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ABSTRACT
This paper reports on our experience after participating at the
MediaEval 2021: Predicting Media Memorability challenge. The
memorability of a video is defined as the proportion of people that
successfully remembered having watched a video on a second view-
ing during a memory game. Given this setup, teams were requested
to provide systems able to predict the degree of memorability for
individual videos from two different datasets: TRECVid and Me-
mento10k. Our proposal builds upon previous work in which we
find that non-adapted features extracted from Transformer architec-
tures can be closely tied to semantic differences between samples,
which in turn point to the overall memorability degree within differ-
ent semantic units, or topics. We feed these precomputed features
to linear regressors, showing that even without adapting the input
representation competitive prediction rates can be achieved.

1 INTRODUCTION
Scientific modelling of cognitive variables of human perception of
multimedia productions has eluded a mathematical formulation un-
til the last decades, leaving it as a discipline within psychology[1].
Although usually perceived to be largely dependent on the sub-
jective appraisals experienced by an individual, the analysis of
group-level data sets points to the existence of patterns most hu-
mans attach at least to some degree when faced before multimedia
content. One such instance is the problem of media memorability.

The MediaEval workshop, and in particular the Predicting Me-
dia Memorability challenge, provides now for the 4𝑡ℎ consecutive
edition with reliable data that researchers can use to further under-
stand media memorability. A detailed description of the challenge,
as well as the data sources used in this task can be found in [9].

2 RELATEDWORK
From the seminal work of Isola et al.[7], researchers have inves-
tigated whether the prediction of media memorability depends
primarily on visual descriptors such as image colour; brightness;
and hue, as opposed to other approaches, which suggested that
high-level, data-driven representations (e.g., image composition,
scene recognition, and image classification features) are best suited
to the task.

Our hypothesis, supported by studies from both neuroscience
and psychology, is that there are certain topics (particularly those
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related to people) that are inherently better remembered, than other
themes such as nature, war-like scenes and open spaces [8, 11].
Moreover, it seems that a major principle in creating new memories
comes from the fact that the brain deals with scene and object
representations at the same level of abstraction [12]. This highlights
the need for global descriptors of the media content if the goal is
to predict its likelihood to be remembered.

In recent times, the Transformer family of models has been pro-
posed as an alternative to other neural architectures, with promising
results until now [4, 5, 14, 17]. This is largely due to the inner repre-
sentation of input features these models are able to compute, which
tend to show a high degree of robustness to previously unseen
data. Because of their success, we use them as either text of image
encoders, in order to transform text descriptions or video frames
into meaningful, semantically-rich vector embeddings.

3 APPROACH
In a previous study[10], we found that a Transformer trained on
a sentence similarity task yielded features closely aligned to the
automatic detection of topics within the set of available video de-
scriptions. We also observed that some semantic units like human,
baby, girl, or man showed a higher average memorability than other
topics closer to nature views, open spaces or war-like contents. One
of the pillars of our analysis relied on the fact that the model used
to encode sentences into embeddings was not fine-tuned or adapted
to our task. Therefore, here we extend our methodology to other
pretrained Transformer architectures.1

Here we explore a wider range of models, covering systems able
to deal not only with text inputs, but also with visual information.
The main distinction between different runs (shown in Table 1)
lies in the model combinations used to encode the textual and
visual features. These embeddings are then fed as input to linear
regression models that constitute the only part of the pipeline
specifically trained on the task of predicting media memorability.
Every video is represented by a single embedding, computed as
the mean value of that video’s individual sentence or frame-level
embeddings.

3.1 Text Transformers
Language is a natural way to describe to others what we see, and
hence through it, we can encapsulate the semantics of a video in a
succinct and readable way. We choose three different architectures,
SBERT [16]; GPT-2[15]; and CLIP[14], each covering a different
aspect of language modelling. SBERT is a variation of the popular

1All the models used here can be downloaded from https://huggingface.co.

https://orcid.org/0000-0002-7313-7601 
https://orcid.org/0000-0001-5369-856X
https://orcid.org/0000-0003-3877-0089
https://huggingface.co


MediaEval’21, December 13-15 2021, Online R. Kleinlein, C. Luna-Jiménez, F. Fernández-Martínez

Run Dataset SBERT GPT-2 CLIP (text) CLIP (visual) ViT BEIT PCA dims. Method

1 TRECVid x x x 64 Bayes
Memento10k 256 LR

2 TRECVid x 32 BayesMemento10k 512
3 Both x x x 2048 Bayes
4 Both x x x x x x 4096 LR
5 Both x x x x x x 4096 Bayes

Table 1: Overview of the runs submitted. Different runs solve the task using different sets of precomputed features. Within
every dataset, the same solution is proposed despite labels be raw or normalised.

BERT language model[4]; the embeddings computed using SBERT
are targeted at telling apart pairs of sentences with similar or dis-
similar meaning, which is beneficial when looking for topics in
texts. We use the all-mpnet-base-v2 implementation. GPT-2 set a
remarkable milestone in the path of automatic text generation[15],
since it is able to synthesize texts coherent both in structure, use of
language and grammar. Features extracted using this model build a
general-purpose language representation. CLIP was announced as
a model able to combine information from both visual and textual
sources in order to perform image classification and image synthe-
sis simultaneously [14]. Its text-encoder is considered separately
from the rest of the model to encode sentences describing videos
with emphasis on the content of the video.

3.2 Visual Transformers
Although text descriptions can convey most of the semantic units
within a video clip, many aspects of the clip itself are missed. For
instance, a text such as "two people walking" can evoke a unending
amount of different images. However, extracting the semantics from
images is a process far more complex to interpret and analyze. For-
tunately, Transformers have also been applied to computer vision
tasks. Hence, we can proceed analogously and elaborate on the em-
bedding representations extracted from video frames (extracted at
1 FPS) using pretrained models. We use the visual branch of a CLIP
model, plus two additional systems designed under the same guid-
ing principles of the original BERT. In particular, we use BEiT [2]
and ViT [18] as additional visual encoders. Both were trained on im-
age classification over the ImageNet-21k dataset [3], at a resolution
of 224x224 pixels, though following different approaches.

3.3 Predictive models
We limit our setup to simple linear predictors: linear regression and
Naïve Bayes regression. Both are simple enough conceptually, yet
different in their inner working2, allowing us to concentrate our
efforts on the predictive power of the non-adapted input features.
Also, Principal Component Analysis (PCA) is used to project the
input vectors on spaces with lower dimensionality [6]. Each runwas
submitted according to the learning method and PCA dimensions
that performed the best over the development set of data on each
dataset.

2We used the default implementations from sklearn library [13].

Dataset Labels run 1 run 2 run 3 run 4 run 5

TRECVid
short-raw 0.204 0.265 0.291 0.205 0.198
short-norm 0.193 0.272 0.293 0.193 0.198

long 0.125 0.102 0.077 0.009 0.01

Memento10k raw 0.596 0.601 0.656 0.651 0.651
norm 0.598 0.606 0.657 0.652 0.651

Table 2: Spearman’s rank correlation coefficient of our pro-
posed models when evaluated over the official test set. In
bold, the run that performed the best on each set of labels.

4 RESULTS AND OUTLINE
Table 2 shows Spearman’s rank correlation coefficient values over
the test set of data for each run submitted. First, it is noticeable that
the combination of all visual embeddings outperforms any other
approach, except in the long-term set of labels. In that case, it points
to the possibility that text-based representations may encode better
the semantics needed to predict long-term media memorability.
Another interesting observation can be made about the relative
difference in performance shown by the same approaches depend-
ing on which dataset is considered. In fact, the worsening in the
predictions made over TRECVid data is likely to be related to its
smaller size, as well as the fact that we have noticed that most
videos within TRECVid fall in a narrow range of the topics detected
in Memento10k.
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