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Abstract  
In the article we present a comparative evaluation study of three different model agnostic XAI 

methods, namely SHAP, LIME and AraucanaXAI. The prediction task considered consists in 

predicting mortality for ALS patients based on observations carried out during a period of 6-

months. The different XAI approaches are compared according to four quantitative evaluation 

metrics consisting in identity, fidelity, separability and time to compute an explanation. 

Furthermore, a qualitative comparison of post-hoc generated explanations is carried out on 

specific scenarios where the ML model correctly predicted the outcome, vs when it predicted 

it incorrectly. The combination of the results of the qualitative and quantitative evaluations 

carried out in the experiment form the basis for a critical discussion of XAI methods properties 

and desiderata for healthcare applications, advocating for more inclusive and extensive XAI 

evaluation studies involving human experts. 
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1. Introduction 
1.1 ALS  
Amyotrophic Lateral Sclerosis (ALS) is a chronic disease characterized by progressive impairment of 

neurological functions. It causes the paralysis of all voluntary muscles, usually leading to death or 

respirator-dependence within 3-5 years from onset. The incidence of ALS in Europe and in populations 

of European descent is 2.6 cases for 100 000 people per year and the prevalence is of 7 cases per 100000 

people [1], [2]. ALS progression rate and pattern can be highly variable, progressively impairing the 

ability to move, communicate, swallow, and breathe. The life expectancy is shorter than 3 years for half 

of the patients, with only 10% surviving for more than 10 years. Currently, there are still no effective 

treatments that can halt or reverse ALS progression. 

The heterogeneity in ALS clinical progression and survival makes predicting individual disease 

outcomes and clinical events very challenging [3], [4].  Nevertheless, predicting ALS progression can 

improve interventions, clinical practice and patient management. Few predictive models of the ALS 

progression have been assessed [5], [6], identifying predictive variables such as site and age at onset, 

diagnostic criteria, diagnostic delay, forced vital capacity and progression rate. Even though these 

models are able to predict individuals’ survival or intervention endpoints, there is a lack of tools able to 

model the entire disease progression over time, considering heterogeneous and longitudinal variables 

and their relationships. Some preliminary work has been done developing a model based on Dynamic 

Bayesian Networks [7]. 
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1.2 BrainTeaser 
The BrainTeaser project aims at leveraging Artificial Intelligence for various aims, including better 

describing ALS mechanisms, predict disease progression in a probabilistic, time dependent fashion; and 

suggest interventions that can delay the progression of the disease. By further exploiting the potential 

of AI, models able to catch and predict disease progression and outcomes over time for stratified cohorts 

could be used both in the clinical setting to support patient care, or in clinical trials designed to generate 

in silico patients mimicking sub-populations of subjects with different characteristics. BrainTeaser aims 

include defining an interpretable end-to-end approach that interpolates temporal data and predicts the 

probability of an adverse event. Detecting complications during disease progression is of paramount 

importance for ALS patients and clinicians, and extending predictive models with mechanisms that 

elucidate which clinical features are important is key to predict and prevent such adverse outcomes. 

 

1.3 XAI 
The resurgence of the research trend known as eXplainable AI (XAI) has recently led to the 

development of methods that complement black-box Machine Learning (ML) models with local and 

global explanations [8]. While global explainability deals with a general understanding of the model 

classification behavior, local explainability approaches provide insight about the internals of the 

prediction for a single instance. Local XAI is extremely important in high stakes applications, such as 

health care, where patients and stakeholders may wish to understand why a particular prediction was 

made. Furthermore the “right for an explanation” is put forward by regulations, such as the European 

Union’s GDPR2 and [9], the very recent EU Artificial Intelligence Act [10] as well as the U.S. 

government’s Algorithmic Accountability Act of 2019, and the U.S. Department of Defense’s Ethical 

Principles for Artificial Intelligence. 

Among the several methodologies proposed for post-hoc local explainability, the most frequently used 

are SHAP and LIME. SHAP [11] is a game theoretic approach that delivers local explainability in form 

of “feature importance” in a single prediction. In particular, given a single instance with its attributes 

and the predicted probability by the model, SHAP computes Shapley values for each attribute, which 

represent the contribution of that attribute to the final predicted probability. Therefore, SHAP 

decomposes the final predicted probability of any machine learning model by assigning a contribution 

to each feature. On the other hand, LIME locally approximates the behavior of a complex black-box 

model to that of a simpler and explanable-by-design linear classifier [12]. In case of linear classifiers, 

such as logistic regression, the local explanation will be the beta regression coefficients of the linear 

model trained on a neighborhood of the instances whose prediction must be explained. Following the 

assumption of LIME, other LIME-based approaches have been proposed over the years [13], [14]. Both 

SHAP and LIME provide local explanations in terms of local “feature importance”. This representation 

of an explanation may be obscure for a potential user with little background on machine learning 

analysis, such as clinicians. Motivated by this, we have previously developed an approach, named 

AraucanaXAI, whose surrogate explainable model consist in decision trees [14] 

(https://github.com/detsutut/AraucanaXAI). We believe that decision trees may be more suitable for 

delivering local explanations, since their structure is easily converted in a chain of if-then rules 

comprehensible to a wider range of users.  

Despite the abundance of new XAI methods proposed in the literature, studies have rarely performed a 

comparison among different approaches, and even less have evaluated their performance using real-

world clinical data [15]. For this reason, the objective of this research is to perform a comparison, and 

critical appraisal of SHAP, LIME and AraucanaXAI, on real-world data about ALS patients, coming 

from a cohort made available by the BrainTeaser project, on the task of predicting mortality based on a 

set of routinely collected clinical variables. 

 

 

 

  



2. Materials and Methods 
2.1 Prediction task 
The iDPP CLEF 2022 offers two evaluation tasks focused on predicting the progression of Amyotrophic 

Lateral Sclerosis [16], [17]. The first task aims at ranking risk of impairment due to ALS, while in the 

second task participants are required to predict time to a certain impairment-relevant event (i.e., NIV, 

PEG or death). To evaluate the different XAI approaches on a medical problem, we chose to train 

different ML classifiers to predict 6-months mortality. 

 

2.2 Datasets and preprocessing 
Data from 1756 training patients and 494 test patients were available to develop and evaluate the 

models. We dropped the “alive” feature from the dataset since it is highly correlated with the outcome 

(discordance in only 2% of the cases)2. The covariates provided in the datasets are split into static (e.g. 

routinely collected demographic and clinical information, as well as specific ALS-related data) and 

time-dependent variables (i.e. spirometry and ALSFRS-R [18] questionnaire results). Since the 

observation time for time-dependent variables is restricted to 6-months, the number of time-points only 

amounted to a single spirometry test, and minimum 1 to maximum 3 questionnaire administrations. For 

this reason, we used the spirometry result as-is, while we adopted two possible simple approaches for 

the ALSFRS-R data consisting in a) using just the most recent observation, or b) calculating a slope 

(i.e. slope=score(timelatest) - score(time0)) normalized by the time difference Δt between time0 and 

timelatest (i.e., slope/Δt). Our experiments showed that the alternative strategies a) or b) did not impact 

the predictive performance of the algorithms, and the role of time-dependent variables is marginal in 

the specific prediction task chosen for our study. Also, from the ALSFRS-R results we only kept the 

original qn score (i.e., 1-4 answer to the single item of the questionnaire) while discarding the cumulative 

(section and total) scores to avoid co-linearity and high-correlation among features. No further 

preprocessing of input variables was performed, apart from dropping features with more than 90% of 

missing values. Additional detailed information about the dataset and the codebook explaining each 

feature can be found at http://brainteaser.dei.unipd.it/challenges/idpp2022/. Table 1 summaries the 

number of instances in training and test sets, stratified by outcome, to highlight the imbalance of the 

dataset towards the occurrence of death. 

 

Table 1. Training and test datasets class distribution 

 

 Occurrence of death Non-occurrence of death 

Training Set 1486 (85%) 270 (15%) 

Test set 417 (84%) 77 (16%) 

 

2.3 ML and XAI methods 
We trained a set of 4 well-known classifiers to predict death occurrence: Gradient Boosting (using XGB 

implementation), Random Forest, Logistic Regression and Multilayer perceptron. All the models were 

implemented through the scikit-learn python package and code is available at 

https://github.com/detsutut/AraucanaXAI/blob/master/araucana_CLEF_pipeline.ipynb. 

For the XAI methods we have focused our attention on three different methods for post-hoc, model-

agnostic, local explainability, selecting SHAP, LIME and AraucanaXAI (ARAU in the following) as 

they are the ones that provide open-source, Python implementations that are readily available for use 

by researchers, available through the pip package manager. 

 

 
2 Notably, we spotted this significant flaw in the preprocessing when generating explanations using 

AraucanaXAI, where the first binary split of the explainer tree was consistently alive:0 vs alive:1. That 

allowed us to re-examine the feature selection performed during preprocessing and to fix the overlooked 

flaw. This is an example of how explanation facilities can also be employed for model debugging. 



2.2 Evaluation metrics 
Figure 1 details the experimental workflow followed in this study. After training the four predictive 

models, they are used to generate a prediction for each instance in the test set, and explanations with 

SHAP, LIME and AraucanaXAI are obtained. Then, XAI approaches are evaluated and compared in 

terms of a set of metrics defined in previous research on XAI in healthcare [19]: 

● Identity: if there are two identical instances, they must have the same explanations 

● Fidelity: concordance of the predictions between the XAI surrogate model and the original ML 

model 

● Separability: if there are 2 dissimilar instances, they must have dissimilar explanations 

● Time: average time required by the XAI method to output an explanation across the entire test 

set 

  
 

Figure 1. XAI experimental workflow: Four different ML models are trained and for each test instance 

the prediction is explained with three different XAI approaches (SHAP, LIME and AraucanaXAI). The 

training set is also employed by the XAI methods to produce the explanations. 

 

3. Results 
3.1 Predictive performance 
Since the problem is imbalanced (see Table 1), we evaluated the performance of the different ML 

models in terms of balanced accuracy, which is the mean between sensitivity (i.e., the ability to identify 

positive cases, in this case the outcome “death”) and specificity (i.e., the ability to correctly predict 

negative cases). All the models have low balanced accuracy, between 51% (Random Forest) and 55% 

(MLP). It is worth to note that we did not fine-tune the parameters (i.e., defaults hyperparameters with 

no further optimization) or the classification thresholds to try to achieve better classification 

performance since our aim is not to build a top performing predictive model but rather to evaluate how 

XAI can support the understanding of the model’s behavior. To this end, the instances where the 

predictive model predicted the “wrong” class as most probable are indeed the most interesting to analyze 

(see discussion section). 

 

3.2 XAI explanations performance 
Table 2 reports the results of the evaluation of the three different XAI methods when applied to each of 

the predictive model trained at model development stage. Identity could not be calculated since there 

are no two identical instances in the test set. In line with previously reported results on an experiment 

on a different dataset [14], results on fidelity show a perfect score for SHAP and ARAU on a slight 

edge (it was more noticeable in [14]) compared to LIME. Separability is also consistently low across 



all XAI methods, with LIME excelling with a perfect score, while ARAU is the worst-performing in 

terms of separability, albeit with still a very low number of identical explanations originating from 

different examples. Finally, SHAP is by far the fastest algorithm, with ARAU an order of magnitude 

slower, and LIME being the slowest (~>100x slower than SHAP). 

 

Table 2. Evaluation of different XAI methods on a test dataset of 494 instances. 

 

 Identity* Fidelity  

(higher is better) 

Separability 

(lower is better) 

Time (s) 

(lower is better) 

  SHAP LIME ARA

U 

SHAP LIME ARAU SHAP LIM

E 

ARAU 

GB N.A. 

  
no 2 identical 

instances are 

present in the 

provided test set 

1 0.99 1 0.0005 0 0.03 0.01 484 13.5 

RF 1 0.99 1 0 0 8.2E-6 7.7 539 48.4 

LR 1 0.99 1 0 0 0.08 4.6 480 9.6 

MLP 1 0.99 1 0 0 0.001 4.8 484 12.3 

 

4. Discussion 
The quantitative evaluation of the three different XAI methods did not reveal definitive superior 

performance of one of the approaches, albeit SHAP seems to be the better overall performing algorithm. 

However, the explainability evaluation metrics are not all that is needed to thoroughly assess the 

multifaceted construct of what constitutes a “good” explanation in XAI in healthcare. None of these 

measures indeed considers the fact that explanations, and especially local explanations, are ultimately 

directed, and should be optimized for, a human expert interacting with the AI system. A human-in-the-

loop approach has been advocated as essential for the proper evaluation of XAI for healthcare [20] and 

concepts like causability (i.e., the integration of “usability” factors and causal reasoning to support 

explainability) are increasingly recognized as a central component of the quality of generated XAI 

explanations [21]. 

A more qualitatively-oriented analysis of the generated explanations is thus required, moving beyond 

the standard ML evaluation frameworks consisting of overall performance measures like AUC, 

sensitivity and specificity, brier score, AUPRC, to dig into the detailed behavior of different XAI 

methods when dealing with specific, and more relevant, situations: e.g. arguably an explanation would 

be much more important when the AI-based predictive model and the clinical expert do not agree on 

the prediction for a specific patient, and the clinician is called to question his expert opinion vs the AI, 

or rather decide that the AI algorithm simply predicted the wrong outcome. In the supplementary 

material3 figures 1 to 4, we report an example of such comparative evaluation of SHAP, LIME and 

ARAU on four different cases of single-instance local explanations where the model succeeded (suppl. 

fig. 1 (pred:0, true class:0), suppl. fig. 2 (pred:1, true class:1)) or otherwise failed (suppl. fig. 3 (pred:0, 

true class: 1), suppl. fig. 4 (pred:1, true class: 0)) to predict the correct mortality outcome for an instance 

drawn from the test dataset.  

Interestingly enough, analyzing such examples, we can highlight some more differences among the XAI 

methods that the evaluation metrics presented in table 2 did not highlight. These include the fact that a 

good agreement on the “most important features” that led to the ML model to the correct prediction 

(suppl fig 1 and 2) exists between SHAP and ARAU, albeit the two methods rely on fundamentally 

different underlying methodologies (game theory and feature contribution for SHAP vs recursive 

 
3https://docs.google.com/document/d/e/2PACX-1vQEL-

YeGtsjRxmvgYRUKsdwpumHUpv6sO5yNDWQMMHWPJnKX__7s57zBbjAoGEUwA/pub 



partitioning of the data space for ARAU), while LIME which is theoretically more similar to ARAU 

(logistic linear surrogate model vs tree-based surrogate model) presents an explanation where the most 

important features are ethnicity and onset_bulbar, while the most important features identified by both 

SHAP and ARAU like onset_date, age_onset and the score of the 7th item of the ALSFRS-R 

questionnaire appear only later in the list. For what concerns incorrect predictions (suppl. fig. 3 and 4) 

it is also interesting to note how ARAU seems to have higher stability of the list of the most important 

features driving the classification (with onset_date, age_onset and q7 consistently appearing among the 

first binary splits of the explanation tree) when compared to SHAP’s explanation which suggests a 

decreased importance of onset_date and age_onset in favor of an increased contribution to the incorrect 

classification of different questionnaire items (e.g. q3, q5, q6 and q9, see suppl fig 4) and demographic 

variables like sex, previously deemed unimportant in the cases of correct prediction. LIME also exhibits 

a similar stability of importance of features in explanations to ARAU, with ethnicity, onset_bulbar and 

q7 still scoring high importance in the incorrect prediction scenarios.  

Another difference that emerges between ARAU, SHAP and LIME is that, exploiting the passthrough 

parameters related to the control of pruning of the surrogate explainer tree model (see ARAU’s 

implementation documentation and usage examples, including available hyperparameters, here: 

https://github.com/detsutut/AraucanaXAI#readme) it is possible to control the complexity of the 

generated explanation in terms of number of nodes in the explainer tree. Methods that essentially rely 

on presentation of feature importance like SHAP or LIME do not offer such fine-grained control to the 

final user, possibly harming the overall effectiveness and usability of the explanation especially in 

scenarios with a significant number of covariates in the predictive model contributing to the final 

prediction (i.e. also explainable-by-design models like a logistic regression or a decision tree can 

quickly become hard to grasp if the dimensionality of the feature space is significantly large. E.g. 

compare the complexity of an explanation constituted by a single binary-split rule, or a regression with 

3 covariates, with one with hundreds of splits or hundreds of odds-ratios or beta coefficients). 

Our study of evaluation of XAI methods in the task of ALS mortality prediction has some limitations 

that we acknowledge: First of all, we did not optimize the ML models developed to achieve the best 

possible performance, which in turn affects the proportion of correct and incorrect predictions made by 

the models and ultimately the XAI explanations generated. Secondly, we overlooked more refined 

temporal data mining approaches to deal with the time-dependent covariates, which might have been 

proven useful to predictive performance, especially in a disease like ALS which progresses over time, 

if tackled with a more refined approach than the simple ones we attempted (see the overarching goals 

of the BrainTeaser project at: https://brainteaser.health). Finally, we did not include any clinical expert 

in our evaluation of XAI approaches, which significantly limits the qualitative evaluation, usability, and 

clinical soundness of the explanations generated by the XAI methods analyzed.  

To this end, we advocate that further attention should be drawn by extensive evaluation studies4 of XAI 

in healthcare involving clinical end users as well as a range of stakeholders that reaches beyond AI 

developers and clinical researchers, to include patients, their informal caregivers, ethics and legal 

experts and other relevant players that may be involved in AI-supported clinical decision-making.  
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4 E.g., we are planning one of such studies, embracing open-science and participatory approaches, which you are 
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