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Abstract

In this paper we propose a deep learning model based on graph machine learning (i.e. Graph Attention
Convolution) and a pretrained transformer language model (i.e. ELECTRA). Our model was developed
to detect harmful tweets about COVID-19 and was used to tackle subtask 1C (harmful tweet detection)
at the CheckThat!Lab shared task organized as part of CLEF 2022. In this binary classification task, our
proposed model reaches a binary F1 score (positive class label, i.e. harmful tweet) of 0.28 on the test set.
We demonstrate that our approach outperforms the official baseline by 8% and describe our model as
well as the experimental setup and results in detail. We also refer to limitations of the approach and
future research directions.
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1. Introduction

Along the COVID-19 outbreak the spread of misleading information online related to news on
the pandemic could be observed, for example on social media. The three tasks proposed for
the CheckThat! Lab@CLEF2022 [1, 2] aim at addressing related issues, namely: (1) Identifying
relevant claims in tweets, (2) Detecting previously fact checked claims and (3) Fake news
detection. All tasks are framed as classification problems and build on collective effort to tackle
the COVID-19 related infodemic.

The aim of this paper is to propose a model to address the first task [3]. Furthermore, this task
includes four different subtasks. Subtask 1A is about determining check-worthiness of tweets
(i.e. given a tweet, predict whether it is worth fact-checking). Subtask 1B is about verifiable
factual claims detection: given a tweet, predict whether it contains a verifiable factual claim. In
Subtask 1C the focus is on harmful tweet detection: given a tweet, predict whether it is harmful
to the society and why. Finally, Subtask 1D is related to attention-worthy tweet detection: given
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a tweet, predict whether it should get the attention of policy makers and why. This task is
defined with eight class labels. For the subtasks 1A and 1C the official evaluation metric is the
binary F1 score with respect to the positive class, for subtask 1B the metric used is the accuracy
and for subtask 1D the metric used is the weighted F1 score.

We present our model proposed for Subtask 1C - English language. The model takes advantage
of an ELECTRA-based document embedding as well as a text graph that is processed using a
Graph Convolutional Network (GCN). Our goal is to introduce a novel method that can handle
different types of heterogeneous textual or social information. We show how a first version of
such a model performs on the proposed task, leaving room for improvements on future research
in the domain. To support reproducibility and future research directions we make our Code
publicly available'.

This paper is organized as follows: in Section 2 we present some related work about the
usage of deep learning methods for similar text classification tasks. In Section 3 we describe
our approach in detail, explaining our choices and the configuration of each layer of the model.
In Section 5 we report the results we obtain on the official test set. In Section 6 we discuss some
interesting future directions to investigate before closing our work with concluding remarks in
Section 7.

2. Related work

Motivated by the notable performances reached in various text classification tasks, where deep
Al models [4, 5] outperformed classic techniques used in natural language processing (e.g.
Bayes, Decision Tree, K-Nearest Neighbour, Support Vector Machine) as also reported in [6, 7],
we decided to use a deep learning-based approach for our submission.

Our proposed model is based on both, a transformer-based document embedding and a GCN
(i.e. Graph Attention Convolution) applied to a text graph representing the structure of each
tweet. The transformer-based embedding we used is ELECTRA a language model presented
by [8]. ELECTRA does not mask the input as BERT but replaces some tokens with plausible
alternatives sampled from a small generator network. Then, instead of training a model that
predicts the original identities of the corrupted tokens, a discriminative model is trained to
predict whether each token in the corrupted input is replaced by a generator sample or not.

GCNs take advantage of graph data structures that are made of vertices and edges (also called
nodes and link). Nowadays, graphs are used in many real-world applications, including traffic
prediction [9], computer vision [10], social networks [11, 12] and many more.

GCNs for text classification are discussed in [13]: the authors propose a novel graph neural
network method and model a whole corpus as a heterogeneous graph to learn word and
document embeddings with graph neural networks jointly. Results on several benchmark
datasets demonstrate that the proposed method outperforms state-of-the-art text classification
methods, without using pre-trained word embeddings or external knowledge. The model
proposed also learns predictive word and document embeddings automatically.

In [14] a more sophisticated approach is proposed. In particular, the authors discussed a
flexible Heterogeneous Information Network (HIN) for modeling short texts. The model can

"https://github.com/sagacemente/CLEF2022CheckThat.git
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integrate any type of additional information as well as capturing their relations to address the
semantic sparsity. Additionally, the authors propose heterogeneous graph attention networks to
embed the HIN for short text classification based on a dual-level attention mechanism, including
node-level and type-level attention. The attention mechanism can learn the importance of
different neighboring nodes as well as the importance of different node (information) types to a
current node.

A broader overview over a range of text classification applications using GCNs is given in
[15].

3. Proposed model
The model architecture with input and output shapes of each layer is shown in Figure 1 along
with parameter distributions of each layer. The proposed model is composed by two modules:

« Graph creation and embedding
+ Pretrained document embedding

Layer.Parameter Param Tensor Shape Param #
convl,att [1, 4, 450] 1800
convl.bias [1808] 1800
convl.lin l.weight [1800, 815] 1467000
convl.lin 1.bias [1800] 1800
convl.lin r.weight [1860, 815] 1467000
convl.lin r.bias [1800] 1800
conv2.att [1, 1, 450] 450
conv2.bias [458] 450
conv2.lin_l.weight [450, 1800] 810000
conv2.lin_l.bias [450@] 450
conv2.lin r.weight [450, 1800] 810000
conv2,lin r.bias [450] 450
linl.weight [609, 1218] 741762
linl.bias [609] 609
lin3.weight [2, 609] 1218
lin3.bias [2] 2

Total params: 5306591
Trainable params: 5306591
Non-trainable params: @

GCN(
(convl): GATv2Conv(815, 450, heads=4)
(conv2): GATv2Conv(18@@, 450, heads=1)
(lin1): Linear(in_features=1218, out_features=6639, bias=True)
(lin3): Linear(in_features=609, out_features=2, bias=True)
)
Figure 1: Model parameters (Top) numbers in brackets indicate parameters’ tensor dimensions; last
column indicates the number of parameters in each layer. Model architecture (bottom) model input and

output shapes in each layer (figure taken from our Google Colab notebook).

Geometric deep learning [16, 17] has led to a growing number of new architectures as well
as novel applications, including text modelling [18]. The representation of each tweet into a



graph starts with text preprocessing and Part Of Speech (POS) tagging. After these steps each
unique tagged word in the tweet corresponds to a node in the graph and the adjacency matrix is
populated connecting each node with all words in a window equal to 3. Each node is annotated
with various features discussed in 3.2. The proposed architecture is composed of two graph
attention convolution (i.e. GATV2Conv) layers proposed by [19]; the node-wise representation
outputted by the GATV2Conv layers is passed to a max pooling operator and a dropout layer.
The output is then concatenated with the document embedding generated using ELECTRA [8].
Finally, two dense layers and a rectified linear unit (ReLu) activation function between them
output the predictions of the model for each class.

Before discussing the network architecture as well as our hyperparameter settings, we want
to mention that each split of the dataset (training and test per language) consists of individual
tweets and their corresponding labels.

3.1. Graph creation

The graph module takes as input a raw sample (tweet) and outputs the tweet represented as an
undirected, attributed graph. In Figure 2 each step of the preprocessing pipeline is depicted.
Our custom preprocessing function uses the python NLTK package [20]. Below we list all the
preprocessing steps involved:

« Lowercasing. This step is used to get the same embedding e.g. for the words Hello and
hello

« Removing Stopwords. Stopwords are generally speaking used with high frequency but
they are in many cases not really informative, e.g. preposition and articles belong to this
category.

« POS Tagging. In this step each word in the tweet is classified into its parts of speech
class and labelled accordingly using a one-hot encoding. These vectors correspond to the
respective POS tag out of all 43 POS classes in the NLTK package.

« URL removing. All URLs in each tweet have been removed.

 Hashtag symbol and tagged accounts. All hashtag symbols have been removed along with
tagged users.

Graph Module

Preprocessing

This is a simple example sentence for text pre-
processing, click here and see @Real_trump
m

Graph Building

Figure 2: Graph representation: each tweet is represented as a graph after pre-processing and POS
tagging



Starting from the output of POS-tagging we adopt a strategy that associates an edge to each
word with all words in a window equal to 3. If a word is repeated more then once, only the first
occurrence is considered as node while edges are updated accordingly. Edges are unweighted.

3.2. Node characterisation

As mentioned above in Figure 1 each node is characterized as a 815-dimensional vector. The first
768 features correspond to the pretrained ELECTRA document embedding, obtained using FLAIR,
applying the introduced preprocessing steps *[21]. To select the best embeddings we evaluated
different transformer-based models using the tweet text data as input. The official evaluation
metric was used during this experiment and it turned out that ELECTRA outperformed other
pretrained language models. Using ELECTRA we collected both word embedding for each node
in the graph as well as document embedding for the whole tweet. Each node was also annotated
with the corresponding one-hot-encoded vector of its POS tag (45 features). Given the fact that
graph networks are order invariant w.r.t the nodes processed during message passing the order
of words in the original tweet is lost. To maintain this information we characterized each node
with a feature vector of two dimensions that encodes the distance from the origin of each node
(word) in the graph using sine and cosine positional encoding of a transformer model [22]. This
vector is concatenated to the other node features.

3.3. Graph attention convolution and max pooling layer

In our model we use two GATV2Conv [19] layers. This layer is characterized by the computation
of dynamic attention scores. Moreover we adopt multiple heads in the first layer where the
number of heads is set to four, because (as demonstrated previously by [23]) the learning
process can benefit from employing multi-head attention and concatenating their outputs. As
highlighted in Figure 1 the number of features used to represent each node is halved between
the 2 layers. The output of the graph attention layer is a 2D matrix with shape: Number of
nodes (d) * Number of features (/V). The maximum value is calculated along the dimension of
size IV, in fact reducing the dimension of the input tensor by one. As an example consider the
following matrix X.

r11 *12 %13 ... Tin

T21 22 T23 ... X2pn
X =

Tdl Ld2 X43 --- Ldn

Providing X as input to a 1D-max pooling layer returns the following array Y as output,
where each y; is computed taking the maximum of all the values along the ¢-th column of the
matrix X.

Y=1[y v2 ¥ - Un)

*Documentation available here: https://github.com/flairNLP/flair
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3.4. Dense

The max pooling layer’s output is concatenated with the tweet embedding obtained from
ELECTRA. This vector is fully connected to a dense layer which is followed by a rectified linear
unit function element-wise (e.g., Relu(x) = max (0, x)) and finally a dense layer with two units
as output. This float values correspond to the softmax logits, a vector of raw (non-normalized)
predictions.

4. Experimental setup

We participated in Subtask C (harmful tweet detection) of CheckThat!’s Task 1 for the English
language. Before addressing experimental setup and model training we briefly describe the
provided dataset.

4.1. Dataset

The corpus includes a list of tweets that are either labeled as harmful (1) or not (0). In addition
the ID of the tweets and its urls are available. All samples are related to COVID-19. In general,
a train, development and dev-test set are provided as well as an official test set that was used
for evaluation of the submissions. While for the first three dataset splits the gold labels were
available, those of the official test set were held out till the end of the evaluation phase. In
general, the number of samples for all parts of the dataset are distributed as shown in table 1.
The data were released as multiple tab-separated files (one per split)

Dataset Number of Samples | Label 0 | Label 1
Train 3323 3031 292
Development 307 276 31
Dev-Test 910 828 82
Test 251 211 40

Table 1
Dataset statistics of all provided splits for English.

An exploratory analysis shows the dataset imbalance with respect to the class labels. For
the training set the positive class samples correspond to only 8% of the total entries. Using the
Tweet IDs provided we crawled twitter data via the official Twitter API . However, only a small
subset of the samples (w.r.t. the training set only 20% of the original tweets) was still available
as the rest of this information was already deleted by Twitter. Given this observation, we
choose to discard including social context information such as the number of tweet interaction
(favourites, shares), author features (follower following relationships as well as user timeline
tweets). Besides using the graph based approach introduced in Section 1 we performed further
experiments on the dataset featuring transformer based methods as well as alternative graph
construction techniques. We present details on the results of these experiments in Section 5.

’ API Documentation available here: https://developer.twitter.com/en/docs/twitter-api
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4.2. Model training

The hyperparameter settings are in line with many of the decisions made in a study conducted
in [24] and used to subsequently fine-tune our proposed model. To initialize the weights of the
model we used a Glorot uniform initializer [25]. The model was compiled using binary cross
entropy loss; this function calculates the loss with respect to two classes (i.e., 0 and 1) as defined
in 1.

N
Lossnon = 3 Z g x 10g (ho(n)) + (1 — yn) x log (1 — ho(za))] 1)

where:

« N is the number of training examples;

* Yy is the target label for the training sample n;
+ Xy is the input sample n;

+ hgy is the neural network model with weights 6.

To improve the model performance and counteract class imbalance we set up class weights that
correspond to a manual rescaling weight assigned to each class. Optimization is performed
using the Adam optimizer [26]. To reduce overfitting we take advantage of a learning rate
scheduler reducing the learning rate by a factor of 0.9 with a step size of 25 epochs. The model
architecture is depicted in figure 1, where the number of the various network hyperparameters
are provided.

5. Results

5.1. Baseline

The organizers provide official baseline results based on random predictions. The metric to
evaluate the task is the binary F1 score of the positive class label (harmful tweet). The official
baseline result amounts to 0.200 binary F1 on the evaluation test set. We compare the baseline
results to the values our approaches did achieve in Table 2.

We established an additional, strong baseline based on a fine-tuned transformer model.
We evaluated different transformer architectures including BERT, RoBERTa and ELECTRA
regarding the classification task. It turned out that ELECTRA achieves the best results among
these models (using 3 epochs for fine-tuning as recommended by [27]). The performance of
this approach amounts to 0.250 binary F1 score.

5.2. Our approach

Our main experiments are based on the model proposed in Section 3. We will report results on
the test set used for evaluation using the official binary F1 metric, as well as binary precision
and binary recall of the positive class label.

As presented in Table 2 our submitted approach (GCN+ELECTRA) outperforms the official
baseline by 8%. The official baseline approach generates class labels in random order.



Approach Binary Precision | Binary Recall | Binary F1
Baseline 0.200 0.200 0.200
GCN+3-gram-ELECTRA 0.138 0.625 0.226
ELECTRA (3 epochs) 0.263 0.250 0.256
GCN+POS w/o word embeddings 0.166 0.650 0.264
ELECTRA (50 epochs) 0.275 0.275 0.275
GCN+ELECTRA 0.166 0.875 0.280
Table 2

Results (binary Precision, Recall and F1 of the positive class label) on the official test set for English
with respect to different approaches.

Compared to the performance of our own baseline using ELECTRA, the GCN+ELECTRA
outperforms this approach by 3%. We also evaluated a ELECTRA fine-tuning setup using 50
epochs resulting in a performance almost as good as the finally submitted approach. However,
the high number of epochs lead to strong overfitting on the training data.

In addition we report results obtained by experimental setups that we evaluated as part of the
development process of the submitted approach. In Table 2 GCN+POS w/o word embeddings refers
to a setting where we omit word embeddings and represent graph nodes by only considering
one-hot encoded POS-tag vectors. In the GCN+3-gram-ELECTRA model we characterize graph
nodes by mean-pooled word embeddings of 3 subsequent words at each position. Thus we also
wanted to take into account word orders that can be lost during graph convolution.

6. Discussion and future work

All other approaches used during our experiments result in a lower performance compared to
the actually submitted model. This observation strengthens our decision of choosing to submit
predictions generated with the model proposed in this paper as it outperforms a range of other
setups we used during our experiments. Obviously, we can report a high recall score compared
to low precision using our proposed model as it tends to frequently predict the positive class
label and only a few times the negative one.

As already mentioned above, the inclusion of social and user information in the model (as in
[28]) can improve the classification accuracy. Deleted tweets that can not be crawled anymore
limit the usage of those information in the actual training set.

In future work, it would be interesting to analyze the contribution of such social context
features. In addition, different types of embeddings (stacked or pooled) could be compared
regarding the characterization of each node.

7. Conclusion

In this paper, we describe our approach to Subtask- 1C at CheckThat!Lab@CLEF2022 based
on graph data structures and transformer language models. The proposed hybrid solution of a
text graph and pretrained document emebddings should be studied in more detail as it leads
to improvements over fine-tuning transformer-based models as demonstrated on the given



dataset. In addition there is room left for including additional types of information (e.g. social
media context) in these data structures which could be helpful in solving other tasks. Overall,
as reported by the organizers, our approach — achieving an F1-score of the positive class of
0.280 — ranked eight in the CheckThat!Lab@CLEF2022 - Subtask- 1C.
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