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Abstract
This paper explores the performance of out-of-the-box transformers language models for historical
Named Entity Recognition (NER). Within the HIPE2022 (Identifying Historical People, Places, and other
Entities) shared task, we participated in the NER-COARSE task of the Multilingual Newspaper Challenge
(MNC). Three main approaches are experimented with: ensembling techniques on multiple fine-tuned
models, using multilingual pretrained models, and relabeling the entity tags from the IOB-segmentation
to a simplified version. By ensembling predictions from different system outputs, we outperformed the
baseline model in the majority of cases. Moreover, through post-submission experiments, we found that
using multilingual models did not yield better results compared to monolingual models. Furthermore, the
relabeling experiment on the Newseye French dataset showed that merging entity labels and inferring
the IOB segmentation in postprocessing increases precision but lowers recall. Last but not least, soft-label
ensembling experiments on the same dataset enhanced precision, recall and thus F1-scores compared to
hard-label ensembling by at least one percentage point.
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1. Introduction

Named Entity Recognition (NER) on historical newspaper text is a task with many pitfalls.
Differences in language, its use, and the world it refers to, as well as technical artifacts, make
models that perform well in contemporary texts significantly worse in historical texts. With
our contribution to the HIPE2022 Shared Task, we explore the performance of transformers-
architectures pretrained on historical and contemporary data available via HuggingFace [1].
We combine these models with task-specific knowledge in pre- and postprocessing, and in
post-submission experiments, we further investigate the performance of only predicting on
categories (without using IOB encoding), soft-label ensembling, and multilingual language
models.
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2. Related Work

Transformers [2] has rapidly become the dominant architecture for natural language processing,
surpassing alternative neural models such as convolutional and recurrent neural networks in
performance for tasks in both natural language understanding and natural language generation
[3]. The Transformers architecture is particularly conducive to pretrain on large text corpora,
leading to major gains in accuracy on downstream tasks[3]. As a result, the release of pretrained
contextualised word embeddings such as BERT [4] pushed further the upper bound of modern
NER performances [5] and established state-of-the-art results for modern NER [5] [6].

In the HIPE2020 Shared Task, several top solutions were developed based on pretrained lan-
guage model embeddings with transformers-based architectures. Ghannay et al. [7] achieved the
second-best result for French with an 81% F1-score in the strict scenario by using CamemBERT
[8], a multi-layer bidirectional transformer similar to RoBERTa [9], together with a CRF decoder.
Todorov et al. [10] implemented an architecture made of a modular embedding layer which was
combined by newly trained and pre-trained embeddings, and a task-specific Bi- LSTM-CRF layer
to handle NERC on coarse and fine-grained tags. They conclude that character-level embeddings,
BERT, and a document-level data split are the most important factors in improving NER results.
Besides, the experiment also shows that pretrained language models can be beneficial for NERC
on low-resource historical corpora. Provatorova et al. [11] fine-tuned two pretrained BERT
models [12], including bert-base-cased for English and bert-base-multilingual-cased for French
and German. In order to enhance the robustness of the approach, a majority voting ensemble of
5 fine-tuned model instances was implemented per language. Their models achieved F1-scores
of 68%, 52% and 47% for French, German and English respectively.

Section 4.2 describes how we employed multiple fine-tuned models, exploited ensembling
techniques, and applied relabeling entities method.

3. Task and Datasets

We worked on coarse NER in digitized historical newspapers across different label sets and
languages. More detailed information on this task can be found on the HIPE2022 website.

NER on historical newspapers poses its own unique challenges; non-standard language with
old lexicon and syntax, errors from digitization such as errors in layout and optical character
recognition (OCR) and the lack of resources for training make this task challenging [5].

We used a part of the data provided by the organizers of this task, namely 5 datasets of
historical newspapers in English, German, French, Swedish and Finnish spanning from the
18th to the 20th century. The data contains newspapers digitized through different European
cultural heritage projects. While most of the data were published before HIPE2022, some
unpublished parts of the datasets were used as test-sets. Each dataset is annotated following
different annotation guidelines and contains NER-tags and NEL-links to Wikidata. All datasets
were provided in the HIPE-format [13]. Table 1 presents an overview of the historical newspaper
datasets of HIPE2022 used in our experiments.

Resources We train our models on Google Colab with GPU enabled.

https://hipe-eval.github.io/HIPE-2022/


Table 1
Description of datasets contained in the HIPE2022-data

dataset languages comments

HIPE2020 de, en, fr 19-20C
Newseye de, fi, fr, sv 19-20 C
Topres19th en 19C, only location types
Sonar de 19-20C
Letemps fr 19-20C, unpublished

4. Methods

4.1. Data Preprocessing

We use a simple approach to preprocess the data. Lines with erroneous characters, empty lines,
and lines containing metadata were removed while reading the tabulator-separated values (TSV)
files. ‘Nan’-values were filled with empty strings to keep the data structure intact.

Tokens are split into sentences using the EndOfSentence-tag provided in the data. The data
is tokenized using the corresponding transformers model’s tokenizer without any additional
fine-tuning on our data.

4.2. Training

Models We employed a variety of models and pretrained weights for all different datasets.
We distinguish between models that have been pretrained on historical data (historical language
models, HLM) and on contemporary data. The HLMs mainly come from a single source, the
Bavarian State Library [14]. We expect that the HLMs have already learned to deal with errors
stemming from OCR, as these errors are prevalent in most historical datasets.

We mainly use BERT-based models [12, 15] but also experimented with XLNet [16] and
ELECTRA [17]. See Table 7 for a full description of which pretrained models have been used. In
the submitted run 1, all models listed were used for the ensembling. In run 2, the results of the
single best model were submitted (marked in bold in the table). The models are instantiated
with standard token classification heads from HuggingFace. [18, p. 98].

Training Parameters We fine-tune the models with the parameters coming from the pre-
trained models; were not these set, the default values of HuggingFace TrainingArguments
have been used. All sentences were padded or truncated to a maximum length of 100 tokens.
Because of the number of models we set out to deploy, we do not run a hyperparameter search.
An initial experiment with label weights did not improve per- performance, and we returned to
the defaults. We trained all models for three epochs.

4.3. Evaluation metrics

The evaluation metrics used for NER tasks in HIPE2022 are Precision, Recall, and F1 score
on macro and micro levels. The same evaluation metrics are used to assess our systems. F1-



macro scores are computed on the document level and F1-micro scores on the entity-type
level. Precisely, macro measures the average of the corresponding micro scores across all the
documents, accounting for variance in document length but not for class imbalances.

Additionally, the model’s performance was also measured in strict and fuzzy. In the strict
scenario, a mention was only counted as correct when the exact gold-standard boundaries
were met, whereas in the fuzzy evaluation, only a part of the mention needed to be recognized
correctly. Because of this, in the strict measurement, predicting wrong boundaries leads to
severe punishment, i.e., a mention is recognized, but one boundary is set wrong, leading to the
whole entity being counted as False [13].

4.4. Inference

Single Models The single models we employ are initialized with a token classification head
provided by HuggingFace. This is a linear mapping from the last encoder state to the output
layer, where for every token, there are as many logits as labels in the dataset.

Because the gold labels are on whole words, while the models operate on subwords, we need
a non-trivial mapping regime. In preprocessing, the label of the whole word is propagated down
to all subwords. All subword logits belonging to a single word are summed up during inference,
and the label with the highest score is chosen for the whole word. Ács et al. [19] evaluate
different pooling strategies for subword aggregation. While they tend towards neural solutions
such as an additional LSTM over the subword logits, they mention how the pooling strategy
has a lower influence on NER (as opposed to morphological tasks such as POS- Tagging). Still,
more advanced subword pooling strategies remain to be explored.

Ensembling On one dataset, predictions of all models were gathered, and the final label was
chosen through a hard-ensembling method. The final prediction was the label with the most
votes. In a tie between different labels, entity labels were favored, and between different entity
labels, the choice was randomized.

Postprocessing We employed only one postprocessing rule for the shared task submission:
If a token gets a label prediction starting with an I (inside) but is not preceded by an I or a
B (beginning), it is changed to a B. Erroneously, we did not consider the label class. This was
remedied in the post-submission experiments.

5. Post-Submission Experiments

This section introduces the three approaches we experimented with after the submission. We
focused on Newseye French for the monolingual and all Newseye languages for multilingual
approaches.

Motivation We tried to improve the submitted results. For better comparability of the different
approaches of the post-submission experiments and due to time constraints, we decided to focus
on one dataset and one language for the monolingual experiments. We saw the most potential



for improvement in the Newseye French dataset. Therefore, we used all available languages in
the Newseye dataset for the multilingual approach. Our goal was to beat the baseline provided
by the task organizers.

5.1. Soft-Label Ensembling

For the submission, we employed hard-label ensembling (‘voting’). In this post-submission
experiment, we evaluate the performance of soft-label ensembling on the Newseye French
dataset. To infer the final label for a token, we average the probabilities (softmax logits) for the
whole tokens of the individual models.

We follow Ju et al. [19], who argue for averaging the softmaxed logits because different
models’ logits might differ in magnitude. This is expected in our case, as the models use their
own subword tokenization and, therefore, might sum over a different amount of subwords for
the logits of the whole word.

The same models are used for the submission, presented in Table 7.

5.2. Multilingual Models

As shown in previous work, the performance of NLP- tasks can benefit from leveraging cross-
lingual transfer learning and using multilingual models, which leads to more training data for a
single model [20].

To test this, we used the same methods as described in chapter 4 with different multilingual
BERT models (for further details, see Table 7) and Newseye data in all four available languages. In
addition, we tested the single best model and the hard-label ensemble as described in paragraph
’Ensembling’ in section 4.4.

The first trained model received the input sorted after language, which we assume could lead
to catastrophic forgetting of the languages first seen. To avoid this, the sentences were shuffled
before being fed in batches to the model during fine-tuning.

5.3. Relabeling

Through the error analysis in section 7.2, we noticed that one of the most occurring errors
is Right classification and wrong segmentation, i.e., the model predicts I-LOC while the
ground truth is B-LOC. We assume this is because the models are fine-tuned on the whole label
set where B-tags and I-tags are handled as two different labels.

We chose the Newseye dataset in French to train the model used for this approach. All nine
classes of the dataset, [’O’, ’B-ORG’, ’I-ORG’, ’B-LOC’, ’I-LOC’, ’B-PER’, ’I-PER’, ’B-HumanProd’,
’I-HumanProd’] are relabeled into five entity labels which are [’O’, ’ORG’, ’LOC’, ’PER’, ’Human-
Prod’]. After that, the text and corresponding new label of each word are used as the input of
the training pipeline. The pipeline results in predictions with new labels that were reencoded.
The IOB-tagging is reconstructed in the postprocessing. Table 13 shows more details of the
results.



Table 2
F1-scores of Micro-strict evaluation of submitted ensembling system (Run 1)

dataset en fr de sv fi avg.
HIPE2020 0.513 0.678 0.725 - - 0.639
Newseye - 0.648 0.395 0.643 0.567 0.563
Topres19th 0.787 - - - - 0.787
Sonar - - 0.490 - - 0.49
Letemps - 0.644 - - - 0.644

Table 3
F1-scores of Micro-strict evaluation of submitted best single model (Run 2)

dataset en fr de sv fi avg.
HIPE2020 x 0.696 0.695 - - 0.696
Newseye - 0.656 0.408 0.636 0.556 0.564
Topres19th 0.781 - - - - 0.781
Sonar - - 0.477 - - 0.477
Letemps - 0.622 - - - 0.622

6. Results

To keep the results section concise, we focused on the micro-strict F1 score. From all measure-
ments provided by the task organizers, micro-strict is the most punishing, resulting in lower
scores. For more detailed results, see Tables 8 to 13 in the Appendix.

6.1. Submission

Table 2 and 3 show the F1-score over all labels for both submitted systems. ’avg’ shows the
average overall languages in each dataset. The best run for each language and averaged over all
available languages between the two runs are marked in bold.

6.2. Post-Submission Experiments

Soft-Label Ensembling All scores benefit from switching from hard-label to soft-label
ensembling by at least one percentage point from an average F1 score of 0.7 to 0.8 (see Table 4).
However, our best run on the test set from the submission was not the (hard-label) ensembled
model but the single model with the best scores on the validation set. With regards to Micro-F1
strict and fuzzy, the soft-label ensembled model is on par with the best individual model.

Multilingual models For this section, the test sets of the different languages were labeled
and evaluated separately. The results shown in Table 5 are then averaged over all languages.

‘submission ensembling’ and ‘submission best model’ contain the results we handed in for
submission, trained and ensembled monolingually and averaged over all languages. ‘best model
multilingual’ is the best out of the five models used for ensembling. ‘ensemble multilingual’



Table 4
Scores for all labels on Newseye French. ‘Best Model (Run 2)’ are the predictions of the best individual
model with the best validation scores. The other two rows are different ensembling strategies over all
models.

Micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1
strict fuzzy strict fuzzy strict fuzzy strict fuzzy strict fuzzy strict fuzzy

Hard-Label (Run 1) 0.673 0.801 0.625 0.744 0.648 0.772 0.659 0.814 0.614 0.762 0.630 0.779
Best Model (Run 2) 0.655 0.785 0.657 0.787 0.656 0.786 0.630 0.775 0.623 0.777 0.621 0.766
Soft-Label 0.685 0.818 0.636 0.758 0.659 0.787 0.677 0.829 0.63 0.771 0.649 0.793

is a multilingually trained system with five different results which were then run through the
ensembling process.

Table 5
Micro-strict scores averaged over all newseye testsets (de, fr, fi, sv) for experiments with multilingual
models

System Precision Recall F1
submission ensembling 0.70 0.65 0.67
submission best model 0.54 0.52 0.56

best model multilingual 0.62 0.55 0.58
ensemble multilingual 0.63 0.53 0.57

Results of the two runs of our submission show that ensembling improved the performance
over all languages and performed better than the single models. In the multilingual experiments,
the best model performs slightly better than the ensembling and beats the monolingual best
model. Overall, the monolingual ensembling yielded the best results. We assume the multilingual
ensembling results could be improved by excluding or replacing the worst performing model
used in ensembling. Table 12 in the Appendix shows more detailed results.

Relabeling Table 13 shows the comparison between applying and not applying the relabeling
method. The relabeling approach generally improves precision scores by around 1 to 2 percentage
points.

The result shows notable changes in models performances regarding precision and recall
scores. While Precision improves, recall scores slightly decrease compared to the performance
of model without relabeling. As a consequence, F1-scores remain similar in both conditions.

Besides, the relabeling approach has also contributed to the marginal enhancement of model
4, i.e., the pretrained and fine-tuned French Europeana ELECTRA model. What stands out in
Table 13 is the difference between model 4 using the relabeling method and model 4 not using
relabeling method. All considered metrics uniformly rise around 0.3-3% with relabeling.



Table 6
Comparison of Micro-F1 for HIPE2020 German between the BERT-base LM trained on historical data
and the BERT-base model LM on contemporary data.

ALL LOC ORG PERS PROD TIME
strict fuzzy strict fuzzy strict fuzzy strict fuzzy strict fuzzy strict fuzzy

Historical 0.702 0.805 0.814 0.870 0.441 0.572 0.690 0.841 0.356 0.525 0.596 0.808
Contemporary 0.657 0.778 0.773 0.839 0.454 0.535 0.574 0.778 0.418 0.636 0.630 0.804

7. Discussion

Table 2 and 3 show that the systems fine-tuned on the German Newseye and Sonar corpora
perform worse than those fine-tuned on the German HIPE2020 dataset. This could be because the
used datasets differ significantly in size; Sonar and News- eye are much smaller than HIPE2020,
so the lousy performance could come from overfitting. We also looked at each dataset’s best-
and worst-performing label and reported them with their F1-score in Tables 8 to 11.

The evaluation metrics (Tables 8 to 11) reveal that both the best model and the ensembled
models better recognize the LOC, PER, and TIME labels across all datasets and measurements.
While these labels dominate the corresponding datasets, hard-label ensembling (’voting’) reflects
the preference to reassign the label Os to these tokens. In contrast, the ORG and other minor
category labels are generally worse handled, as a system is less likely to predict them, and
in many cases, voting overrode these labels in favor of a more frequent predicted label. For
example, the gold standard for a label is ORG. One model predicts the correct, infrequent label,
the other 3 predict the more likely O. Due to majority voting, the correct guess is overruled and
the incorrect label is chosen.

7.1. Comparison of Contemporary and Historical BERT

Table 6 demonstrates the Micro-F1 results for HIPE2020 German between the BERT-based
model trained on historical data and the BERT-based model trained on contemporary data.
The HIPE2020 data are from historical newspapers between the 19th and 20th centuries, as
do the training data of the BERT-based HLM. As a result, the BERT-based model trained on
historical data outperforms the BERT-based model trained on contemporary data on the overall
result (column ALL in Table 6). The outcome is as expected because the pre-trained data cover
historical data requirements in the historical NER task.

7.2. Error Analysis

To clarify the errors in our models, we conduct error analysis on the models trained on the
Newseye dataset. We compare the NER results of the hard-label ensembling models on the
Newseye French test-set (as the best-performing model) and the Newseye German test-set (as
the worst-performing model) to the gold standard data. The five major errors discovered are as
follows:



• Right classification, wrong segmentation: e.g. B-PER v.s. I-PER.
• Wrong classification, right segmentation: e.g. B-LOC v.s. B-PER.
• Wrong classification, wrong segmentation: The models predicted different NEs

compared to the annotated data, e.g., B-LOC v.s. I-PER.
• Complete false positive: All tokens of a predicted entity are labeled with O in the

gold-standard.
• Complete false negative: All Tokens of an entity in the gold-standard are predicted as

O.

Figure 1 and 2 visualize the results of the error analysis. Besides the Complete false positive
and Complete false negative errors, the two most frequent errors are Right classification,
wrong segmentation and Wrong classification, wrong segmentation.

Figure 1: NER performance of the hard-label ensembling model on the Newseye French test-set.

Figure 2: NER performance of the hard-label ensembling model using the Newseye German test-set.

The most common errors appear to follow a pattern. They usually occur at the incorrect entity
recognition of the beginning token. To wrong segmentation errors, our model occasionally
labels just the entities of the names without their titles because it fails to recognize the beginning



tokens of location or individual titles such as ’café’ or ’v’ ’.’. Subword tokenization also raises
segmentation errors particularly in the French NER task. The model typically performs NER
and labels the tokens without the negation symbol ’¬’.

With an incorrectly labeled entity classification to the beginning token, the remaining se-
quence of tokens follows the incorrect classification. We see this error randomly happen in
sentences. Our model tends to start the NE with a non-location or non-personal noun, a punc-
tuation, or an article. After assigning the beginning token, the following tokens will adopt the
same incorrect classification. The following examples explain the two most common errors.

Right classification, wrong segmentation The French gold standard data label ’café’
’Mollard’ as ’B-LOC’ ’I-LOC’, whereas our model labels ’café’ ’Mollard’ as ’O’ ’I-LOC’. Without
labeling ’café’, our model assigns ’Mollard’ as a beginning token.

In the German gold standard data, the entities of the German family name ’v’ ’.’ ’Plener’ are
’B-PER’ ’I-PER’ ’I-PER’. They exist several times in the dataset, but not all have been correctly
recognized. Although our model adequately recognized the first two occurrences of the three
tokens, it does not consistently learn the entity pattern. Thus, there are also errors such as just
’Plener’ as ’B-PER’ or ’v’ as ’B-PER’.

Subword tokenization, for instance, ’Rau¬’ ’court’, is challenging for our model to perform
exactly NER. Our model predicts the entities as ’O’ ’B-LOC’ instead of ’B-LOC’ ’I-LOC’ as in the
French gold standard data. Other examples include ’Ro¬’ ’mans’ (gold NER as ’I-PER’ ’I-PER’),
’Pierre¬’ ’Vaast’ (gold NER as ’I-LOC’ ’I-LOC’) or ’AI¬’ ’bert’ (gold NER as ’I-PER’ ’I-PER’) which
our model does not recognize all tokens containing ’¬’ and assigns ’O’ to them.

Wrong classification, wrong segmentation With an inanimate French noun like ’matinée’
(’morning’ in French), our model recognizes its entity classification as ’B-PER’, which should
not be labelled. The incorrect classification leads the following tokens ’.’ ’—’ ’Le’ ’président’ ’du’
’Conseil’ ’a’ ’reçu’ (’. - the president of the council has received’ in French) all in ’I-PER’ where
only ’Conseil’ should be recognized as ’B-ORG’.

Our model recognizes all possible tokens including punctuation to perform NER. For instance,
only ’professeur’ ’Vaquez’ have entities of ’B-PER’ ’I-PER’ from the token sequence: ’","’ ’nièce’
’du’ ’professeur’ ’Vaquez’ ’.’ (’, niece of professor Vaquez.’ in French). However, our NER model
begins with the entity ’B-LOC’ by ’","’ and the following tokens are ’I-LOC’.

Based on these identified errors, we are encouraged to propose relabeling post-submission
experiments to improve the NERC task.

7.3. Post-Submission Experiments

Soft-Labeling With improvements across all scores, soft-label ensembling is preferable to
hard-label ensembling. It seems that the additional information embedded in soft-labeling
benefits the system. However, to be able to make more profound statements extending to other
datasets, more experiments would be needed.

Multilingual Models Multilingual approaches did not improve the performance of our
system. However, their performance is comparable to our monolingual approaches. The best



multilingually trained model performed better than the average best single monolingual model.
However, it seems that the performance of multilingual ensemble predictions could still be

improved through a better selection of multilingual models or leveraging newer models such
as XLM-R [20]. In addition, it is striking that all models performed poorly in German; more
analyses should be done to investigate further reasons for this and improve the system.

Relabeling Relabeling improves Precision scores and deteriorates Recall scores. This means
that our systems tend to return very few but precise NE predictions. Relabeling would be suited
best for scenarios where precision is more important than recall, and False positives should be
avoided.

8. Future Work

The existing system’s performance could be optimized by using early stopping instead of
training for a fixed number of epochs and applying grid-search on hyper-parameters.

We investigated the influence of frozen and unfrozen embeddings anecdotally, revealing that
employing frozen word embeddings for NER tasks slightly improved results. However, due to
time constraints, we could not implement our system with frozen embeddings, which would
assumedly improve the overall results, especially for the relatively small training sets we used.

Because of the workflow in our experiment, each dataset and languages use different pre-
trained models. Using the same models for one language across datasets and using multilingual
models across languages would make the system more uniform and easier to improve as a
whole.

Our ensembling approach could benefit from using a more careful selection of the single
models, and replacing the worst model would probably improve the overall performance.
This could particularly help the approach described in the post-submission experiment on
multilingual models, where all models performed poorly in German. More analyses should be
done to explain this bad performance and to improve it.

Experiments with other frameworks, such as AdapterHub [21] or other different architectures
could improve performance. Other newer models, such as RoBERTa [15], XLM-R [20], or models
trained on historical newspapers, could also help to improve performance.

9. Conclusion

In this paper, we reported on the performance of different language models for Named Entity
Recognition (NER) in historical newspapers. One of the main challenges in this domain is
digitization artifacts, a problem we address by fine-tuning models which have already been
pretrained on noisy historical data. Furthermore, we experiment with ensembling, multilingual
models, and label simplification.

In a case study for all languages of the HIPE-CLEF 2022 Newseye dataset, we found that
models that have been trained over all languages did not improve the scores compared to
monolingual models. In a second case study for the Newseye French dataset, we found that
solely predicting entity categories and inferring the IOB encoding in postprocessing did not



help to improve F1- measures but shifted the scores to higher precision and a lower recall. On
the same dataset, soft-label ensembling substantially improved all scores compared to hard-label
ensembling.
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Table 7
Used models and their corresponding HuggingFace links. Not available dev-set scores are marked with
’-’. The best model for each dataset is marked in bold. The best multilingual model was determined by
the test-set.

Languages Datasets Model name (hyperlink) F1-macro on dev-set

De Newseye bert-base-german-cased 0.35
De Sonar 0.87

Fi Newseye dbmdz/bert-base-finnish-europeana-cased 0.78

Fr HIPE2020 dbmdz/bert-base-french-europeana-cased 0.82
Fr Newseye 0.86
Fr Letemps 0.55

De HIPE2020 dbmdz/bert-base-german-europeana-cased 0.76
De Newseye 0.46
De Sonar 0.93

En Topres19th dbmdz/bert-base-historic-english-cased 0.62
En HIPE2020 -

De HIPE2020 dbmdz/bert-base-historic-multilingual-cased 0.74
De Sonar 0.60
En Topres19th 0.72
Fi Newseye 0.80
Fr HIPE2020 0.80
Fr Newseye 0.80
Fr Letemps 0.56
Sv Newseye 0.71
Multilingual Newseye -

Multilingual Newseye bert-base-multilingual-cased -

Multilingual Newseye bert-base-multilingual-uncased -

Sv Newseye dbmdz/bert-base-swedish-europeana-cased 0.73

Multilingual Newseye distilbert-base-multilingual-cased -

Fr HIPE2020 dbmdz/electra-base-french-europeana-cased-discriminator 0.34
Fr Newseye 0.38
Fr Letemps 0.32

De HIPE2020 dbmdz/electra-base-german-europeana-cased-discriminator 0.77

Fr HIPE2020 dbmdz/flair-hipe-2022-ajmc-fr-64k -

Fi Newseye EMBEDDIA/finest-bert 0.83

En Topres19th google/electra-base-discriminator 0.73
En HIPE2020 -

En Topres19th Jean-Baptiste/roberta-large-ner-english 0.71
En HIPE2020 -

Sv Newseye jonfd/electra-small-nordic 0.13

Sv Newseye KB/bert-base-swedish-cased 0.73

Fi Newseye setu4993/LaBSE 0.79
Fr Newseye 0.84
Fr Letemps 0.52
Fr HIPE2020 0.83
Sv Newseye 0.66
Multilingual Newseye -

Fi Newseye TurkuNLP/bert-base-finnish-cased-v1 0.79

En Topres19th xlnet-base-cased 0.26
En HIPE2020 -

https://huggingface.co/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased
https://huggingface.co/dbmdz/bert-base-french-europeana-cased
https://huggingface.co/dbmdz/bert-base-german-europeana-cased
https://huggingface.co/dbmdz/bert-base-historic-english-cased
https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased
https://huggingface.co/distilbert-base-multilingual-cased
https://huggingface.co/dbmdz/electra-base-french-europeana-cased-discriminator
https://huggingface.co/dbmdz/electra-base-german-europeana-cased-discriminator
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Table 8
Macro-fuzzy evaluation of submitted systems

System Dataset Eval Precision all Recall all F1 all-labels Best category Worst category
Best Model HIPE2020_de macro-fuzzy 0.789 0.828 0.796 TIME (0.9) ORG (0.484)
Best Model HIPE2020_fr macro-fuzzy 0.865 0.831 0.836 TIME (0.942) ORG (0.587)
Best Model Letemps_fr macro-fuzzy 0.52 0.712 0.752 PERS (0.845) ORG (0.256)
Best Model Newseye_de macro-fuzzy 0.392 0.502 0.547 PER (0.591) HUMANPROD (0.0)
Best Model Newseye_fi macro-fuzzy 0.765 0.626 0.668 HUMANPROD (0.863) ORG (0.57)
Best Model Newseye_fr macro-fuzzy 0.775 0.777 0.766 PER (0.82) ORG (0.606)
Best Model Newseye_sv macro-fuzzy 0.738 0.72 0.735 LOC (0.821) ORG (0.428)
Best Model Sonar_de macro-fuzzy 0.617 0.667 0.633 LOC (0.711) ORG (0.451)
Best Model Topres19th_en macro-fuzzy 0.813 0.86 0.824 LOC (0.873) BUILDING (0.643)
AVERAGE 0.62 0.63 0.64

Ensembled HIPE2020_de macro-fuzzy 0.819 0.826 0.808 TIME (0.89) ORG (0.501)
Ensembled HIPE2020_en macro-fuzzy 0.724 0.656 0.689 TIME (1.0) PROD (0.0)
Ensembled HIPE2020_fr macro-fuzzy 0.858 0.816 0.826 TIME (0.951) ORG (0.609)
Ensembled Letemps_fr macro-fuzzy 0.545 0.712 0.763 LOC (0.847) ORG (0.239)
Ensembled Newseye_de macro-fuzzy 0.403 0.469 0.538 LOC (0.585) HUMANPROD (0.167)
Ensembled Newseye_fi macro-fuzzy 0.796 0.581 0.703 HUMANPROD (0.795) ORG (0.593)
Ensembled Newseye_fr macro-fuzzy 0.814 0.762 0.779 PER (0.811) ORG (0.621)
Ensembled Newseye_sv macro-fuzzy 0.765 0.722 0.747 HUMANPROD (0.861) ORG (0.417)
Ensembled Sonar_de macro-fuzzy 0.663 0.672 0.654 LOC (0.758) ORG (0.432)
Ensembled Topres19th_en macro-fuzzy 0.881 0.823 0.841 LOC (0.889) BUILDING (0.642)
AVERAGE 0.70 0.68 0.69

Table 9
Macro-strict evaluation of submitted systems

System Dataset Eval Precision all Recall all F1 all-labels Best category Worst category
Best Model HIPE2020_de macro-strict 0.671 0.693 0.672 LOC (0.805) ORG (0.384)
Best Model HIPE2020_fr macro-strict 0.764 0.735 0.74 LOC (0.772) ORG (0.499)
Best Model Letemps_fr macro-strict 0.448 0.625 0.659 LOC (0.754) ORG (0.114)
Best Model Newseye_de macro-strict 0.302 0.386 0.421 LOC (0.464) HUMANPROD (0.0)
Best Model Newseye_fi macro-strict 0.682 0.561 0.596 PER (0.733) ORG (0.481)
Best Model Newseye_fr macro-strict 0.63 0.623 0.621 HUMANPROD (0.699) ORG (0.419)
Best Model Newseye_sv macro-strict 0.611 0.583 0.602 HUMANPROD (0.758) ORG (0.338)
Best Model Sonar_de macro-strict 0.46 0.5 0.474 LOC (0.649) ORG (0.241)
Best Model Topres19th_en macro-strict 0.77 0.812 0.779 LOC (0.824) BUILDING (0.527)
AVERAGE 0.62 0.63 0.64

Ensembled HIPE2020_de macro-strict 0.686 0.679 0.67 LOC (0.815) ORG (0.411)
Ensembled HIPE2020_en macro-strict 0.553 0.494 0.523 TIME (0.718) PROD (0.0)
Ensembled HIPE2020_fr macro-strict 0.741 0.7 0.712 LOC (0.712) ORG (0.403)
Ensembled Letemps_fr macro-strict 0.48 0.636 0.681 LOC (0.776) ORG (0.095)
Ensembled Newseye_de macro-strict 0.316 0.364 0.419 LOC (0.494) HUMANPROD (0.167)
Ensembled Newseye_fi macro-strict 0.666 0.484 0.585 LOC (0.655) ORG (0.477)
Ensembled Newseye_fr macro-strict 0.659 0.614 0.63 HUMANPROD (0.766) ORG (0.471)
Ensembled Newseye_sv macro-strict 0.654 0.608 0.634 HUMANPROD (0.739) ORG (0.306)
Ensembled Sonar_de macro-strict 0.512 0.514 0.503 LOC (0.695) ORG (0.23)
Ensembled Topres19th_en macro-strict 0.839 0.785 0.802 LOC (0.86) BUILDING (0.554)
AVERAGE 0.69 0.68 0.69



Table 10
Micro-fuzzy evaluation of submitted systems

System Dataset Eval Precision all Recall all F1 all-labels Best category Worst category
Best Model HIPE2020_de micro-fuzzy 0.783 0.826 0.804 PERS (0.874) ORG (0.545)
Best Model hipe2020_fr micro-fuzzy 0.825 0.776 0.8 PERS (0.848) PROD (0.596)
Best Model Letemps_fr micro-fuzzy 0.61 0.771 0.681 LOC (0.734) ORG (0.208)
Best Model Newseye_de micro-fuzzy 0.48 0.512 0.495 LOC (0.541) HUMANPROD (0.0)
Best Model Newseye_fi micro-fuzzy 0.681 0.603 0.64 HUMANPROD (0.732) ORG (0.478)
Best Model Newseye_fr micro-fuzzy 0.785 0.787 0.786 PER (0.849) HUMANPROD (0.579)
Best Model Newseye_sv micro-fuzzy 0.786 0.704 0.742 LOC (0.799) ORG (0.457)
Best Model Sonar_de micro-fuzzy 0.625 0.718 0.668 LOC (0.765) ORG (0.468)
Best Model Topres19th_en micro-fuzzy 0.807 0.851 0.829 LOC (0.872) STREET (0.661)
AVERAGE 0.61 0.63 0.65

Ensembled HIPE2020_de micro-fuzzy 0.812 0.833 0.822 LOC (0.866) PROD (0.574)
Ensembled HIPE2020_en micro-fuzzy 0.726 0.661 0.692 TIME (0.909) PROD (0.0)
Ensembled HIPE2020_fr micro-fuzzy 0.824 0.773 0.798 TIME (0.847) ORG (0.555)
Ensembled Letemps_fr micro-fuzzy 0.642 0.773 0.701 LOC (0.7) ORG (0.178)
Ensembled Newseye_de micro-fuzzy 0.481 0.478 0.479 LOC (0.551) HUMANPROD (0.08)
Ensembled Newseye_fi micro-fuzzy 0.73 0.619 0.67 PER (0.706) ORG (0.495)
Ensembled Newseye_fr micro-fuzzy 0.801 0.744 0.772 PER (0.839) ORG (0.58)
Ensembled Newseye_sv micro-fuzzy 0.797 0.702 0.746 LOC (0.801) ORG (0.442)
Ensembled Sonar_de micro-fuzzy 0.641 0.696 0.667 LOC (0.78) ORG (0.443)
Ensembled Topres19th_en micro-fuzzy 0.869 0.81 0.838 LOC (0.88) BUILDING (0.659)
AVERAGE 0.70 0.67 0.68

Table 11
Micro-strict evaluation of submitted systems

System Dataset Eval Precision all Recall all F1 all-labels Best category Worst category
Best Model HIPE2020_de micro-strict 0.677 0.714 0.695 LOC (0.794) ORG (0.411)
Best Model HIPE2020_fr micro-strict 0.718 0.675 0.696 LOC (0.748) PROD (0.519)
Best Model Letemps_fr micro-strict 0.557 0.704 0.622 LOC (0.692) ORG (0.12)
Best Model Newseye_de micro-strict 0.395 0.421 0.408 LOC (0.479) HUMANPROD (0.0)
Best Model newseye_fi micro-strict 0.592 0.524 0.556 HUMANPROD (0.683) ORG (0.407)
Best Model Newseye_fr micro-strict 0.655 0.657 0.656 PER (0.709) ORG (0.441)
Best Model Newseye_sv micro-strict 0.673 0.603 0.636 HUMANPROD (0.75) ORG (0.343)
Best Model Sonar_de micro-strict 0.447 0.513 0.477 LOC (0.685) ORG (0.293)
Best Model Topres19th_en micro-strict 0.761 0.802 0.781 LOC (0.833) BUILDING (0.564)
AVERAGE 0.64 0.66 0.67

Ensembled HIPE2020_de micro-strict 0.716 0.735 0.725 LOC (0.82) PROD (0.452)
Ensembled HIPE2020_en micro-strict 0.538 0.49 0.513 LOC (0.607) PROD (0.0)
Ensembled HIPE2020_fr micro-strict 0.7 0.657 0.678 LOC (0.761) PROD (0.421)
Ensembled Letemps_fr micro-strict 0.589 0.71 0.644 LOC (0.715) ORG (0.089)
Ensembled Newseye_de micro-strict 0.396 0.394 0.395 LOC (0.485) HUMANPROD (0.08)
Ensembled Newseye_fi micro-strict 0.618 0.524 0.567 HUMANPROD (0.615) ORG (0.385)
Ensembled Newseye_fr micro-strict 0.673 0.625 0.648 PER (0.712) ORG (0.455)
Ensembled Newseye_sv micro-strict 0.686 0.604 0.643 LOC (0.716) ORG (0.288)
Ensembled Sonar_de micro-strict 0.47 0.511 0.49 LOC (0.709) ORG (0.268)
Ensembled Topres19th_en micro-strict 0.816 0.76 0.787 LOC (0.84) BUILDING (0.551)
AVERAGE 0.69 0.66 0.67



Table 12
Evaluation multilingual experiments. Model1: dbmdz/bert-base-historic-multilingual-cased, Model2:
setu4993/LaBSE, Model3: bert-base-multilingual-cased, Model4: bert-base-multilingual-uncased,
Model5: distilbert-base-multilingual-cased

System Dataset Eval Precision all Recall all F1 all-labels
sub_Best Model Newseye_de micro-strict 0.395 0.421 0.408
sub_Best Model Newseye_fi micro-strict 0.592 0.524 0.556
sub_Best Model Newseye_fr micro-strict 0.655 0.657 0.656
sub_Best Model Newseye_sv micro-strict 0.673 0.603 0.636
AVERAGE 0.54 0.52 0.56

sub_Ensembled Newseye_de micro-strict 0.396 0.394 0.395
sub_Ensembled Newseye_fi micro-strict 0.618 0.524 0.567
sub_Ensembled Newseye_fr micro-strict 0.673 0.625 0.648
sub_Ensembled Newseye_sv micro-strict 0.686 0.604 0.643
AVERAGE 0.70 0.65 0.67

set_random Newseye_de micro-strict 0.006 0.022 0.009
set_random Newseye_fi micro-strict 0.005 0.01 0.007
set_random Newseye_fr micro-strict 0.005 0.013 0.008
set_random Newseye_sv micro-strict 0.01 0.023 0.013
AVERAGE 0.01 0.02 0.01

Model1 Newseye_de micro-strict 0.407 0.399 0.403
Model1 Newseye_fi micro-strict 0.671 0.564 0.613
Model1 Newseye_fr micro-strict 0.653 0.616 0.634
Model1 Newseye_sv micro-strict 0.729 0.627 0.674
AVERAGE 0.62 0.55 0.58

Model2 Newseye_de micro-strict 0.406 0.416 0.411
Model2 Newseye_fi micro-strict 0.624 0.514 0.563
Model2 Newseye_fr micro-strict 0.65 0.607 0.628
Model2 Newseye_sv micro-strict 0.693 0.599 0.643
AVERAGE 0.59 0.53 0.56

Model3 Newseye_de micro-strict 0.407 0.44 0.423
Model3 Newseye_fi micro-strict 0.586 0.462 0.517
Model3 Newseye_fr micro-strict 0.648 0.585 0.615
Model3 Newseye_sv micro-strict 0.643 0.548 0.592
AVERAGE 0.57 0.51 0.54

Model4 Newseye_de micro-strict 0.405 0.428 0.416
Model4 Newseye_fi micro-strict 0.563 0.438 0.493
Model4 Newseye_fr micro-strict 0.626 0.587 0.606
Model4 Newseye_sv micro-strict 0.637 0.53 0.579
AVERAGE 0.56 0.50 0.52

Model5 Newseye_de micro-strict 0.232 0.157 0.188
Model5 Newseye_fi micro-strict 0.266 0.113 0.159
Model5 Newseye_fr micro-strict 0.245 0.239 0.242
Model5 Newseye_sv micro-strict 0.356 0.182 0.241
AVERAGE 0.27 0.17 0.21

Ensembling Newseye_de micro-strict 0.434 0.408 0.421
Ensembling Newseye_fi micro-strict 0.649 0.502 0.566
Ensembling Newseye_fr micro-strict 0.691 0.608 0.647
Ensembling Newseye_sv micro-strict 0.742 0.596 0.661
AVERAGE 0.629 0.5285 0.57375



Table 13
Relabeling post-submission experiment results

Model Pretrained model Evaluation
setting

No relabeling Relabeling
Precision Recall F1 Precision Recall F1

1 Language-agnostic BERT
Sentence Encoder (LaBSE)

micro
- fuzzy

0.772 0.724 0.747 0.782 0.699 0.738

2 Historic Language
Multilingual Models

0.77 0.734 0.752 0.778 0.72 0.748

3 French Europeana BERT 0.785 0.787 0.786 0.806 0.765 0.785
4 French Europeana ELECTRA 0.468 0.521 0.493 0.47 0.544 0.504

1 Language-agnostic BERT
Sentence Encode (LaBSE)

micro
- strict

0.645 0.605 0.624 0.654 0.585 0.618

2 Historic Language
Multilingual Models

0.651 0.621 0.636 0.661 0.611 0.635

3 French Europeana BERT 0.655 0.657 0.656 0.672 0.638 0.654
4 French Europeana ELECTRA 0.213 0.238 0.225 0.233 0.269 0.25
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