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ABSTRACT

The Medico task, MediaEval 2021, aims at developing accurate and
high-performance techniques for automatic medical image segmen-
tation. In this work, we describe an approach for tackling Tasks
1 and 2 of the challenge. We retrain TransFuse, a state-of-the-art
model in medical image segmentation, along with focal Tversky
loss function to segment the polyp regions in endoscopic images.
The approach focuses on computation efficiency while also pro-
ducing high-quality segmented results. In evaluation, our method
achieves appropriate results for both efficiency and accuracy.

1 INTRODUCTION

Medical image segmentation has become more common in recent
years, thanks to important advances in artificial intelligence. The
work mainly focuses on helping experts diagnose life-threatening
cancers by early detecting and segmenting polyps in medical images.
However, automatic polyp segmentation is challenging due to the
diversity of polyp shapes and positions. Numerous studies leverage
the representation power of deep learning to capture numerous
variations of polyps in endoscopic images. The MediaEval Task 2021
Transparency in Medical Image Segmentation calls for researchers
to investigate a method for polyps segmentation. [5]

This paper presents an approach that can efficiently segment
the polyp regions in the endoscopic images. We train from scratch
TransFuse [9], a state-of-the-art model in medical image segmen-
tation, along with a generalized focal Tversky loss function [1].
TransFuse is a combination of vision transformers [4] and convolu-
tional neural networks in a parallel manner [9]. While the former
learn to model the relations between regions in the images, the
latter extracts the local details of these regions. The two processes
execute in parallel. Hence, TransFuse boosts the time efficiency
in the inference phase. To combine both information, Zhang et al.
[9] propose the BiFusion module consisting of several attention
modules and convolution blocks. In addition, Kvasir-seg [2], the
given dataset, is a small dataset with only 1360 samples. The dataset
also consists of many hard samples in which the polyps are large
and have unusual locations and shapes. To address this problem,
we train TransFuse with focal Tversky loss function. We train the
models with various hyperparameter settings to assess the efficacy
and failures of this approach.
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2 RELATED WORK

Self-attention is a critical phenomenon in deep learning. The mech-
anism enables models to capture the global context between objects
in data. Self-attention is used in medical image segmentation to
manage the relationships between regions in the images. Oktay et
al. [8] integrate Attention Gates into U-net to suppress inessential
areas and emphasize salient characteristics. To further handle the
global context, Chen et al. [3] proposed TransUnet in which the
encoders of U-net are replaced by the encoders of Vision Trans-
formers [4]. Petit et al. 7] proposed a U-net architecture featuring
self-attention and cross-attention between the encoder and decoder.
While the preceding methods combine self-attention and CNNs
sequentially, Zhang et al. [9] combine them in a parallel manner.
This kind of incorporation can mitigate the loss of local details in
deep CNNs and reduce the inference time.

3 APPROACH

3.1 TransFuse

As illustrated in Figure 1, TransFuse includes three branches; Trans-
former, CNN, and BiFusion. The Transformer branch makes use
of the Vision Transformers architecture, in which an image is em-
bedded into patches before being transmitted to many multi-head
self-attention and multi-layer perceptron modules. The result is
molded into several feature maps, which are kept for later fusion. Si-
multaneously, the CNN branch downsamples the image into feature
maps with the same size as the corresponding ones in the Trans-
former branch. The outputs of the two parallel branches are fused in
the BiFusion module. The module contains spatial attention, chan-
nel attention, and residual blocks to perform multi-modal fusion
and self-attention [9]. Finally, the fused output is upsampled to get
the segmented result. In addition, deep supervision is provided at
the output of the transformer branch and the final BiFusion module.
In our experiments, we use TransFuse-S proposed by Zhang et al.

[9].

3.2 Focal Tversky Loss

Tversky Score is extended from Dice Score that flexibly adjusts the
scores of false positive and false negative cases among the classes
[1]. Equation 1 shows how to calculate the Tversky score. In the
equation, « is a hyperparameter that we can fine-tune during train-
ing. High values of @ enhance the recall rate in highly imbalanced
datasets [1]. Wider polyp regions, consequently, can be detected in
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Figure 1: Architecture of TransFuse [9]

images. Additionally, € is a constant that stabilizes the score.
TP+
T= - 1)
TP+ aFN + (1—a)FP +¢
The Tversky Loss L equals 1—-T. To tackle hard samples, Abraham et
al. [1] adapt the loss function to a focal version. The loss is written

1
as FL = (1 -T)r, where y € [1,3] is a hyperparameter. When a
high Tversky score has a high number of erroneous predictions,
i.e., FN and FP, the loss decreases dramatically. By using & > 0.5

and y > 1, the function focuses on merely misclassified samples.

As a result, the model can widen the segmented polyp regions.

4 EXPERIMENTS AND RESULTS
4.1 Experiments

We train TransFuse-S with the focal Tversky loss by varying « in
five Runs. In the first four Runs, we split the dataset into training
and validation sets with the ratio of 8:2, whereas we train the
model with all samples in Run 5. We use four values of «, including
0.3,0.4,0.6, and 0.7. In Run 1 and Run 5, a equals to 0.7, while «
equals to 0.6,0.4, and 0.3 in Runs 2,3,4, respectively. It is worth
noting that when a = 0.5, the Tversky score becomes Dice score.
Thus, we do not use 0.5 in our experiments. In addition, we fix the
value of y to % which is proved to be the most effective in [1]. We
use Adam [6] to optimize the loss function with a learning rate of
le — 4, and the batch size of data is 16. Additionally, because we
use deep supervsion, there are three losses L1, Ly, and L3 with the
corresponding scales 1 = 0.5, f2 = 0.2, and 3 = 0.3. And thus,
the final loss L equals 0.5L1 + 0.2Ly + 0.3L3.

4.2 Results

Table 1 displays the outcomes of our submissions from Run 1 to
Run 5 in the challenge’s Task 1. Accuracy, Jaccard score, Dice Score,
F1-score, Recall, and Precision are the six metrics used to assess
predictions. In Run 2, when alpha = 0.6, we attain the highest
Jaccard score of 0.6780. This run also produces the highest Dice
Score of 0.7756. All runs have a greater recall than a higher precision.
This demonstrates our approach’s responsibility for false negative
predictions. We achieve the greatest recall and accuracy of 0.8584
and 0.8208, respectively. Table 1 further shows that the accuracy
ratings for the five runs are almost comparable. In this section, we
additionally present the inference time for Task 2. Table 2 shows the
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Run ID Acc Jacc DSC F1 Rec Prec

Run1 | 0.9484 | 0.6684 | 0.7672 | 0.7672 | 0.8430 | 0.7628
Run2 | 0.9462 | 0.6780 | 0.7756 | 0.7756 | 0.8413 | 0.7748
Run3 | 0.9406 | 0.6596 | 0.7583 | 0.7583 | 0.8427 | 0.7656
Run4 | 0.9441 | 0.6700 | 0.7644 | 0.7644 | 0.7814 | 0.8208
Run5 | 0.9407 | 0.6689 | 0.7659 | 0.7659 | 0.8584 | 0.7569

Table 1: Results in Task 1

average inference time and frame rate, as well as the Jaccard Score,
Recall, and Precision of Task 2’s Run 1. On average, the model
makes one prediction in 0.0132 seconds. Besides fast inference,
our technique produces accurate findings, with a Jaccard score
of 0.6692, a high Recall of 0.8586, and a high Precision of 0.7572.
Furthermore, Figure 2 depicts the efficacy and failure of focusing
on enhancing the recall rate in the dataset. We paint the polyp
regions green based on the projections to see if the borders of these
regions are suitable. The first image demonstrates that strong recall
is acceptable, whereas the green hue in the second image surpasses
the polyp regions.

RunID | Avg-time | Avg-fps | Jacc Rec Prec
Run 1 0.0132 75.7629 | 0.6692 | 0.8586 | 0.7572
Table 2: Results in Task 2

Image Prediction Map
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Figure 2: Visualization

5 CONCLUSION

We present an approach to automatically segment polyp regions
in endoscopic images. Our work is to train from scratch Trans-
Fuse along with focal Tversky Loss to tackle hard samples in an
imbalanced dataset. We plan to investigate this approach more
thoroughly in the future.
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