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Abstract
The target task of our team in CLEF2022 CheckThat! Lab challenge is Task-1C, harmful tweet detection.
We propose a novel approach, called ARC-NLP-contra, which is a contradiction check approach
by using the idea that harmful tweets contradict with the real-life facts in the scope of COVID-19
pandemic. Besides, we propose and examine two other models. The first model, called ARC-NLP-hc,
is a traditional approach that utilizes hand-crafted tweet and user features. The second model, called
ARC-NLP-pretrain, pretrains a Transformer-based language model by using COVID-related Turkish
tweets. We compare the performances of these three models, and submit the highest performing model
in the preliminary experiments to the challenge. We make submissions for Task-1A, 1B, 1C in Turkish
and Task-1C in English. We have the winning solution for Task-1C, harmful tweet detection in Turkish,
using ARC-NLP-contra that is our contradiction check approach.
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1. Introduction

The effects of the COVID-19 pandemic maintain its existence for more than two years. The
power of the social media is experienced more intensely when such global events break out.
Although people can get news and collaborate via social platforms in during such events,
undesired behaviors can also take place in these platforms such as spreading misinformation,
along with false claims and sharing harmful content. In this regard, CLEF2022 CheckThat! Lab
organizes a challenge that focuses on the detection of such undesired behaviors [1, 2, 3, 4, 5].
The lab consists of three main tasks that are Task-1: Identifying Relevant Claims in Tweets,
Task-2: Detecting Previously Fact Checked Claims, and Task-3: Fake News Detection. We
submit our solutions to Task-1 in this challenge.

The target task of our team, called ARC-NLP (Aselsan Research Center - Natural Language
Processing team), in this challenge is Task-1C, harmful tweet detection, in Turkish. We propose
a novel model, called ARC-NLP-contra, which is a contradiction check approach by using the
idea that harmful tweets contradict with the real-life facts in the scope of COVID-19 pandemic.
In other words, we assume that harmful tweets spread misinformation. We thereby check
the claims in tweets with a manually generated fact list by using reliable sources, such as
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Government Offices and UNICEF. Our model placed first in the leaderboard for Turkish. Since
this approach is language-independent, i.e. one can create other fact lists in other languages,
we also submit our winning solution to Task-1C in English. However, our solution does not
perform as expected in English, possibly due to our machine-translated fact list from Turkish to
English.

We also propose and examine two other approaches for Task-1C, harmful tweet detection. The
first model, called ARC-NLP-hc, is a traditional approach that utilizes hand-crafted tweet and
user features. The second model, called ARC-NLP-pretrain, pretrains a Transformer-based
language model, similarly to BERTweet [6], by using COVID-related Turkish tweets that we
have collected during the training stage of this challenge. We call our pretrained language
model as RoBERTweetTurkCovid. To the best of our knowledge, RoBERTweetTurkCovid is the
first Transformer-based language model pretrained on Turkish tweets, which can help other
researchers to fine-tune models on various downstream tasks.

We compare the performances of these three models in the preliminary experiments, and
submit the highest performing model, ARC-NLP-contra, to Task-1C. Besides, we make sub-
missions to other subtasks, Task-1A (check-worthiness of tweets) and Task-1B (verifiable claim
detection). Since our contradiction check approach is not directly applicable to other subtasks,
we submit the results of ARC-NLP-pretrain for Task-1A and 1B in Turkish, since we train
this language model by using a Turkish corpora.

Overall, we make submissions for Task-1C in both Turkish and English; and for Task-1A and
1B in Turkish. We have the winning solution for Task-1C, harmful tweet detection in Turkish,
using ARC-NLP-contra that is our contradiction check approach. In this paper, we explain our
proposed models; namely (i) ARC-NLP-hc with hand-crafted features, (ii) ARC-NLP-pretrain
with a novel pretrained language model, and (iii) ARC-NLP-contra with a novel contradiction
check approach. We then report the results of our preliminary experiments, along with our
results in the final leaderboard.

2. Methods

2.1. Model-1: ARC-NLP-hc

In order to perform statistical analysis of the challenge data, we extract hand-crafted features to
classify the tweets into predefined classes, such as harmful or not in Task-1C. We extract the
following hand-crafted features including tweet content and user attributes:

• N-grams (bigrams and trigrams),
• Hashtags,
• User features.

These features both separately and in combination are used in classifying whether a tweet is
harmful or not. In the following subsections, the extraction process is detailed for each feature.

N-grams: We use bigrams and trigrams to extract relevant features from the data. For the
preprocessing step, we first transform Turkish characters (i.e., "çğıöşü") to English characters



Table 1
The first 5 bigrams and trigrams of 1C Turkish harmful and unharmful data (including their translations
in English) ranked according to their frequencies.

Harmful Translation Freq. Unharmful Translation Freq.

doz asi vaccine dose .0144 doz asi vaccine dose .0134
asi karsiti vaccine opposer .0096 asi karsiti vaccine opposer .0089
kalp krizi heart attack .0096 doz biontech biontech dose .0059
doz biontech biontech dose .0085 pcr testi PCR test .0057
pcr testi PCR test .0074 asi olun get vaccinated .0041

bilim kurulu uyesi sci. board member .0027 iki doz asi two dose vacc. .0013
acil kullanim olayi emerg. use auth. .0027 haftada vaka sayisi weekly num. cases .0009
yeni dunya duzeni new world order .0021 son haftada vaka cases in last week .0009
yanlislikla covid asisi vacc. by mistake .0021 iki doz sinovac two dose sinovac .0009
asi karsiti degiliz not against vacc. .0021 yerli asimiz turkovac natl. vacc. turkovac .0009

(i.e., "cgiosu"). We then remove all URLs from the tweets. Furthermore, we also remove non
alphabetical characters such as emojis and placeholders in the text. We remove punctuation
and lowercase all the tweets. For the Turkish stop words, we use the collection list given in [7],
which are disregarded when forming bigrams and trigrams.

To construct n-gram table for the data, we divide bigrams and trigrams extracted from tweet
text into the harmful and unharmful classes. Table 1 shows the first 5 of bigrams and trigrams
ranked according to their number of occurrences in the data. Since the data is imbalanced with
respect to the classes (i.e., there are more unharmful data instances than harmful ones), we also
compute each n-gram’s normalized frequency within their own category, which are given in
Table 1. The frequencies are computed dividing an n-gram’s total number of occurrences by the
number of all n-gram occurrences in its corresponding category. For instance, "doz asi" occurs
27 times in tweets that are labeled harmful. Since there are 1881 harmful n-gram occurrences in
the data, its normalized frequency is computed as 0.0144.

We use the tweets in the data to construct the n-gram table 𝒯 𝑛𝑔𝑟𝑎𝑚 (𝒯 𝑛𝑔𝑟𝑎𝑚
1 : harmful,

𝒯 𝑛𝑔𝑟𝑎𝑚
2 : unharmful) aforementioned in the previous step. Then, for the tweet 𝑖 in the data, we

allocate two features denoted by 𝑓𝑛𝑔𝑟𝑎𝑚
1,𝑖 and 𝑓𝑛𝑔𝑟𝑎𝑚

2,𝑖 . We compute these features as follows:

𝑓𝑛𝑔𝑟𝑎𝑚
1,𝑖 =

∑︁
𝑗

𝑛𝑖,𝑗𝑤1,𝑗 , 𝑤1,𝑗 ∈ 𝒯 𝑛𝑔𝑟𝑎𝑚
1 ,

𝑓𝑛𝑔𝑟𝑎𝑚
2,𝑖 =

∑︁
𝑗

𝑛𝑖,𝑗𝑤2,𝑗 , 𝑤2,𝑗 ∈ 𝒯 𝑛𝑔𝑟𝑎𝑚
2 ,

where 𝑗 is an extracted n-gram from the tweet 𝑖. We extract bigrams and trigrams in this study.
𝑤1,𝑗 and 𝑤2,𝑗 are the corresponding normalized frequency values in n-grams tables 𝒯 𝑛𝑔𝑟𝑎𝑚

1 and
𝒯 𝑛𝑔𝑟𝑎𝑚
2 , respectively. 𝑛𝑖,𝑗 is the number of times n-gram 𝑗 occurs in tweet 𝑖. In other words,

each tweet in the data is represented with two-dimensional feature vector, whose dimensions
correspond to harmful and unharmful n-gram occurrences extracted from the data. As seen from
Table 1, there are some contradictory n-grams in the data. For example, "asi karsiti" translated



Table 2
The most frequently used first 8 hashtags that belong to harmful and unharmful categories (including
their translations in English) in Task-1C Turkish dataset

Harmful # Translation Freq. Unharmful # Translation Freq.

pcrdayatmasidurdurulsun stop PCRs .0722 biontech - .0511
biontech - .0500 turkovac - .0365
asivepcrdurdurulsun stop vacc. .0278 pcrdayatmasidurdurulsun stop PCRs .0292
kalpkrizlerisalgini heart diseases .0278 coronavirus - .0292
denekolmaturkiye no tests .0278 covid19 - .0146
pcrhataliasizararli harmful vacc. .0278 sondakika newsbreak .0122
nepcrneasi harmful vacc. .0167 biontechyanetki side effect .0097
biontechyanetki side effect .0111 asihayatkurtarir vacc. saves lifes .0073

as "vaccine opposer" can be somehow thought to be a harmful bigram; however, it’s normalized
frequency values in both categories (i.e., .0096 vs .0089) are very close. This suggests that
n-gram features might not suffice on their own to classify harmful tweets correctly.

Hashtag Analysis: Similarly to n-gram feature extraction, we perform hashtag analysis on
the data. For the preprocessing step, we first transform Turkish characters (i.e., "çğıöşü") to
English characters (i.e., "cgiosu"). We then lowercase all the tweets in the data. Similarly to the
n-gram feature analysis, we divide the data into two categories: harmful and unharmful. Table
2 shows the most frequently used first 8 hashtags that belong to harmful and unharmful classes.
There are 180 and 411 hashtags in harmful and unharmful classes, respectively. As given in Table
2, some hashtags belong to both classes; thus, their frequencies (i.e., the number of occurrences)
in the data should be considered when extracting hashtag related features. We compute each
hashtag’s normalized frequency by dividing its total number of occurrences by the number of
all hashtags in its corresponding category. For instance, hashtag "pcrdayatmasidurdurulsun"
occurs 13 times in tweets that are labeled harmful. Since there are 180 harmful hashtags in the
data, its normalized frequency is computed as 0.0722.

We extract hashtags from the data to construct the hashtag table 𝒯 𝑡𝑎𝑔 (𝒯 𝑡𝑎𝑔
1 : harmful,

𝒯 𝑡𝑎𝑔
2 : unharmful). Then, similarly to n-gram normalized frequency analysis, we compute each

hashtag’s normalized frequency within its own category. For the tweet 𝑖, we allocate two
features denoted by 𝑓 𝑡𝑎𝑔

1,𝑖 and 𝑓 𝑡𝑎𝑔
2,𝑖 . We compute these features as follows:

𝑓 𝑡𝑎𝑔
1,𝑖 =

∑︁
𝑗

𝑤1,𝑗 , 𝑤1,𝑗 ∈ 𝒯 𝑡𝑎𝑔
1 ,

𝑓 𝑡𝑎𝑔
2,𝑖 =

∑︁
𝑗

𝑤2,𝑗 , 𝑤2,𝑗 ∈ 𝒯 𝑡𝑎𝑔
2 ,

where 𝑗 is an extracted hashtag from the tweet 𝑖. 𝑤1,𝑗 and 𝑤2,𝑗 are the corresponding normalized
frequency values in hashtag tables 𝒯 𝑡𝑎𝑔

1 and 𝒯 𝑡𝑎𝑔
2 , respectively. As opposed to n-gram feature

extraction, we do not consider the number of times a hashtag occurs in a given tweet. In this
way, the same hashtags that occur multiple times in a given tweet are disregarded and counted
as one. The problem of contradictory features is also present in hashtag feature extraction. For



Table 3
Sample user features that we extract from Twitter API’s public access.

Tweet ID Age Influential Verified Status Favorites

1423282834987372553 0.0 0.6357 0.0 0.0 0.0
1428301747110522881 0.3333 0.5802 0.0 0.0012 0.0118
1443304873471221760 0.1966 0.6464 0.0 0.0782 0.1626
1421163651084562438 0.2133 0.7029 0.0 0.0018 0.0066
1428447916826501126 0.0188 0.7449 0.0 4.49e-05 0.0003

instance, "biontechyanetki", translated as "biontech side effects", might be considered as a harmful
hashtag; but, it also frequently occurs in the tweets that are labeled unharmful. Furthermore,
the cold start problem is also prevalent in hashtag extraction; since only a portion of the tweet
data includes hashtags and extracted hashtags from the training data might not be present in
the test data and vice versa [8]. Therefore, hashtag features might not be enough to classify
harmful tweets on their own.

User Features: In order to obtain user features, we collect additional data from Twitter API’s
public access by using tweet ids. Since some users or tweets are deleted, we cannot extract
user features for all tweets. A set of sample extracted features are shown in Table 3. These user
features are explained as follows.

• Age: This feature indicates account age, i.e., the time passed between creating the account
and sending the tweet. If the age feature is not extracted from Twitter API, then the value
is set to 0. The age values are normalized in all data.

• Influential: This feature indicates account’s logarithmic ratio of followees to followers.
If the influential feature is not extracted from Twitter API, then the value is set to 0. The
influential values are normalized in all data.

• Verified: This feature indicates whether the user account is verified or not. If verified,
then the value is set to 1; otherwise, 0.

• Status: This feature indicates account’s total number of tweets, retweets, and replies. If
status feature is not extracted from Twitter API, then the value is set to 0. The status
values are normalized in all data.

• Favorites: This feature indicates account’s total number of favorites. If favorite feature
is not extracted from Twitter API, then the value is set to 0. The favorite values are
normalized in all data.

As our classification model, we use XGBoost, an optimized distributed gradient boosting
library that is highly efficient, flexible, and widely used in machine learning applications [9].
The XGBoost model that we employ in Task-1C is trained with the hand-crafted features (i.e.,
n-gram, hashtag, and user features) separately and in combination.
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Figure 1: ARC-NLP-pretrain model diagram. We collect and preprocess COVID-related Turkish
by replacing tweet-specific tags such as usernames, links, and emojis. The vocabulary is obtained
by training the Word-Piece tokenizer with the preprocessed text. We then use the RoBERTa-base
architecture to pretrain our language model. The pretrained model can be fine-tuned for several tasks,
such as check-worthiness of tweets and harmful tweet detection. The translation of the sample tweet in
the figure is "@USER Since the covid incidents, there have been posts that have disturbed the public
[worried face emoticon] for correct information HTTPURL".

2.2. Model-2: ARC-NLP-pretrain

Considering the domain of this challenge (i.e. COVID-19 pandemic), we argue that pretraining
of a Transformer-based language model, called RoBERTweetTurkCovid, by using COVID-
related Turkish tweets can be more effective than using existing language models pretrained on
variety of text documents such as BERTurk [10], or English tweets such as BERTweet [6].

RoBERTweetTurkCovid-b-30k-wp1 is our uncased pretrained model whose corpus contains
COVID-19 pandemic related Turkish tweets (b refers to base model, 30k refers to the vocabulary
size, and wp refers to the WordPiece tokenizer). Figure 1 describes the phases of obtaining
our pretrained language model. We collect and preprocess COVID-related Turkish tweets by
replacing tweet-specific tags such as usernames, links, and emojis. After preprocessing step, we
train a WordPiece tokenizer and obtained our vocabulary contains 30k tokens. Since harmful
tweet detection is a text sequence classification task, we consider a base model with optimized
pretraining objective scheme, e.g., removing next sentence prediction. We therefore use the
RoBERTa-base architecture [11] instead of other Transformer-based language models, such
as BERT [12], to pretrain our language model. Finally, our pretrained model is fine-tuned for
different downstream tasks, i.e. Task-1A, 1B, and 1C in Turkish.

Tweet Collection and Preprocessing We collect 5,851,000 Turkish tweets from Twitter
API’s academic access. We use Twitter API’s language field to obtain Turkish tweets. In order
to satisfy that tweets are related to the COVID-19 pandemic, we create a COVID-related list
with 75 keywords, as given in Table 4. The keywords are selected by the authors considering
commonly used COVID-related words and phrases in Turkish. Note that we have different
versions of the same keyword, since Turkish users write COVID-19 in different forms such as
"kovid" and "covid19". Besides, Twitter API’s academic access does not allow regular expressions,

1Our models will be published at https://huggingface.co/ctoraman

https://huggingface.co/ctoraman


we therefore add different forms of the same phrase such as "aşı oldum" (translated as "I got
vaccinated") and "aşı oldun" (translated as "you got vaccinated").

Table 4
The keyword list used for the collection of COVID-19 pandemic related Turkish tweets. Keywords are
sorted according to their length.

Keywords

sosyal mesafenin koranavirus aşı olunca covid-19 #pandemi korana
sosyal mesafeye coronavirus pandemiye kovid-19 pandemi aşıdan
covid aşısından kovid aşısı koronadan covidden covid19 aşının
covid aşısının covid aşısı coronadan kovidten kovid19 aşıyla
koronavirüsün aşı olmanın coronayla covidten covidle #covid
coronavirüsün aşı olmasak aşı oldum kovidden kovidle covid
coranavirüsün aşı olanlar aşı oldun aşı olma evdekal kovid
koranavirüsün pandemiden aşı olmak maskenin maskeyi aşıyı
sosyal mesafe pandeminin aşı olsak maskeden #korona maske
#sosyalmesafe pandemiyle izolasyon evde kal #corona
sosyalmesafe aşı olsana maskeleri #evdekal corona
coranavirus aşı olalım #covid-19 #covid19 korona
koronavirus aşı olmalı #kovid-19 #kovid19 corana

After obtaining tweets, we filter out near-duplicate tweets by using the Dice similarity with
85% threshold [13]. We empirically set the threshold value by investigating the outputs of the
preliminary experiments. We then preprocess them following a similar approach to BERTweet
[6]. We replace user mentions with @USER, and external links with HTTPURL. We also replace
emoji with their text descriptions in Turkish. For that, we use the emoji package2 in Python.
Since it does not support Turkish, we create an emoji list with Turkish descriptions, and modify
the package to run with this list. We lastly replace the new-line character with the space
character.

Pretraining The model architecture is similar to RoBERTa-base [11]. There are 12 layers and
12 attention heads with a hidden dimension size of 768. Following [14], we apply WordPiece
[15] tokenizer with a vocabulary size of 30k. The pretraining details of our base model is given
in Table 5. For comparison, we also provide the details of BERTurk model [10], which is a
Turkish pretrained version of BERT-base [12].

We use AdamW [16] optimizer (𝛽1 is 0.90, 𝛽2 is 0.98, and 𝜖 is 1e-6), linear scheduling with a
warmup ratio of 1e-2 and peak learning rate of 5e-5, and gradient accumulation with 22 steps.
Other hyperparameters are set to the RoBERTa configuration [11].

2.3. Model-3: ARC-NLP-contra

When we examine the dataset, we notice that harmful tweets display similar patterns. In general,
harmful tweets consist of misinformative content about COVID-19 such as conspiracy theories

2https://github.com/carpedm20/emoji/

https://github.com/carpedm20/emoji/


Table 5
Details of pre-training configurations for BERTurk and our model, RoBERTweetTurkCovid. (*Train time
and hardware are given for a vocabulary size of 30k tokens.

Configuration BERTurk-base RoBERTweetTurkCovid

Total parameters 110.62 M 108.79 M
Train data 35 GB 1 GB
Layers 12 12
Heads 12 12
Hidden size 768 768
Batch size n/a 264
Max length 512 tokens 514 tokens
Train time 9.63 days 12 hours
Hardware TPU v3-8 4x Nvidia RTX2080 Ti

about pandemic or the vaccines’ side-effects that do not exist. The common ground of the
harmful tweets is that they contradict with the facts about COVID-19. At this point, we convert
the problem from harmful tweet detection to contradiction detection.

Detection of misinformative or harmful tweets is a difficult task due to several reasons.
Although current state-of-the-art language models can capture contextual relations in a sentence
[12], they might not able to distinguish the true information from the false one by only looking at
the sentence itself. There is a need for a reference point (i.e. fact) to find out which information is
true. For instance, the sentence "COVID-19 vaccines include HIV virus." does not give significant
information about misinformation to the language models. It is also difficult to find a pattern
among harmful tweets. On the other hand, providing a fact for every single instance in the
dataset is not a feasible solution. We therefore propose to feed the facts to the language model
in our contradiction method.
ARC-NLP-contra consists of three main stages, as illustrated in Figure 2. First, we extract

important facts about the COVID-19 pandemic. Then, we associate those facts with every data
instance. Finally, we train a language model based on contradiction detection.

2.3.1. Fact extraction

We gather COVID-related facts to provide more knowledge to the model. For reliability, we
extract a list of facts from Turkish Ministry of Health34 and Unicef Turkey5. These facts are
published in order to protect the society from misinformation spread regarding the COVID-19
pandemic. Some examples along with their English translations are given as follows:

• Covid-19 aşısı ile insanlara mikroçipler yerleştirileceği iddiasının bilimsel bir dayanağı
yok. (There is no scientific basis for the claim that microchips will be implanted in people
with the Covid-19 vaccine.)

3https://covid19asi.saglik.gov.tr/TR-77694/sikca-sorulan-sorular.html
4https://covid19.saglik.gov.tr/TR-66125/sikca-sorulan-sorular-halka-yonelik.html
5https://www.unicef.org/turkey/gercek-mi-efsane-mi-koronavirus-covid-19-hakkinda-ne-kadar-bilgi-sahibisiniz

https://covid19asi.saglik.gov.tr/TR-77694/sikca-sorulan-sorular.html
https://covid19.saglik.gov.tr/TR-66125/sikca-sorulan-sorular-halka-yonelik.html
https://www.unicef.org/turkey/gercek-mi-efsane-mi-koronavirus-covid-19-hakkinda-ne-kadar-bilgi-sahibisiniz
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Figure 2: ARC-NLP-contra model diagram. First, general facts related to COVID-19 pandemic are
gathered from reliable sources. In fact association, TF-IDF vectors are obtained for facts and tweets. For
each tweet, the fact with the highest cosine similarity is determined. After all pairs are determined. A
Transformer based language model is fine-tuned as contradiction detection task.

• Aşı olanlara HIV virüsü bulaşmıyor ya da aşılananlar bu enfeksiyona daha açık hale
gelmiyor. (Those who are vaccinated do not become infected with HIV, or those who are
vaccinated do not become more susceptible to this infection.)

• Virüs yüksek hava sıcaklığında da düşük hava sıcaklığında bulaşabilmektedir. (The virus
can be transmitted at high air temperature or low air temperature.)

As observed from examples, facts include the information that mostly aims to correct the
misinformation about vaccines and COVID-19. We extract 41 facts in total.

2.3.2. Fact association

Second phase of the ARC-NLP-contra method is to associate facts with related tweets. In order
to associate facts and tweets, we check the similarity between two sentences (i.e. the sentences
of a fact and tweet). We use the Cosine similarity measurement, and choose the fact that has
the highest similarity score with a given tweet. We use two methods for encoding sentences
into vector representations before calculating the Cosine similarity scores. We first utilize a
deep learning approach, SBERT model for similarity [17]. Unlike original BERT model [12],
SBERT model is more appropriate for the Cosine similarity for obtained sentence embeddings.
The second method is to encode sentences with conventional TF-IDF vectors.

In the submitted model, we use the TF-IDF vectors. The reason of this choice is that SBERT
focuses on semantic similarity, while TF-IDF focuses on syntactic similarity (i.e. the bag-of-
words model). For instance, although a tweet and its related fact are in the same context (e.g.,
effectiveness of the vaccines), they can have opposite arguments (i.e. they are not semantically
similar), which may result in less similarity. In this case, a harmful tweet may be associated with
a fact of different context. However, our aim is to find the fact with the same context as harmful
tweet rather than finding the most semantically similar fact. On the other hand, the bag-of-word
model with TF-IDF vectors can be more immune to this opposite meaning drawback. Since it



determines the similarity according to existence of the same words, facts and harmful tweets
that are in the same context can be matched without considering semantic similarity between
them. Furthermore, our early experiments that include SBERT in fact association phase do not
give promising results. Therefore we follow the mentioned procedure only with TF-IDF method.
Note that we do not detect harmful tweets in this phase, but associate a possibly related fact
with our tweets. We detect harmful ones in the next phase called contradiction detection.

While extracting TF-IDF features of the tweets for fact matching, we follow some pre-
processing steps. First, we remove URLs and punctuation from the tweets. We make each word
lowercased. Since TF-IDF considers word counts, these steps are useful for reducing possible
noise. The same steps are also applied to fact sentences. After extracting features for all facts
and tweets, the fact giving the highest cosine similarity is chosen for each tweet.

2.3.3. Contradiction detection

After providing facts implicitly, we approach to the problem as a kind of Natural Language
Inference. In conventional Natural Language Inference, the task is to determine veracity of
a hypothesis for a given premise. If the hypothesis is true, the relation between the premise
and the hypothesis is named as entailment. If there is no relation between the premise and
hypothesis, the relation becomes neutral. Lastly, the relation is considered as contradiction
when hypothesis is not correct for the given premise. The sentences, "I have been in Turkey for
a week." and "I visited Eiffel Tower yesterday." constitute an example for the contradiction.

In our problem, we try to create a contradiction relationship between the facts and harmful
tweets, then to solve it via text classification. Since harmful tweets often contain statements that
contradict general facts about COVID-19, we expect that such modelling can be more effective
than standard text classification. Furthermore, we provide the reference information which is a
critical aspect for the misinformation tasks with this method. At this point, it should be noted
that we treat neutral and entailment categories as a single class because the main problem is a
binary classification.

In classification, we utilize the state-of-the-art Transformer-based language models. We
imported a pretrained model and fine-tune it via the harmful tweet dataset. We feed tweet and
fact pairs as data instances separated by [SEP] token. We do not make any changes in labels
because the pairs with the harmful tweets automatically indicate a contradiction.

3. Experiments

3.1. Datasets

The challenge task includes the datasets in six languages that are Arabic, Bulgarian, Dutch,
English, Spanish and Turkish [1, 2, 3]. The datasets contain a training, development, development
test splits. In the last part of the challenge, unlabeled split (Test) is released. The subtasks and
data statistics are given in the following subsections. The dataset statistics are given for all
tasks in Table 6.



Table 6
The number of instances and ratio of the positive instances in Task-1A, 1B, and 1C Turkish (TR) dataset
and 1C English (EN) dataset.

Task 1A-TR 1B-TR 1C-TR 1C-EN

Train 2,417 2,417 2,417 3,323
Development 222 222 222 307
Development Test 660 660 660 910
Test 303 512 512 252
Positive class ratio 0.17 0.65 0.24 0.09

Task-1A: Check-worthiness of tweets The aim of Task-1A is to detect whether a tweet is
worthy for fact-checking. This classification task is defined with binary labels, worthy or not
worthy. Model performances are measured by the F1 score of positive class for this task.

Task-1B: Verifiable factual claims detection The aim of the Task-1B is to detect a tweet
whether it contains a verifiable factual claim. This classification task is defined with binary
labels, claim or no claim. Model performances are measured by the accuracy metric for this
task.

Task-1C: Harmful tweet detection The aim of Task-1C is to detect harmful tweets for
society. Model performances are measured with the F1 score of the positive class for this task.

3.2. Experimental Setup

In this section, we explain the experimental setups for the preliminary experiments of each
model.

3.2.1. Model-1: ARC-NLP-hc

When extracting n-gram and hashtag features, we construct n-gram and hashtag tables 𝒯 𝑛𝑔𝑟𝑎𝑚

and 𝒯 𝑡𝑎𝑔 using the tweet data in the Training and Development splits. We train the classifier
with the features extracted from these tables as explained previously. We then report the
classification results only on the Development Test data.

For the user features, the collected tweet json objects from Twitter API are 1766 (out of 2417)
for the Training split, 166 (out of 222) for the Development split, and 499 (out of 660) for the
Development Test split. The reason for missing objects are that some user accounts and tweets
are deleted or suspended.

The n-gram (N), hashtag (H), and user (U) features might not suffice on their own to achieve
a good classification performance due to the problems of contradictory features and cold start.
Therefore, we also report classification results on the combined features.

The classifier is trained with the user features collected from the Training and Development
splits, while the Development Test split is spared for evaluation and reporting classification
results for our preliminary experiments.



As the classifier, we use XGBoost [9] with a grid-search hyperparameter optimization. The
grid-searched hyperparameters are as follows:

• max_depth (Maximum depth of a tree): [3, 6, 10],
• learning_rate: [0.001, 0.01, 0.05, 0.1],
• n_estimators (Number of estimators): [100, 500, 1000],
• colsample_bytree (Subsample ratio of columns when constructing each tree): [0.3, 0.7, 0.9].

The classifier optimizes each hyperparameter for the hand-crafted features separately and in
combination. The optimized hyperparameter list for each feature is given in Table 7.

Table 7
Hyperparameter list for our model trained with hand-crafted features: (N)-grams, (H)ashtags, (U)sers,
separately and in combination

Model max_depth learning_rate n_estimators colsample_bytree

ARC-NLP-hc-N 6 0.1 100 0.3
ARC-NLP-hc-H 3 0.05 100 0.3
ARC-NLP-hc-U 3 0.01 100 0.3
ARC-NLP-hc-NH 6 0.1 100 0.3
ARC-NLP-hc-NU 3 0.05 100 0.7
ARC-NLP-hc-HU 3 0.0 100 0.7
ARC-NLP-hc-NHU 6 0.1 500 0.3

3.2.2. Model-2: ARC-NLP-pretrain

During the fine-tuning of our Transformer-based language model, RoBERTweetTurkCovid,
we employ PyTorch 1.11 [18]. In our preliminary experiments of this model, we use the
Training split without making any changes on the given dataset, and evaluate the model on the
Development Test split. We use the predefined hyperparameters for the fine-tuning process of
our model. We use a batch size of 8 instances, and run training for 5 epochs with a learning
rate of 5e-5.

3.2.3. Model-3: ARC-NLP-contra

While extracting TF-IDF features for ARC-NLP-contra, we do not put any constraint on the
number of features. Therefore, the number of TF-IDF features correspond to the number of
unique words in the dataset. Since the dataset is quite small, the number of features does not
create any computational overhead. Shrinking the already small features is also not a reasonable
approach for the sake of information loss.

In fine-tuning the language model for ARC-NLP-contra, we use the BERTurk model [10],
which is a BERT-base model pretrained on Turkish corpora. We utilize Trainer API from
Huggingface library [19]. We conduct a hyperparameter search by utilizing Optuna along with
Trainer [20]. We optimize batch size, number of epochs, and learning rate. In total, we search
hyperparameters along 20 trials. The number of epochs is searched in the interval [5, 15]. Batch



size is searched in the set {4, 8, 16, 32}. Learning rate is searched in the interval [1e-5,1e-4].
The best hyperparameters are chosen by F1 score of positive class on the Development split.
The best hyperparameters are 8 for batch size, 15 for epochs and ≈ 2.5e-5 for learning rate.
For our submission to English, we use translations of the Turkish facts to English by Google
Translate.

3.3. Experimental Results

In this section, we report our preliminary results obtained from the labeled Development Test
split. We choose which model to submit by using the results of our preliminary experiments.
We also report our best model’s leaderboard results. In addition, we present results of baseline
methods determined by the organizers.

3.3.1. Baseline Results

In this part, we report the evaluation results of the baseline methods for Task-1 determined by
the organizers6. These methods are as follows: 1) random prediction, 2) majority, and 3) TF-IDF.
10 random seed initializations are performed for the random baseline. The best single results
along with the average of 10 seeds are given in Table 8.

Table 8
Baseline results for the tasks Turkish 1A-1B-1C and English 1C. Results are presented in terms of F1
score of positive class for the Tasks 1A and 1C, and accuracy for the Task-1B.

Task Model Best Average

TR

Baseline-random 0.223 0.179
Task-1A Baseline-majority 0.0 -

Baseline-TF-IDF 0.094 -
Baseline-random 0.567 0.553

Task-1B Baseline-majority 0.664 -
Baseline-TF-IDF 0.706 -
Baseline-random 0.340 0.271

Task-1C Baseline-majority 0.0 -
Baseline-TF-IDF 0.310 -

EN

Baseline-random 0.148 0.112
Task-1C Baseline-majority 0.0 -

Baseline-TF-IDF 0.092 -

3.3.2. Preliminary Results

ARC-NLP-hc: In this part, we share our preliminary classification results for the hand-crafted
features: (N)-gram, (H)ashtag, and (U)ser features. We share the classification results for the
features both separately and in combination in terms of positive F1 scores in Table 9. As seen

6https://gitlab.com/checkthat_lab/clef2022-checkthat-lab/clef2022-checkthat-lab/-/blob/main/task1/
baselines/subtask_1.py

https://gitlab.com/checkthat_lab/clef2022-checkthat-lab/clef2022-checkthat-lab/-/blob/main/task1/baselines/subtask_1.py
https://gitlab.com/checkthat_lab/clef2022-checkthat-lab/clef2022-checkthat-lab/-/blob/main/task1/baselines/subtask_1.py


from Table 9, the best positive class F1 score is achieved when the n-gram and hashtag features
are combined together. This might be due to the fact that combining hashtags with n-gram
features provides a partial solution for contradictory features and cold start problem. However,
it is clear from Table 9 that user features alone do not provide any meaningful contribution to
classify harmful tweets. Therefore, the model that is trained with all hand-crafted features does
not achieve the best score. The best score is also reported in Table 10.

Table 9
Results of our model, ARC-NLP-hc, in terms of positive class F1 score.

Task Model Result
TR

ARC-NLP-hc-N 0.360
ARC-NLP-hc-H 0.240
ARC-NLP-hc-U 0.090

Task-1C ARC-NLP-hc-NH 0.400
ARC-NLP-hc-NU 0.280
ARC-NLP-hc-HU 0.120
ARC-NLP-hc-NHU 0.320

ARC-NLP-pretrain: With the predefined hyperparameters, we implement 10 consecutive
training and evaluate the model on the given Dev_test set. We use 10 random model initialization.
The best (out of 10 runs) and average score of 10 runs are given in Table 10. We observe that
ARC-NLP-pretrain produces more robust scores than the BERTurk model. We use 10 random
model initializations and report the average score. Although BERTurk achieves better results
than ARC-NLP-pretrain, BERTurk’s positive class F1 score dip to zero in some of the random
initializations in Task-1A and 1C. This results in high deviance between the best and average
scores for BERTurk. We argue that a pretrained model using a text corpus without noisy social
media texts may not be adequate for such tasks having noisy texts (e.g., emoticons, abbreviations,
and web urls) and up-to-date topics (e.g., COVID-19 pandemic). The robustness on noisy texts
and the success of our ARC-NLP-pretrain model is promising.

ARC-NLP-contra: After obtaining the best hyperparameters, we implement 10 consecutive
training and evaluate the model on the Development Test split. We use 10 random model
initialization. The best (out of 10 runs) and average score of 10 runs are given in Table 10.
ARC-NLP-contra has better performance in terms of both the best and averaged results in
Turkish harmful detection task (1C). ARC-NLP-pretrain has also competitive results with
ARC-NLP-contra model but cannot outperform ARC-NLP-contra. Although ARC-NLP-hc
exceeds the baseline scores, it obtains lower results compared to previous two models.

3.3.3. Leaderboard Results

Since we obtain the highest positive class F1 score via ARC-NLP-contra method on the given
test set, we decide to use its predictions for Task-1C in both Turkish and English. In order to
improve our final training before the submission to leaderboard, we utilize the whole labeled



Table 10
Preliminary results of our proposed models in terms of the F1 score of positive class for Task-1A and 1C,
and the accuracy score for the Task-1B. The highest scores are given in bold.

Task Model Best Average

TR

Task-1A
BERTurk 0.400 0.273
ARC-NLP-pretrain 0.348 0.289

Task-1B
BERTurk 0.794 0.775
ARC-NLP-pretrain 0.756 0.745

Task-1C

BERTurk 0.572 0.375
ARC-NLP-hc 0.400 -
ARC-NLP-pretrain 0.566 0.518
ARC-NLP-contra 0.600 0.555

EN Task-1C ARC-NLP-contra 0.391 0.323

data by merging the Training, Development, and Development Test splits. We obtain our
final model’s predictions on the leaderboard Test split. On the other hand, we decide to use
ARC-NLP-pretrain for Task-1A and 1B. We only use the Training split for the final training
of this model. The list of our submissions and name of the submitted models, along with their
leaderboard results, are given in Table 11. Our contradiction check approach for harmful tweet
detection, ARC-NLP-contra, takes the first place in the leaderboard.

Since the approach is language-independent, we also submit our winning solution to Task-1C
in English. However, it does not perform as expected in English, possibly due to our machine-
translated fact list from Turkish to English. We collect COVID-related facts from the Turkish
Web Sources (Unicef Turkey and Turkish Ministry of Health). Although some facts are universal
(“Those who are vaccinated do not become infected with HIV ”), the list includes some facts reflected
by Turkish politics and cultural effects. An example fact is “There is no pork ingredient in the
inactivated COVID-19 vaccine.” We argue that the performance of our model in English probably
decreases because of its fact list that includes direct translations from Turkish fact list. An
extension or recollection of fact list for other languages can provide better performances.

Table 11
Leaderboard scores and ranks regarding our submissions in terms of the F1 score of positive class for
Task-1A and 1C, and the accuracy score for the Task-1B.

Task Submitted Model Leaderboard Score Rank

TR

Task-1A ARC-NLP-pretrain 0.082 4
Task-1B ARC-NLP-pretrain 0.760 3
Task-1C ARC-NLP-contra 0.366 1

EN Task-1C ARC-NLP-contra 0.300 6



4. Conclusion

We propose and examine three models for checking worthiness, detecting claims, and detecting
harmful tweets in the CLEF2022 CheckThat! Lab. We explain the details of our models and
the results of our preliminary experiments in this paper. Our contradiction checking approach,
ARC-NLP-contra, is the winning solution for the task of harmful tweet detection in Turkish.

We plan to extend our experiments to other datasets and languages. We can also expand our
COVID-related Turkish tweets corpus to train an improved version of ARC-NLP-pretrain.
Furthermore, employing a fact list together with Transformer-based language models perform
promising as demonstrated by ARC-NLP-contra. The performance can be improved by an
extended fact database. We believe that ARC-NLP-contra model can be used for similar tasks
requiring an external knowledge base, such as our COVID-19 fact list.
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