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ABSTRACT

This paper presents the methods proposed by FakeINA team to par-
ticipate The FakeNews: Corona Virus and Conspiracies Multimedia
Analysis tasks. We concentrate our work on text-based misinforma-
tion and conspiracy detection. We proposed a multimodal neural
network that combines a graph neural network (GNN) where a
document is represented as graph and a multi-layer perceptron
model where textual statistics are used as features. Experimental
results show that however GNNs are able to classify the data, a
multimodal performs better.

1 INTRODUCTION

Mediaeval Fake News task[6, 7] focuses on the classification of
tweet texts aiming detection of fast spreading misinformation. This
task contains three sub-tasks : Text-Based Misinformation Detec-
tion, Text-Based Conspiracy Theories Recognition and Text-Based
Combined Misinformation and Conspiracies Detection. This work
proposed a multimodal neural network approach which is only
applied to the first two sub-tasks.

Graph neural network (GNN) methods have been profoundly
useful in several domains including natural language processing[9].
While it is probably most apparent to regard text as sequential
data, there are several methods to represent text as various kinds
of graphs. Dependency graph construction generates a graph by
extracting the dependency relations from the dependency parsing
tree. Constituency graph construction captures phrase-based syn-
tactic relations in a sentence. Another way of representing text
as a graph is to use word co-occurrence and/or document word
relations.

TextGCN [11] proposes to build a single heterogeneous graph for
whole corpus and captures global word co-occurrence information.
This approache converts text classification task to node classifica-
tion task. On the other hand, TextING[12] builds a graph for each
document based on the co-occurrence of words where each node is
represented as a word embedding and sliding window is used to
capture the relation between words. It learns the fine-grained word
representation of the local structure by GNN to effectively produce
embeddings for obscure words in the new text. By representing
each document as a graph, text classification task becomes graph
classification task for GNNs.

We present our approach in Section 2 and we discuss the results
in Section 3.
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Figure 1: Our framework of GIN with 2 layers for graph
classification

2 APPROACH

In this section, we present the preprocessing applied to the raw
text before graph construction. Two models proposed and their
implementation details are also presented in this section.

2.1 Preprocessing

We use the spaCy[4] library for Python in order to create a text file
containing the original tokens and their normalized counterparts.
For this normalization we have transformed each token to lowercase
and removed stop words. Also, considering the fact that BERT
allows a maximum of 512 tokens per sequence and the given dataset
contains sentences above that range, Bert tokenizer is used with
truncation option. However, BERT is recommended to use with
the raw text, lemmatization and stemming remain important to
generate a graph since a node (word) would be disrupted by an
irrelevant inflection like a simple plural.

2.2 Graph Construction

We use the same graph construction approach as described in
TextING[12]. Each document is represented as a undirected graph
where nodes are words and co-occurrences between words repre-
sented as edges. The co-occurrences is calculated by using a sliding
window. Embedding of the nodes are initialized by extracting word
embeddings from BERT model[2].

2.3 Models

After graph construction, the task converts to the graph classifi-
cation task. The main idea behind GNNs is to compute a state for
each node and update this state according to neighbouring nodes
states at each iteration. Graph Isomorphism Network (GIN)[10] was
proposed as a special case of spatial GNN suitable for graph classifi-
cation tasks to overcome the issue of distinguishing non-isomorphic
graphs. The authors argues that GIN is possibly as powerful as the
Weisfeiler-Leman test [8] test for graph classification tasks. Thus,
GIN is used in our experiments as GNN choice. Figure 1 resumes
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Figure 2: Our framework of multimodal approach with GIN
and MLP

our framework where two GIN convolutional layers are followed
by pooling layer (sum is used) and fully connected layers.

We also implemented a multimodal approach by combining GIN
model with multilayer perceptron (MLP). As seen in Figure 2, we do
not only generate graphs from input texts but also extract textual
features s listed in Table 1, by using textstat[1] Python package.
These features become input layer for MLP. We extract the embed-
dings from the last hidden layer and concatenat them with the graph
embeddings obtained just after pooling layer. They are sent to MLP
whose output layer will return the predictions for classification
task.

flesch reading ease syllable count

flesch kincaid grade lexicon count

automated readability index sentence count
dale chall readability score char count
reading time letter count
monosyllab count emoji count

Table 1: Textual Features

2.4 Implementation

All the models are implemented by using Pytorh Geometric[3]. For
text-based misinformation task, we used the negative log likeli-
hood loss function, Adam optimizer [5], and StepLR scheduler. For
the conspiracy detection we also used Adam optimizer [5] StepLR
scheduler with binary cross entropy with logits loss function. As
the dataset is not balanced, weights are provided for both loss func-
tions. We implemented a grid search to find best values for sliding
window size, number of GNN layer and hidden layers. Best value
for sliding window size was 3 and number of GNN layer was 2.

M. Larson et al.

3 RESULTS AND DISCUSSIONS

Stratified K-Fold cross validation model (with k=10) is used to
measure the performance. For each fold, dataset is split into train-
ing(80%), validation (20%). Due to the small size of the dataset and
overfitting issues during training we did not use test split. Table
2 shows the results for K-Fold CV by using Matthews correlation
coefficient.

Task Model Hidden Layers Val MCC Official MCC

Task 1 multimodal 128 0.422 0.336

Task 1 multimodal 256 0.396 0.446
Task 1 GIN 256 0.390 0.384

Task 2 multimodal 64 0.325 0.223

Task 2 multimodal 128 0.331 0.276
Task 2 multimodal 32 0.325 0.21

Table 2: Stratified K-Fold CV and submission results

We observe that multimodal behaves better than GIN based ap-
proach for Task 1. For Task 2, we did not send any submission for
GIN model because during experiments best Val MCC we get was
0.20. Hence, incorporating more data might improve the classifica-
tion results.
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