) and sentiments (positive, neutral, negative) that give
another dimension to the model understanding. Our results achieved 87.22% accuracy on the

4https://pan.webis.de/clef22/pan22-web/author-profiling.html



task proving that robust feature engineering can produce potent results even without complex
model construction. In future, we would like to experiment with the model building using the
same feature engineering. This makes more sense once the test set is released to identify the
strengths and weakness of each model and to present a complete ablation study with the error
analyses.
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